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Abstract

The strong bending of polymers is poorly understood. We propose a general quantitative 

framework of polymer bending that includes both the weak and strong bending regimes on the 

same footing, based on a single general physical principle. As the bending deformation increases 

beyond a certain (polymer-specific) point, the change in the convexity properties of the effective 

bending energy of the polymer makes the harmonic deformation energetically unfavorable: in this 

strong bending regime the energy of the polymer varies linearly with the average bending angle as 

the system follows the convex hull of the deformation energy function. For double-stranded DNA, 

the effective bending deformation energy becomes non-convex for bends greater than ~ 2° per 

base-pair, equivalent to the curvature of a closed circular loop of ~ 160 base pairs. A simple 

equation is derived for the polymer loop energy that covers both the weak and strong bending 

regimes. The theory shows quantitative agreement with recent DNA cyclization experiments on 

short DNA fragments, while maintaining the expected agreement with experiment in the weak 

bending regime. Counter-intuitively, cyclization probability (j-factor) of very short DNA loops is 

predicted to increase with decreasing loop length; the j-factor reaches its minimum for loops of ≃ 
45 base pairs. Atomistic simulations reveal that the attractive component of the short-range 

Lennard-Jones interaction between the backbone atoms can explain the underlying non-convexity 

of the DNA effective bending energy, leading to the linear bending regime. Applicability of the 

theory to protein-DNA complexes, including the nucleosome, is discussed.
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1. INTRODUCTION

Deformation of polymers is ubiquitous, elastic properties of these macromolecules are 

crucial for their dynamics. Biopolymers are abundant in nature and play vital roles in many 

biological processes [1–4], which not only depend upon the polymer structure, but also on 

its physical properties [5–7]. Among biopolymers, DNA stands out as a case of its own. 

Understanding DNA deformation is crucial for the mechanistic grasp of vital cellular 

functions, such as packaging of DNA compactly into viral capsids, chromatin compaction, 

formation of protein/DNA complexes and regulation of gene expression [2, 8]. An all-

important example of DNA deformation, relevant to a variety of biological processes that 

depend on its elastic properties, is DNA looping, which occurs in many prokaryotic [9] and 

eukaryotic [10] systems. A number of regulatory proteins can loop DNA into various bent 

conformations, critical for regulation of many biological processes involving DNA [11]. 

Most notably, DNA is strongly bent in the nucleosome [12, 13], which is the fundamental 

unit of genome packing: accessibility to genomic information in eukaryotes is modulated by 

the strength of DNA-protein association [14, 15]. Note that the majority of eukaryotic 

genomic DNA (75–80%) is packed tightly into nucleosomes [10]. Nanostructures made 

directly of DNA [16] or those that use DNA as a scaffold [17], can be influenced [18] by its 

mechanical properties on short length scales, providing yet another impetus to understand 

the strong bending regime of the DNA. Experimental evidence on cyclization of DNA 

fragments shorter than ~100 base-pairs points to the fact that strongly bent DNA—most 

relevant from a biological perspective—is considerably more flexible than expected from 

established models (worm-like chain) that work well within the weak bending regime. Yet, 

despite decades of experimental and theoretical effort, the story of how this very important 

polymer behaves under deformation is far from complete, with new developments abound 

[19–35]. A snapshot of the current state and the relevant terminology are briefly reviewed 

below.

Bending flexibility of a polymer is conventionally quantified in terms of its persistence 

length, Lp, a length scale below which the polymer behaves more or less like a rigid rod. 

Specifically, Lp is defined as length of the polymer segment over which the time-averaged 

orientation of the polymer becomes uncorrelated; for fragments smaller than Lp, the thermal 

fluctuation alone is not enough to induce significant (~ 1 rad) bending [36]. Here we use this 

definition of Lp to qualitatively separate the two bending regimes: if no significant bending 

is observed on length scales shorter than Lp, the polymer can be deemed weakly bent; 

otherwise the bending is assumed to be strong. For double-stranded DNA, a variety of 

experimental techniques [37–42], revealed that Lp ≈ 150 bp or 500 Å. Based on the Lp value 

and the above definition of strong bending, we conclude that most of the DNA in eukaryotes 

is strongly bent. Indeed, since the nucleosome contains a stretch of double-stranded DNA of 

~ 150 bp looped almost twice, the DNA in this complex can be considered as strongly bent.
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Response of DNA to mechanical stress has been studied extensively [2, 8, 37, 40, 42–60], 

leading to a consensus in modeling the weak bending regime. Arguably the most widely 

used simplified model of DNA bending is the wormlike chain (WLC) model. In the original 

WLC [42, 61], the polymer is modeled as a continuous, isotropic elastic rod with its 

deformation energy being a quadratic function of the deformation angle. In the discrete 

version of WLC model, the bending energy of the polymer consisting of N segments of 

length l is given by:

Ecℎain = ∑
i

N − 1 1
2kBT Lp

l θi
2

(1)

where θi is the angle between two consecutive segments (see inset of Figure 1). While this 

simplistic model lacks some features of the real DNA, such as sequence dependence of its 

local mechanical properties, it nevertheless captures the key physics of weak polymer 

bending, which explains why the model is robust and is widely adopted to interpret 

experiment. Various theoretical models of DNA bending, including those that explicitly 

account for the sequence-dependence [62–65], were consequently developed that also 

assumed harmonic (quadratic) angular deformation energy of DNA. There is very little 

doubt that the Hookean, “elastic rod” models accurately describe many polymers in the 

weak bending regime [1], including the double-stranded DNA [42, 54]. Indeed, lowest order 

term of a Taylor series expansion of any well-behaved function around its local minimum is 

quadratic, which means that for small deviations from equilibrium, the response function can 

be considered harmonic. However, by the same logic it should be expected that beyond a 

certain threshold the bending energy may no longer be approximated by the quadratic term 

alone; investigations of possible influence of non-harmonic terms on the mechanical 

properties of double-stranded DNA is a relatively new area. Historically, only very large 

fragments (hundreds to thousands of base-pairs) were investigated [37, 38], which are well-

described by the WLC regardless of what happens on short length-scales [48].

