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Abstract
Stress is a biological adaptive response to restore homeostasis, and occurs in every animal production system, due to the 
multitude of stressors present in every farm. Heat stress is one of the most common environmental challenges to poultry 
worldwide. It has been extensively demonstrated that heat stress negatively impacts the health, welfare, and productivity 
of broilers and laying hens. However, basic mechanisms associated with the reported effects of heat stress are still not fully 
understood. The adaptive response of poultry to a heat stress situation is complex and intricate in nature, and it includes 
effects on the intestinal tract. This review offers an objective overview of the scientific evidence available on the effects of 
the heat stress response on different facets of the intestinal tract of poultry, including its physiology, integrity, immunology, 
and microbiota. Although a lot of knowledge has been generated, many gaps persist. The development of standardized 
models is crucial to be able to better compare and extrapolate results. By better understanding how the intestinal tract is 
affected in birds subjected to heat stress conditions, more targeted interventions can be developed and applied.
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Introduction
Stress is the reaction of the animal organism to stimuli (real or 
perceived) that disturb its normal physiological status, or in other 
words, a biological adaptive response to restore homeostasis. 
However, this definition or concept becomes more complex, 
when considered that stress can be experienced within a short 
period of time (i.e., acute stress) and/or during prolonged periods 
of time (i.e., chronic stress), which can also occur continuously 
or intermittently. Moreover, it is important to keep in mind 
that stress is not always negative or detrimental (“distress”), 
but in some cases, it can actually be positive or beneficial to an 
individual (“eustress”). Although defining and discussing all the 
different aspects and types of stress are a fascinating subject, 
it is out of the scope of this literature review and, therefore, 
readers are referred to some of the many published studies 
available in the scientific literature (Selye, 1936, 1955, 1976; 
Moberg, 1987; Veissier and Boissy, 2007; Koolhaas, 2008; McEwen 
and Akil, 2020). However, for the purpose of this review, it is 
critical to understand that the stress response varies between 

individuals within the same population or observational group, 
not only because stressors are variable and experienced in 
different degrees but also because they rarely occur singly. 
This is particularly important when considering poultry 
production, where large populations or groups of birds (broilers, 
layers, turkeys) are kept together and under the same general 
conditions, but nevertheless, will experience stress in a wide 
range of magnitude (Stott, 1981; Young et  al., 1989; Rostagno, 
2009; Koolhaas et al., 2010).

Understanding and controlling environmental conditions 
are crucial to poultry production, health, and well-being. Heat 
stress is a top environmental concern in poultry production 
worldwide, being potentially triggered by a variety of conditions, 
such as climatic conditions common in some regions of the 
world, failure of ventilation and temperature controls (manual 
or automatic systems), inadequate brooding conditions, stocking 
density at the end of the growing phase, and new or alternative 
(“open”) production systems (e.g., free-range, organic) that 
create challenges for efficient environmental controls and 
frequent exposure to the external environment.
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Heat stress occurs whenever there is a negative balance 
between the net amount of heat energy flowing from the animal 
to the environment and the amount of heat energy produced by 
the animal (Renaudeau et  al., 2012). This imbalance is caused 
by variations of a combination of several environmental factors 
(e.g., sunlight, thermal irradiation, and air temperature, humidity, 
and movement), and characteristics of the animal (e.g., species, 
metabolism rate, and thermoregulatory mechanisms).

The intestinal tract is particularly responsive to any type 
of stress, including heat stress (Calefi et  al., 2014, 2017; Tellez 
Jr. et  al., 2017; Slawinska et  al., 2019). Effective functionality 
of the intestinal tract is critical to poultry production, as 
it has major broad implications for the overall health and 
performance of the birds (Skinner et al., 2010; Kaldhusdal et al., 
2016; Kadykalo et  al., 2018). However, as a very complex and 
intricate system, the intestinal tract is still viewed by most as a 
“black box” with many basic and important gaps of knowledge 
that still need to be uncovered. Besides, the intestinal tract 
actively interacts bidirectionally with many other complex 
systems in the animal’s body, such as the neuroendocrine and 
immune systems, making it very difficult to fully unravel this 
multifaceted interrelationship. Therefore, this review attempts 
to provide a concise compilation of the current knowledge and 
evidence available in the scientific peer-reviewed literature 
about the impact of heat stress on the intestinal tract of poultry.

How are Stress and the Intestinal Tract 
Connected?
The brain and digestive systems communicate continuously and 
bidirectionally through several complex pathways involving the 
enteric nervous system (ENS), the autonomic nervous system 
(ANS), the hypothalamus–pituitary axis (HPA), and the central 
nervous system (CNS). This bidirectional network is known as 
the brain–gut axis. Signals from the brain can modify the motor, 
sensory, secretory, and immune functions of the intestinal tract, 
and conversely, visceral messages from the intestinal tract 
can influence brain functions in a top–down and bottom–up 
relationship (Bueno, 2000; Bhatia and Tandon, 2005; Jones et al., 
2006; Konturek et al., 2011; Brzozowski et al., 2016; Liu and Zhu, 
2018; Cryan et al., 2019).