However, within the last decade or so, the prevailing view of DNA as a Hookean polymer 

was challenged by experiments that were able to investigate the flexibility of DNA on scales 

smaller than several Lp. Counter-intuitively, small DNA fragments (≈ 100 bp) were found to 

have much higher probability of cyclization (spontaneous formation of loops) than that 

predicted by the WLC theory [52]. This discovery sparked a debate, including subtle issues 

related to the interpretation of critical cyclization experiments themselves [35]. The 

controversy surrounding the DNA softening at short length scales remains unresolved, 

despite much effort. What is particularly puzzling is that strongly bent DNA appears less 
rigid than the DNA in the Hookean regime. Some of the follow-up experimental and 

theoretical work supports the validity of WLC even for tightly bent DNA [20, 42, 66], while 

others still show that short, strongly bent DNA is much more flexible [19, 48, 67, 68] than 

previously thought, in a manner that can not be described by a harmonic model [48]. A 

number of theoretical models have been proposed to account for the unexpectedly high 

flexibility of strongly bent double-stranded DNA. One popular model [69]—the meltable 

WLC or MWLC—postulated that the extra flexibility stems from formation of small local 

“bubbles” of single stranded DNA, which is much softer than the double helix. However, the 
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degree of softening provided by the mechanism was later found [70] to be inadequate to 

fully explain the very sharp bends in DNA observed experimentally; in atomistic 

simulations, negative super-coiling was required to induce such bubbles in DNA mini-circles 

[71]. An early model [72], put forward well before the unusual DNA flexibility was 

discovered experimentally, suggested that the energy of a bent double-helix could be 

lowered by formation of sharp, ~ 90° kinks that maintain the Watson-Crick pairing along the 

helix. Sharp kinks were indeed observed in a pioneering atomistic simulation [53] some 30 

years later, but subsequent improvements in the simulation methodology indicated that these 

were only induced at a high bend angle equivalent to those occurring in circles of just 45 

base-pairs [73], while experimental softening of the DNA is seen experimentally for circles 

as large as ~ 106 base-pairs [19]. Sharp kinks in double-stranded DNA can be introduced 

empirically into the WLC model, e.g., by adding freely-bending hinge elements to the WLC 

chain, leading to a kinkable WLC, or KWLC [49]. A non-linear empirical bending potential 

that allows for the possibility of ~ 90° kinks in double-stranded DNA was recently proposed 

[20], but its physical origins, the critical value of the DNA curvature at which the kink 

occurs, and the corresponding energy gain remained unknown [20]. At the same time, a 

purely linear empirical bending potential was shown [48] to describe the softer DNA seen in 

AFM experiments, although the origin of the linear regime and its parameters (e.g., critical 

bend angle where the linear regime begins) remained unclear. Are the kinking and the linear 

regime just two manifestations of a deeper underlying principle?

In summary, the nature of the effective bending energy of double-stranded DNA in the 

strong bending regime, and importantly, the precise connection to the observed softening of 

the polymer is not fully clear. The influence of mechanical constraints on this connection 

remains unexplored. It is unclear which aspects of the DNA structure and interactions at 

atomic level are sufficient to explain the softening of strongly bent DNA. The authors find it 

hard to believe that very special models are needed to describe strong bending of the DNA; 

rather it is more likely that the curious case of the DNA is just a special case of a broader 

underlying theory applicable to all polymers. This work is an attempt to develop the 

backbone of one such a theory.

In this work we propose, and verify against available experiment, a unified theoretical 

description of polymer bending that treats the weak and strong bending regimes on the same 

footing, guided by a simple physical principle. The proposed framework does not rely on ad-
hoc postulates; instead, it shows how the apparent softening of strongly bent DNA follows 

naturally from a specific mathematical property of the bending energy. Simulations suggest 

an atomistic explanation for the specific shape of the bending energy function.

2. METHODS

2.1. DNA Bending Energy From Experimental Data

A statistically significant, diverse set of several hundred PDB structures of protein-DNA 

complexes was investigated previously in reference [42]. The probability distribution of the 

experimental DNA bending angles (more than 10,000 values) was used in reference [42] to 

approximate the bending energy E(θ) [per base pair] as a fourth order polynomial: E(θ) = 

203.1θ2 − 552.7θ3 + 416.8θ4 (where θ is in radians and E(θ) is in units of kT). Here we use 

Drozdetski et al. Page 4

Front Phys. Author manuscript; available in PMC 2020 June 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



this E(θ) to represent the experimental effective bending energy of the double-stranded 

DNA, blue line in Figure 4.

2.2. Atomistic MD Simulations of Closed DNA Loops

To avoid end effects, and make a close connection with DNA cyclization experiments, we 

employed closed DNA circles to estimate their effective bending energy E(θ) per base pair. 

DNA circles of various sizes, from 50 to 400 bp, were generated using NAB [74] 

(AmberTools) for sequence poly(dA).poly(dT), helical repeat of h = 10 bp, and other 

parameters of B-DNA as specified in NAB. We deliberately chose this simple, uniform 

sequence to focus on the basic physics of DNA deformation. The range of circle sizes was 

determined by (1) the ability to simulate meaningful time-scales (large circles), and (2) the 

limitations of NAB software to construct highly bent structures (small circles). To minimize 

torsional stress, only circles with an integer number of helical repeats were constructed.

All of the atomistic MD simulations were performed within AMBER-12 package, using 

ff99bsc0 force-field. The Generalized Born (GB-HCT, AMBER option igb=1) implicit 

solvation model was used to treat solvation effects, including the effects of 0.145M of 

monovalent salt. No long-range cut-off was employed. The model’s performance in 

atomistic simulations of DNA, including studies of its deformation [51], is well-established 

[75]. Two critical advantages of the implicit solvation approach over the more traditional 

explicit solvation [76] treatment made the implicit solvation the method of choice in this 

work. These advantages are the superior simulation efficiency for large DNA structures [77] 

and the straightforward manner in which their energies, including free energy of solvent re-

arrangement, can be estimated [75] within the implicit solvation framework.

All DNA circles were initially minimized for 1,000 steps with “P” atoms constrained to the 

original positions with a force constant of 1.0 kcal/mol/Å2 to enforce the circular shape. 

Each system was then heated to 300 K and equilibrated for 100 ps with the same restraints 

as for the minimization. Shake was used to constrain the hydrogen atoms; we employed 2 fs 

time-step for the atomistic simulations. Finally, we generated 1 ns long MD trajectory for 

each circle at 300K, with “P” atoms also restrained with a force constant of 0.1 kcal/mol/Å2, 

sufficient to support the near perfect circular shape of the fragment, but allowing for local re-

arrangements. The energies and their components, including the electrostatic, VDW, bond, 

etc. were saved every 20 fs, and averaged over the whole trajectory. The relatively short 

simulation time allowed us to simulate even the largest of the circles; it is justified by the use 

of the strong positional restraints, which permit only local, very fast structural re-

arrangements. For smaller circles we verified that increasing the simulation time by an order 

of magnitude had negligible effect on the computed averages. In Figures 6, 7, the energy per 

bp was computed as the difference between per bp potential energies of the given circle and 

the largest circle simulated, in which the DNA was virtually unbent.

2.3. Coarse-Grained Simulations of DNA Loops

ESPResSo [78] was used to create and simulate coarse-grained closed loops of DNA of 

different sizes, from 6 to 600 bp long. A single bead of the appropriate mass represents one 

base-pair of B-DNA; the bead-bead distance was set to 3.3 Å, corresponding to the average 
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distance between base pairs in canonical DNA. The bonds between the beads were made 

virtually inextensible (very large coefficient of the quadratic bond stretching energy); the 

bond angle potential (effective bending energy) between neighboring beads was defined to 

have the same form as in Figure 4, that is correspond to the bending potential inferred from 

the experimental data [42]. No further bead-bead interactions or constraints on the loop 

geometry were imposed. The loops were simulated at T = 300K to generate 100,000 

snapshots for each loop size. The resulting bend angle distributions are shown in Figures 2, 

3. Steepest descent minimization of the last snapshot from each distribution was used to 

obtain the “energy minimized” data points shown in Figure 4.

2.4. Coarse-Grained Simulations of Confined DNA Fragments

2.4.1. Protein-DNA Complex—ESPResSo [78] was used to create and simulate a 20 

bead long fragment of “DNA” bound to a spherical charged “protein” (Figure 8). The beads 

and their interactions were set up as described above, with the following modifications. The 

end beads were not linked to create a loop. Each bead carried a unit charge qs = −1 (atomic 

units); The bead charges interacted only with a positive charge Q of the “protein,” 

represented by a spherical impenetrable constraint of radius R. In addition, two impenetrable 

walls were placed above and below the charge Q to minimize out-of-plane bending of the 

“DNA.” The confining charge Q was varied from 10 to 1,000, effectively sampling two 

orders of magnitude of confinement strength (defined here as |Q/qs|). The constraint radius R 
was also varied to sample various curvature values of the “protein,” and thus various total 

bending angles of the confined “DNA,” Figure 8.

2.4.2. A Nucleosome Model—For the nucleosome model, the system described above 

was modified to mimic the confinement of DNA around realistic histone core. The DNA 

fragment size was increased to 147 bp, and non-bonded interactions between monomers 

were turned on for an additional realism [79]. The fragment was confined around a cylinder 

of fixed diameter R ≃ 100Å, and the walls were placed ~50Å apart (approximate dimensions 

of the nucleosome complex [79]).

3. RESULTS AND DISCUSSION

3.1. The Proposed Unified Framework of Polymer Bending

We begin with a useful analogy from classical thermodynamics that connects system’s 

stability to convex properties of its governing potential. For example, for a system to be 

stable against a macroscopic fluctuation in energy, the entropy of the system as a function of 

energy, S(E), must be concave (non-convex). Any chord connecting two points on a graph of 

S(E) must lie below the curve itself in order to satisfy the second law of thermodynamics 

(maximum S). Conversely, the inverse function E(S) must be convex. If, however, E(S) is not 

convex over some region, the system phase-separates once this region is reached, with the 

properties of the two phases corresponding to the end points of the convex hull of the non-

convex region. The actual, physical average energy of the system follows the convex hull, 

which makes the energy manifestly convex. This very general reasoning, with appropriate 

choice of the perturbation coordinate and potential, is applicable to phase transition of single 

species polymers (Flory-Huggins Theory [80]), as well as to stretching of polymers [21] and 
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other materials [81]. Here we use the analogy to develop a general framework that describes 

polymer response to bending, weak and strong, on the same footing.

Consider a polymer chain made of N ≫ 1 inextensible, identical monomer segments with 

effective bending deformation energy E(θi) for each bending site, where θi is the angle 

between two successive segments (see inset of Figure 1). Here we assume that the effective 

E(θ) takes into account all the interactions, short- and long- range, between the monomers. 

For notational simplicity, in what follows we ignore the difference between N and N − 1 for 

large N. The total energy of the polymer is Ecℎain = ∑i
N E θi , and without loss of generality 

we assume no intrinsic bends, i.e., E(0) = 0. Just like in WLC, we assume isotropic bending 

energy, which is a reasonable assumption for DNA fragments longer than 2 helical repeats or 

20 bp [20]. For the moment, we further assume no torsional degrees of freedom. In order to 

induce an average non-zero bend in the chain, the polymer must be constrained, and the 

problem of finding the equilibrium polymer conformation is reduced to minimizing Echain, 

subject to the specific constraint of the problem. Here we assume that entropic effects are 

relatively small at length scales of interest (≲ Lp)—an assumption that we explicitly confirm 

below by numerical experiments. We begin by considering a very special case of a 

uniformly bent polymer—constrained to have the same constant curvature along the entire 

chain. By construction, such a polymer consists of identically bent segments with each 

bending angle θi equal to the average deformation angle, θ = N−1∑i
N θi, and its total energy 

is NE(θ). Uniformly bent DNA circles at atomic resolution will be used further in this work 

to analyze physical origins of the specific shape of E(θ).

Next, consider a more realistic situation where the polymer bending is enforced by a much 

less restrictive constraint: that the sum of the bend angles between the monomers remains 

constant, α = ∑i
N θi = const. Note that this constraint alone does not fully define the 

geometry of the polymer. A closed planar loop, with the first and last segments linked, is a 

relevant example for which the constraint is satisfied; ∑i
N θi = 2π, from elementary geometry 

of polygons (see also the Supplementary Material). Mathematically, the problem of finding 

the minimum energy conformation of the polymer is that of energy minimization under the 

specific constraint:

Ecℎain = Nℰ(θ) = min
∑i = 1

N θi = Nθ = α
{∑

i

N
E θi } (2)

where we make a clear distinction between ℰ, which is the average bending energy per 

bending site in the minimum energy state of the polymer, and E corresponding to the 

uniform bending. Using Lagrange multipliers, Equation (2) can be reduced to min{E(θ1)+ ⋯ 
+E(θN)−λ(θ1+ ⋯ +θN−α)}. Differentiating with respect to θi gives a set of equations 

∂θiE θi − λ = 0 (for all i) which leads to a set of equalities 

∂θ1E θ1 = ∂θ2E θ2 = ⋯ = ∂θNE θN . For a convex functional form of E(θ), ∂θE(θ) 

monotonically increases with θ, and therefore the equalities are satisfied only if θ1 = θ2 = ⋯ 
= θN: the polymer is always uniformly bent, that is each segment is bent through the same 
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angle θ = θ and ℰ(θ) = E(θ) However, for a non-convex function, such as one shown in 

Figure 1, there can be more than one value of θ that satisfies 

∂θ1E θ1 = ∂θ2E θ2 = ⋯ = ∂θNE θN : ∂θiE θa = ∂θiE θb  for some θa < θb.

Of special importance are θa and θb that mark the beginning and the end of the convex hull 

of E(θ)—the segment of a straight line tangent to the non-convex function at two points, 

such that for any argument between these two points the value of the function at the 

argument is greater than that of the convex hull line at the same argument (Figure 1). For 

bend angles θ in the convex hull interval, θa < θ < θb, a uniformly bent chain is no longer the 

stable minimum energy conformation of the polymer. Instead, the stable minimum is 

achieved when the distribution of bend angles is bi-modal: each segment is bent through one 

of the two bending angles θa or θb. To see how this “phase separation” comes about, 

consider a uniformly bent conformation of a polymer with just two sites, and let us 

investigate its stability to perturbation. A perturbation Δθ that reduces the bend angle at one 

site means that the other bending site must increase its bend angle by Δθ in order for the 

total bend to remain unchanged, that is to satisfy the constraint Nθ = const. This perturbation 

changes the total energy Echain by E(θ + Δθ) + E(θ − Δθ) − 2E(θ). If E(θ) is a convex function 

(e.g., the black curve in Figure 1), the perturbed system will have a higher energy than in the 

initial uniformly bent case. This is because, by definition, a convex curve always lies below 

its chords, so that 2E(θ) < E(θ + Δθ) + E(θ − Δθ). Thus, the perturbation leads to an increase 

in system’s energy, which implies that the system was at a stable equilibrium. Therefore, the 

minimum energy conformation of a polymer with a convex effective bending energy is 

always that of a uniformly bent chain. However, if the function E(θ) has a non-convex 

region (e.g., the blue curve in Figure 1), then for any θ in that region, and Δθ that does not 

take the system outside of it, 2E(θ) > E(θ + Δθ) + E(θ − Δθ), which means it is possible to 

lower the energy of the polymer further by non-uniform bending. Namely, one site is now 

bent through θ − Δθ, and the other through θ + Δθ, with the new value of the average chain 

energy per site, 1
2Ecℎain falling on the midpoint of the line (dashed red line in Figure 1) 

connecting the two new bending states on the energy curve. The longer the chord connecting 

the two perturbed states at θ − Δθ and θ + Δθ, the larger the energy gain 

2E(θ) − E(θ + Δθ) − E(θ − Δθ) due to the non-uniform bending, for as long as the chord is 

completely below the E(θ) curve. The largest energy gain, and thus lowest possible Echain, is 

achieved for the limiting chord that is the convex hull of E(θ)—the line segment tangent to 

the non-convex function at two points, such that between these two points the value of the 

function is greater than that at any point of the line segment. For this limiting case, 

θ − Δθ = θa, θ + Δθ = θb.

Thus, one clear and testable consequence of non-convexity of the bending potential (Figure 

1), is that the corresponding distribution of polymer bend angles becomes bi-modal once the 

average bending angle θ is within the convex hull region. A weak enough bending is always 

uniform, for as long as the average bend angle θ is below θa. As the average bend angle 

becomes just slightly larger than θa, most of the segments are still bent weakly through θa, 

but a small fraction becomes strongly bent through θb. As the constraint forces the system to 

bend further, the fraction of the strongly bent segments increases linearly with θ, until, 
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eventually all the segments are strongly bent through θb. Beyond that point the system re-

enters the uniform bending regime again. Here we confirm this expectation quantitatively 

(Figure 2), within a coarse-grained DNA model with one bead per bp (see “Methods”). 

Specifically, we have analyzed angular distribution of different sized loops, from 6 to 600 bp 

long. The corresponding probability distributions of bend angles for each loop size are 

shown in Figure 2, with examples of structures from these distributions presented in Figure 

3. Note that for a large, but finite N≫1, the predictions in Figure 2 should be interpreted as 

applicable to the entire conformational ensemble of bent loops; in particular, the predicted 

linear dependence of the fractions of strongly and weakly bent fragments apply to the 

ensemble averages. For a given value of θ, between θa and θb, one observes a distribution of 

tightly bent fragments among the loops, a given loop can have none or more than one; bent 

conformations we have observed in our simulations are qualitatively consistent with the 

above picture. In this work we are not pursuing a detailed analysis of many “structural” 

consequences of the proposed model; we hope to revisit this issue in the future. In what 

follows we focus on the energy aspects of the model, which can be tested against DNA 

cyclization experiments.

We begin by deriving an explicit expression for ℰ(θ) for θa < θ < θb. In the minimum energy 

conformation, let 0 < p < 1 represent the fraction of all the bending sites that are in the state 

θb and 1−p the fraction of the remaining sites in the state θa. The total bending angle in 

terms of θa and θb is then given by Npθb + N(1 − p)θa = Nθ = α, and the bending energy per 

monomer in the non-convex region is ℰ(θ) = pE θb + (1 − p)E θa . Rewriting 

p = θ − θa / θb − θa , we arrive at

ℰ(θ) = θ − θa
θb − θa

E θb − E θa + E θa (3)

Therefore, in the non-convex region, the actual polymer energy per bending site, ℰ(θ)
corresponding to the stable minimum energy state, is a linear function of the average 
deformation θ. Clearly, ℰ(θ) < E(θ) within the convex hull interval (Figure 1).

To arrive at a general theory that can account for both the weak and strong bending regimes 

simultaneously, we use the form of Equation (3) for the strong bending regime, while 

retaining WLC for the weak bending. In the proposed Energy Convex Hull(ECH) model, the 

average per segment (e.g., per base-pair) bending energy is described by an everywhere 

differentiable piece-wise polynomial function: quadratic WLC (Equation 1) for θ < θa, and a 

linear function—convex hull of E(θ)—for θa < θ < θb:

ℰ(θ) =

1
2kBTLpθ2  if θ ≤ θa

kBTLpθa θ − 1
2θa  if θa < θ < θb

(4)

where Lp is the accepted persistence length, well-established for the weak bending regime; 

here it is dimensionless, expressed in terms of the number of bending sites (e.g., number of 

base pairs for DNA loops). In this work we are not interested in the extreme strong bending 
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regime θ > θb, since for the DNA this regime would correspond to loops smaller than 10 bp. 

Such small loops are likely physically impossible due to steric constraints, and are much 

smaller than those observed in cyclization studies [19, 82]. Thus, the only key parameter that 

ECH theory inherits from the input effective bending energy, E(θ) in Figure 4, is the value of 

θa, which enhances robustness of the theory to inevitable imperfections [42] of the input 

bending energy profile. For example, a uniform re-scaling E(θ) → λE(θ) would leave the x-

coordinates θa and θb of the convex hull double-tangent segment unchanged because the 

derivatives would be re-scaled by the same λ. Further discussion of the robustness of ECH 

model to its parameters can be found below and in Supplementary Material.

3.2. Bending of a Circular Loop, Weak, and Strong

While many different types of constraints can be physically realized, one of the most 

important ones is the closed loop constraint, which is also used in DNA cyclization 

experiments [40, 42, 52], critical [49] for investigating the strong bending regime. Consider 

the case of a single closed loop α = ∑i
N θi = 2π. From Equation (4), the total bending energy 

of a closed loop of total length L (here L = number of base pairs in the loop, corresponding 

to N in Equation 2) is given by ℰloop = ℰ(θ)L. Since θ = α
L = 2π

L , the bending energy of the 

loop is:

ℰloop(L) =
2π2kBT Lp

L  if L > 2π
θa

kBTLpθa 2π − 1
2Lθa  if 2π

θb
< L < 2π

θa

(5)

The crucial difference between WLC and ECH is for small loops. Within WLC, the energy 

cost of bending a straight rod into a circular ring grows without a bound as the loop size 

decreases, consistent with a macroscopic intuition that a long rubber rod is much easier to 

bend into a circle than a short one. In contrast, within ECH the loop bending energy 

approaches a constant for small loop sizes.

Note that, where defined, the new function ℰloop depends explicitly on just one new 

parameter: θa—lower boundary of the non-convex domain. In other words, as long as θb is 

large enough, its value does not affect ℰloop. Although we tacitly assumed the loop to be 

confined to a 2D plane to simplify the derivations, our unconstrained coarse-grained 

simulations of closed loops at 300 K demonstrate (Figure 4), that the assumption has little 

effect on our key conclusions.

3.3. Application to Double-Stranded DNA

The preceding discussion was not restricted to the case of DNA: non-uniform, two-state 

bending, and the corresponding linear bending regime can be a feature of any polymer. 

However, since DNA is an important example from various perspectives, and since it 

exhibits tight looping in many different biological systems, we will focus on double-stranded 

DNA for the rest of the study. An effective bending energy (per bp) calculated from a 

statistical analysis of experimental PDB structures of DNA-protein complexes [42] is shown 
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in Figure 4. This effective bending energy function has a non-convex region, and thus a 

convex hull, the end points of which are θa = 2.2° and θb = 35.8° (0.038 and 0.62 rad, 

respectively in Equation 5), corresponding to fragment lengths of L ~ 160 and ~ 10 bp, 

respectively for DNA closed loops. As a numerical example, the bending energy of a 50 bp 

circular loop is ~ 54kBT within WLC vs. ~ 30kBT within ECH. Coarse-grain molecular 

dynamics simulations at 300 K demonstrate that a polymer with this effective bending 

energy between monomers exhibits all of the key features discussed above (Figures 2, 4). 

For large loop sizes the bending angles are small (weak bending)—the system samples the 

convex (harmonic) region of the energy function (Figure 4), and the distribution of bend 

angles is uni-modal. However, as the loop size decreases, the average angle per bending site 

θ increases, eventually crossing the θa threshold. Once this happens, the energy of the 

system per bending site increases linearly with θ, and the distribution of bend angles 

becomes bi-modal (Figure 2), until the system reaches the upper boundary of the convex hull 

at θb.

3.4. Comparison With DNA Cyclization Experiments

Most experimental cyclization results are expressed [42, 52] in terms of the Jacobson-

Stockmayer j-factor, which estimates the probability that a linear polymer of length L forms 

a closed loop by joining its cohesive ends [40, 83]. Here we use the well-established [84, 85] 

Shimada-Yamakawa formula for the j-factor of a closed loop:

j(L) ≃ k
Lp

3
Lp
L

5
exp − ℰloop

kBT + L
4Lp

(6)

where 1
Lp3

Lp
L

5
exp L

4Lp
 accounts for the entropic contribution [85], from possible looping 

geometries, and exp −
ℰloop
kBT  is the energy penalty of bending the DNA fragment to form the 

loop of optimal geometry. We note that k in the above expression depends, in a complex 

manner, on the loop closing geometry, but can be expected to remain invariant over a 

relatively short range of loop lengths L, within the same experiment. The same procedure 

(see the Supplementary Material), is used to obtain the best fit for k for both ECH and WLC, 

thus the details subsumed in k effectively “cancel out” in the comparison, which allows us to 

focus on qualitative, orders-of-magnitude, differences between the two theories. While 

Monte-Carlo based numerical approaches to computing j-factor exist [23, 25, 85], in this 

proof-of-concept work we prefer a closed-form analytical expression, which can be easily 

explored in various regimes. For loop sizes within our range of interest (Figure 5), the 

Shimada-Yamakawa formula was shown [85] to approximate the corresponding numerical 

estimate fairly closely. To make a direct connection with cyclization experiments for non-

integer numbers of helical repeats, we modulate the torsionally independent loop energy 

from Equation (6) with cos(2πL/h), where we assumed the helical repeat h = 10 bp per turn. 

The agreement with the cyclization experiment is robust with respect to the precise value of 

the helical repeat (see Supplementary Material). This form of the modulating factor is 

adopted from reference [84] to account for the periodic variation of the j-factor due to the 

torsional component of the energy [84]. This simple way of accounting for non-integer 
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numbers of helical repeats is appropriate [25] for the type of cyclization experiment [19] we 

use as reference [25]; the approach is sufficient for the purpose of testing key predictions of 

ECH vs. WLC, its simplified nature does not affect the comparison with the overall 

(envelope, average) behavior [49] of experimental j-factors (see also Table 1 below). We use 

ℰloop(L) defined in Equation (5) for ECH and ℰloop(L) = 2π2kBT
Lp
L  for all L in the case of 

WLC. The proposed ECH model and WLC are compared with the most recent experiment 

[19] in Figure 5.

As seen from Figure 5, ECH leads to a noteworthy agreement with the cyclization 

experiment, while the j-factors predicted by conventional WLC are off by several orders of 

magnitude in the strong bending regime (WLC is known to work well in the weak bending 

regime where it coincides with ECH by construction). The agreement of ECH with the 

experiment is robust to the value of its key input parameter θa, see below and SI. The ratio of 

j-factors for various loop lengths—independent of k in Equation (6)—is predicted to be 

within 50% of the experiment, while the corresponding WLC predictions are up to six orders 

of magnitude off (Table 1). Note that ratios of j-factors at integer values of helical repeats 

can be predicted directly from Equation (6), which does not contain the oscillatory 

components.

3.4.1. Cyclization of Very Short Loops—Counter-intuitively, the predicted envelope 

function for ECH j-factor, which is essentially Equation (6), has a minimum. While the 

minimum is rather broad (see the inset of Figure 5), it is well-defined and occurs at

L = 5
1

4Lp
+ Lpθa2

2
(7)

Using the value of Lp = 150 bp and θa = 2.2°, the minimum of j-factor is found at L ≃ 45 bp. 

No such minimum exists in the WLC case in the range of L of interest to us.

For loops even smaller than L ≃ 45 bp, the j-factor begins to increase, whereas for WLC j-
factor decreases sharply for small loops. This completely counter-intuitive behavior of the 

cyclization probability for very tight loops predicted by ECH is borne out by experiment 

(Figure 5); its physical origin is explained below. The two experimental points at L = 50 and 

L = 40, which qualitatively support the counter-intuitive prediction of the theory, were not 

available to us until after the ECH framework was fully developed and tested against 

published data [19] for larger circles. The over-all variation of the j-factor as a function of 

the loop length for both models is governed by an interplay between the entropic and the 

mechanical bending energy costs ℰloop(L) of forming the loop. For small loops, the entropic 

penalty of forming the loop decreases with the loop size L; however, ℰloop(L) Lp/L ∞ for 

L → 0 within WLC, which leads to the steep decrease in the over-all cyclization probability 

(Figure 5). Note that the ~ L−1 divergence of WLC bending energy for small L is 

independent of the loop closure geometry [86, 87], including the “teardrop” not explicitly 

considered here. In contrast, ECH loop energy, Equation (5), approaches a constant for small 

L, which explains why the corresponding j-factor reaches a minimum and then begins to 

Drozdetski et al. Page 12

Front Phys. Author manuscript; available in PMC 2020 June 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



increase for small enough L (Figure 5). This very different qualitative behavior of WLC and 

ECH j-factors for small loops can be used as a discriminating experimental test of these two 

models. The existence of the minimum of j-factor for short loop sizes can be used to 

discriminate between models (e.g., references [25, 35, 48, 49, 69]), that account for the DNA 

softening at short length scales; the predicted minimum value of the j-factor can be used to 

further discriminate between those models that exhibit the minimum. For example, both 

KWLC [49] and a recent version [23] of MWLC predict a j-factor minimum, but the loop 

sizes at which the minima occur appear to be substantially different from the ~ 45 base pairs 

predicted by ECH. At the same time, a coarse-grained model [35] designed around basic 

structural, mechanical, and thermodynamic properties of single-and double-stranded DNA 

reveals a minimum in the j-factor at around ~ 45 base-pairs. While the absolute value of the 

predicted j-factor depends on exactly how the experiment is interpreted [35], the position of 

the minimum appears robust to these details.

Within the proposed ECH framework of polymer bending, the central role is played by 

convexity properties of the effective bending energy between individual monomers. For the 

DNA, we used the energy profile inferred from statistical analysis of experimental structures 

of protein-DNA complexes (Figure 4)—the energy has a clear non-convex region, 

responsible for the “softer,” linear bending mode of short DNA loops. The same general 

considerations will hold for any effective bending energy that has a distinct non-convex 

region regardless of its origin [25], including a kinkable WLC potential [20]. Thus, even 

though ECH explains experimental results perceived to be in contradiction with WLC, there 

is no fundamental contradiction between the new framework and the conceptual basis of 

WLC.

3.5. Origin of the Non-convex Bending Energy of DNA

To investigate, qualitatively, the physical origin of the non-convexity of the DNA effective 

bending energy we employed all-atom Molecular Dynamic (MD) simulations of uniformly 

bent DNA circles of a wide range of sizes, from small to very large, corresponding to almost 

unbent DNA (see “Methods”). Specifically, we examined the average bending energy per 

base pair. The total bending energy profile obtained from these simulations is shown in 

Figure 6, while its breakdown into components of different physical origin is given in Figure 

7. One can clearly see a prominent non-convex region, in qualitative agreement with the 

experiment (Figure 4). The key parameter θa ≈ 1.5° from the MD simulations, which is not 

all that different from the value of 2.2° inferred from the experimental data (Figure 4). Some 

discrepancy is likely due to sequence effects [35, 88–90], force-field issues [91, 92], or the 

fact that the experiment-based potential in Figure 4 may itself deviate from reality to some 

extent, as noted in the original publication [42]. Importantly, the use of MD-derived θa = 

1.5° in Equations (5) and (6) results (see Supplementary Material), in virtually the same 

close agreement with the cyclization experiment we have seen Figure 5, which is based on 

θa = 2.2° derived from experiment. This insensitivity of the prediction of ECH to the value 

of its key input parameter points again to robustness of the proposed framework. Variations 

in the DNA sequence may alter the range of bending angles over which the convex hull 

exists; however, a recent study [35] suggests that changing the sequence from the uniform 

one used here to the one employed in experiments of reference [19] has an effect of only 
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about a factor of four on the j-factor, while not affecting the over-all shape of the j-factor 
dependence on the DNA loop size.

Regarding the physical origin of the non-convex effective bending energy of double-stranded 

DNA, the following qualitative conclusions can be made from the MD-based analysis of the 

DNA bending (Figure 7). For small bending angles, the total energy is reasonably well-

approximated by a quadratic function. However, once the bending reaches the transition 

angle θa, the VDW energy decreases at a rate faster than the increase of the other terms 

combined (Figure 7), which results in a non-convex region of the total energy, Figure 6. It is 

this sharp decrease in the VDW contribution that gives rise to the existence of a non-convex 

region in the DNA bending energy. Further analysis (inset in Figure 7), reveals that it is the 

attractive component of the VDW interactions between DNA backbone atoms (backbone-

backbone), rather than base stacking, that is critical to the counter-intuitive sharp decrease in 

the total bending energy (see Supplementary Material for further atomistic details). The key 

role of the backbone-backbone VDW term suggests that it is the overall structure of DNA, 

rather than sequence details, that is responsible for the existence of the convex hull in the 

polymer’s effective bending energy. Further analysis is needed to reveal which specific 

aspects of the DNA structure are necessary and sufficient for the existence of a non-convex 

region in the effective bending energy. In this respect, we can infer from recent modeling 

studies [25, 93] that asymmetry of the DNA with respect to bending toward major vs. minor 

groove can lead to non-convex effective bending energy.

It is worth mentioning that local “bubbles” of broken WC bonds do not occur in our 

atomistic MD simulations of DNA circles in which the uniform bending is deliberately 
enforced by constraints on the phosphorous atoms (see “Methods”). Yet, these simulations 

yield a non-convex profile of the DNA bending energy (Figure 6), which, as we have 

demonstrated, always leads to the existence of linear “soft” bending regime. Thus, the 

simulations suggest that local DNA melting may not be necessary to explain the high 

flexibility of strongly bent DNA and the stark deviation of experimental j-factors from WLC 

predictions. We stress that we do not rule out “bubbles” of broken WC bonds in actual 

sharply bent DNA [24, 69]; but we predict that if WC bond breaking were suppressed 

experimentally, the qualitative picture of sharply bent DNA being softer than weakly bent 

would still hold, albeit less pronounced. The experimental j-factors would still deviate from 

WLC in a way qualitatively similar to what is currently observed in experiment (Figure 5). 

In particular, we predict that measured j-factor would still reach a minimum for small 

circles. An analogy can be made here with the physics behind the DNA overstretching 

plateau [94, 95], where the polymer extension occurs at constant force, and the stretching 

energy grows linearly with the polymer extension. This peculiar regime can be explained 

[21] via the same main argument used in the current work—the existence of a non-convex 

region in the polymer deformation energy. In the case of DNA overstretching, experiments 

have demonstrated convincingly [96] that WC bond breaking is not required for the 

existence of the characteristic plateau on the force-extension diagram.

At the same time, quantitative details could be different if WC bond breaking were 

suppressed. Note that the effective loop bending energy of ECH theory in Figure 5 comes 

from a statistical analysis of real protein-DNA complexes. Consequently, the ECH effective 
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energy with parameters used in that figure, θa = 2.2° and θb = 35.8°, implicitly accounts for 

broken WC bonds, and other effects [33], if these occur in the DNA of the complexes. Note 

that these effects have been suppressed in all-atom MD simulations leading to Figure 6, 

which, along with inevitable force-field deficiencies, may explain why θb value that could 

be inferred from Figure 6 would be different from the experiment-based one from Figure 4. 

Fortunately, as long as θb is large enough, it has no effect on ECH predictions with respect 

to j-factor, which further supports the notion that ECH is rather robust to details of the 

bending potential.

3.6. Beyond Closed Loops: A Protein-DNA “Complex”

The proposed framework is based on one main assumption: despite constraints, the polymer 

chain is still free to explore sufficient conformational space to search for minimum energy. 

So far, we focused on DNA loops because of direct connection to key cyclization 

experiments; the single constraint ∑i
N θi = α = 2π is minimally restrictive. However, other 

realistic scenarios of DNA bending, notably in protein-DNA complexes, may involve 

different types of constraints that can confine the polymer strongly enough to potentially 

violate the main assumption to various degrees. Here we investigate to which extent our 

main conclusion—deformation energy of strongly bent DNA follows the convex hull of E(θ)

—may still hold in a model of protein-DNA complex (Figure 8 and “Methods” for details). 

As an example of a protein-DNA complex we choose the nucleosome [12], the fundamental 

repeating unit of chromatin compaction in eukaryotes, which we model here at two levels of 

coarse-graining. Briefly, a negatively charged polymer (the “DNA,” monomer charge qs) is 

is allowed to wrap around a charged disk (the “nucleosome core,” charge Q); the “core” is 

made impenetrable to the “DNA.” Further, the “DNA” is not allowed to slide off the “core” 

sideways, which is achieved through an application of appropriate positional restraints. In 

the simulation we vary the total positive charge Q of the cylindrical “nucleosome core” to 

modulate the electrostatic attraction of the negatively charged polymer to the “core,” which 

in turn modulates the degree of the polymer confinement. In the limit of very strong 

confinement (|Q/qs| → ∞), the polymer is forced to be confined to a circular, uniformly bent 

path on the surface of the cylindrical core, and has very few degrees of freedom left to 

explore in this regime, solid red line in Figure 8. The average bending energy in this case 

follows the given functional form of E(θ) (red dashed line in Figure 8), and ECH clearly 

does not apply. As we decrease the confinement strength, the polymer is allowed to assume 

non-uniform bending conformations while lowering its total bending energy. The effective 

bending energy per monomer begins to approach the convex hull (solid green and blue 

lines), making ECH more applicable. In the case of the weakest confinement (solid purple 

line), the polymer is still loosely bound to the core, but is allowed to relax almost 

completely. This is the limiting case described by our ECH model: the resulting energy per 

monomer follows the convex hull fairly closely.

We argue that it is this low confinement regime, where ECH is relevant, that describes the 

real nucleosome [13]. To substantiate the connection to the nucleosome, we provide a 

qualitative analysis of the corresponding energetics of the DNA binding. To this end, we 

model a “variable confinement nucleosome” by a coarse-grained 147-bp DNA fragment 

placed next to a cylinder with relative dimensions of the actual histone core [79] (see 
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Methods); as the core charge Q is increased, the whole fragment starts to wrap around the 

cylinder once the confinement strength is |Q/qs| ~ 90. At this value of the DNA confinement, 

the energy cost of pulling away a fragment of ~ 20 bp in our model is ≈ 10kBT, which is 

qualitatively comparable to ≈ 6kBT estimated from experiment [2] as the energy needed to 

pull away a DNA fragment of the same length in the case of actual nucleosome. Moreover, 

even for higher degrees of confinement, up to |Q/qs| ≃ 200 (≃ 20kBT to pull away a 20 bp 

fragment), the corresponding blue lines in Figure 8 still approximate the convex hull, and so 

ECH is still likely applicable, at least qualitatively. Needless to say, applicability of ECH to 

protein-DNA complexes will require further rigorous analysis.

4. CONCLUSION

It is now well-established that slightly bent DNA behaves like an elastic rod—the 

deformation energy is a quadratic (harmonic) function of the deformation. However, recent 

experiments demonstrated that strong bending of small DNA fragments could no longer be 

described within this classical model.

Here we have proposed a novel framework for bending of polymers, which is based on the 

consideration of convex properties of the effective bending energy between successive 

monomers. Within the framework, the bending energy is harmonic for small bends, but once 

the average deformation reaches the convex hull of the effective bending energy function, a 

“phase transition” to the strongly bent regime occurs, in which the system’s energy is a 

linear function of the average bending angle. In this regime, which persists for as long as the 

average deformation is within the convex hull interval, the two states of bending co-exits: 

some segments are bent weakly, while others are bent strongly, with the proportion of the 

latter increasing with the increased average bend (e.g., shorter loops). The transition point 

from the harmonic to the linear bending regime occurs at the beginning of the convex hull 

segment—this point plays a special role in the new theory. These general considerations are 

expected to hold for any polymer with an effective bending energy that has a distinct non-

convex region, regardless of its origin.

For generic “sequence-averaged” double-stranded DNA considered here, we conclude that 

the effective bending deformation energy becomes non-convex for strong bends greater than 

~ 2°/bp, which corresponds to circular loops shorter than ~ 160 bp. The conclusion about the 

DNA bending energy being non-convex relies on an analysis of a large number of 

experimental protein-DNA complexes, and is consistent with the shape of the bending 

energy inferred from atomistic MD simulations. The simulations also yield a qualitatively 

similar value for the bend angle that marks the onset of the linear bending regime. Further, 

atomistic simulations of DNA circles reveal that attractive short-range Lennard-Jones 

interactions between the backbone atoms can explain the underlying non-convexity of the 

DNA effective bending energy, leading to the linear bending regime. We use MD 

simulations only for general reasoning, which is robust to details of the simulation protocol.

In this work our focus is the main principle; future refinements of the ECH theory may be 

able to account for details not considered here, such as sequence dependence of the DNA 

bending energy, the influence of torsional stress and supercoiling, etc. We have also just 
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barely touched upon structural consequences of ECH, such as the number and distribution of 

“kinks” in tightly bent DNA. A detailed analysis of these features will likely lead to 

additional experimentally verifiable predictions of the theory. Likewise, we have derived 

specific mathematical expressions for bending under only one type of constraint; other 

relevant types of constraints need to be considered in more detail to complete the theory. 

Based on our analysis, the key conceptual features of ECH will likely hold.

The new theory does not contradict the conceptual basis of the classical models of DNA 

bending, such as WLC, but also agrees with recent experimental cyclization data on strongly 

bent small DNA circles [19]. A completely counter-intuitive prediction that cyclization 

probability reaches a minimum for very small loops has proved to be qualitatively consistent 

with additional experimental data points, not available to us when we made the prediction. 

We believe that the novel general framework can be used to analyze, at least conceptually, 

many other scenarios of strong polymer bending, and should help interpret future 

experimental observations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1 |. 
Two different forms for a bending energy profile of a homopolymer. Shown is the (effective) 

bending energy per bending site E(θ). If the profile is purely convex down (black curve), the 

minimal energy conformations of the polymer is uniform bending (all sites are identically 

bent). If the function has a non-convex region (blue curve), non-uniform bending is more 

energetically favorable. In this case the total energy of the system follows the convex hull of 

the energy curve (red line).
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FIGURE 2 |. 
Non-convex bending energy function leads to bi-modal distribution of bending angles. 

Shown are angular probability distributions at 300 K resulting from a realistic non-convex 

bending potential (Figure 4) used here in coarse-grained simulations of DNA closed loops of 

variable size. As the loop size (indicated in the top right corner) decreases, the average 

bending angle per base pair increases. When the average angle falls into the convex hull 

range, the angular distribution becomes bi-modal with peaks at θa and θb, corresponding to 

the weakly and strongly bent states, respectively. Fractional occupancy of both of these 

states of bending is shown in the inset as a function of the average bend angle θ. Squares: 

occupancy of the weakly bent state. Circles: occupancy of the strongly bent state, which can 

be interpreted as a “kink.” Out-of-plane motion likely affects angular probability distribution 

of the largest (600 bp) loop, which may explain the shift, compared to expectation, of the 

position of the corresponding distribution peak.
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FIGURE 3 |. 
Examples of a 60- base-pair (left) and 80- base-pair (right) loop conformations at 300 K 

corresponding to the non-convex bending potential of Figure 4. The conformational 

ensembles were generated via coarse-grained simulations of DNA closed loops.

Drozdetski et al. Page 25

Front Phys. Author manuscript; available in PMC 2020 June 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 4 |. 
DNA effective bending energy E(θ) (per bp) extracted from the probability distribution [42] 

of DNA bends that naturally occur in protein-DNA complexes (blue line), and the average 

energy of unrestrained DNA closed loops simulated via coarse-grained MD with the same 

E(θ) (crosses). Green symbols: energy minimized (simulated annealing) loops. Black 

symbols: loops simulated at T=300K. In both cases, the average loop energy as a function of 

average bend angle θ = θ follows the convex hull of E(θ). The small deviation of the T = 300 

K points from the convex hull are a result of ensemble average sampling and insignificant 

out-of-plane bending seen in the simulation.
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FIGURE 5 |. 
DNA cyclization j-factors computed using the proposed ECH model (green line) and WLC 

(blue line) are compared with recent experiment [19] (red dots, L > 60 bp). Experimental 

values of persistence length, Lp = 150 bp and θa = 2.2° (Figure 4) were used; the value of k 
in Equation (6) was obtained independently for each model as best fit against two 

experimental data points for fragment length L = 101 and 106 bp (see Supplementary 

Material). The envelopes of the j-factor (brown dashed lines) for ECH and WLC are shown 

in the inset. Predicted envelope for ECH j-factor has a minimum near 45 bp. The 

experimental data points L = 50 and L = 40 bp were shared by Taekjip Ha (see reference 

[19]) in private communication to assess model performance after the model had been 

constructed.
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FIGURE 6 |. 
The effective DNA bending energy, per base pair, as a function of the bending angle θ, 

inferred from all-atom MD simulations of uniformly bent DNA circles of variable lengths 

(50–400 bp). The statistical error bar is smaller than the symbol size. For reference, a WLC 

fit for small angle bends (up to≈ 3.5°, dashed line) is shown; the fit yields a persistence 

length of 58.2 nm (≈ 172 bp), reasonably close to the experimental value of ≈ 50 nm (≈ 150 

bp).

Drozdetski et al. Page 28

Front Phys. Author manuscript; available in PMC 2020 June 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 7 |. 
Physical components of the (total) effective DNA bending energy from Figure 6. The 

original range of bend angles is reduced for clarity. The energies are per base pair, inferred 

from all-atom MD simulations of uniformly bent DNA circles of variable lengths (50–400 

bp). The main contribution to the non-convexity of the bending energy comes from the Van 

der Waals (VDW) interactions. The backbone-backbone part of these interactions contribute 

the most to the non-convexity due to a sharp increase in the attractive energy component for 

3° < θ < 4°, as shown in the inset. For reference, a WLC fit for the small angle bends (up to 

≈ 3.5°, gray dashed line) is shown.
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FIGURE 8 |. 
Polymer bending in a “protein-DNA complex” model with variable strength of polymer 

confinement and curvature (see “Methods”). The red circle represents the cylindrical 

charged core of the “protein” to which the oppositely charged “DNA” (black chain) is 

attracted. Under weak confinement, the system follows the convex hull of the effective E(θ), 

while approaching E(θ) (red dashed line) itself for strong confinement. Shown is the average 

energy per bead against the average bending angle θ, at different confinement strengths 

governed by the ratio |Q/qs| of the confining charge Q to the opposite charge qs of the 

confined polymer. The intrinsic bending of the polymer is described by (experimental) E(θ) 

from Figure 4.
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TABLE 1 |

j-factor ratios, J(L1)/J(L2), predicted using ECH and WLC models compared with experiment [19].

L1(bp) L2(bp) Experiment ECH WLC

40 50 1.50 0.993 1.12×10−6

71 101 1.51×10−1 2.01×10−1 3.08×10−6

80 101 2.17×10−1 3.28×10−1 6.10×10−4

90 101 3.56×10−1 5.59×10−1 3.73×10−2
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