The ENS is an integrative network located within the wall 
of the entire intestinal tract, containing millions of neurons, 
and controlling the microcirculation, motility, and all exocrine 
and endocrine secretions (Goyal and Hirano, 1996; Bueno, 2000; 
Costa, 2000). Although we are only beginning to understand the 
complex functionality of the brain–gut interactions involved in 
stress-related intestinal alterations, there is clear evidence that 
stress can lead to functional disorders, as well as to inflammation 
and infections of the intestinal tract. Stress triggers the HPA and 
the activation of the ANS, as well as an increase in corticosterone 
levels and proinflammatory cytokines. These downstream 
signals act via neural connections of the brain–gut axis together 
with reactive oxygen metabolites, local inflammatory factors, 

and circulating cytokines, affecting intestinal homeostatic 
functions (de Kloet et al., 2005; Jones et al., 2006; Lambert, 2009; 
Ulrich-Lai and Herman, 2009; Konturek et al., 2011; Spiers et al., 
2015; Breit et al., 2018; Mukhtar et al., 2018).

Functional intestinal disorders are defined as a variable 
combination of intestinal symptoms that do not have an 
identified underlying pathophysiology (Corazziari, 2004). 
However, besides dysfunction of the gut–brain axis, several other 
factors play a role in functional intestinal disorders, including 
low-grade mucosal inflammation and chronic infections, which 
can be caused by many external factors, such as diet and stress, 
including heat stress (Spiller, 2004; Holtmann et al., 2017).

Behavioral Effects of Heat Stress
Poultry are endothermic homeotherm animals, which are 
animals that keep their body temperature within a relatively 
narrow range over a wide range of environmental conditions 
by balancing heat production (thermogenesis) and heat loss or 
dissipation. When birds are subjected to conditions leading to 
heat stress, behavioral and physiological changes or adaptations 
occur seeking thermoregulation to restore homeostasis (Yahav 
et  al., 2004; Cangar et  al., 2008; Farag and Alagawany, 2018). 
However, it is very important to keep in mind that in general, 
although the heat stress response of different types of birds is 
similar, there are individual variations in intensity and duration 
within the same population or flock (Mignon-Grasteau et  al., 
2015; Farag and Alagawany, 2018). This consideration is very 
important in cases of mild-moderate heat stress conditions 
in the field, as it poses a challenge for producers to quickly 
and correctly identify and attempt to correct environmental 
conditions and minimize negative effects. Another cause of 
response variation resides in the fact that heat stress is often 
not experienced in isolation, being usually accompanied by 
other stressors, such as limited housing space and insufficient 
ventilation (Rostagno, 2009; Lara and Rostagno, 2013; He 
et al., 2018; Saeed et al., 2019). Furthermore, there is evidence 
indicating that much of the variation in response to heat stress 
is also genetically based (Lu et al., 2007; Soleimani et al., 2011; 
Felver-Gant et al., 2012; Mack et al., 2013; Mignon-Grasteau et al., 
2015; Lan et al., 2016; Monson et al., 2018).

Sensible heat loss does not seem to play an important role 
in poultry, as limited body surface areas are not covered with 
feathers (e.g., legs, head, wattle, and comb). Thus, latent heat 
loss by panting (i.e., increased respiratory rate, consisting of 
short, quick breathing) is the main mechanism used by poultry 
for heat dissipation (Marder and Arad, 1989; Tzschentke et al., 
1996; Yahav et al., 2004; Mutaf et al., 2009). This mechanism for 
reducing body temperature is known as respiratory evaporative 
cooling and is based on heat exchange with the environment 
through the air sacs (Marder and Arad, 1989; Comito et al., 2007). 
Air sacs are very useful during panting, as they promote air 
circulation on surfaces contributing to increase gas exchanges 
with the air, and consequently, the evaporative loss of heat 
(Fedde, 1998).

In addition to panting, birds subjected to heat stress 
conditions will spend less time feeding and more time drinking, 
as well as more time with their wings elevated, less time moving 
or walking, and more time inactive (Marsden and Morris, 1987; 
Lara and Rostagno, 2013; Mack et al., 2013; Bahry et al., 2018). 
From a practical point of view, under commercial poultry 
production conditions, it is very important to closely monitor 
water and feed consumption during periods of higher heat 
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stress risk. Rapid increase in water and a decrease in feed intake 
can be good indicators of flocks being subjected to heat stress 
conditions.

Physiological Effects of Heat Stress
The primary cardiovascular adaptive response of animals under 
heat stress conditions consists of increasing blood flow to the 
external surface of the body (i.e., skin) in an attempt to promote 
heat loss and reduce heat gain from the surrounding environment. 
However, a compensatory decrease in splanchnic blood flow 
(i.e., reduced blood flow to internal organs or hypoperfusion) 
occurs as a mechanism to maintain overall blood pressure 
stable (Rowell, 1974; Lambert, 2009; van Wijck et  al., 2012). The 
resultant ischemic environment causes a reduced oxygen flow 
to the intestinal mucosa (i.e., hypoxia), promoting oxidative and 
nitrosative stress that cause intestinal epithelial tight junctions 
(TJ) to become loose and “leaky.” Further damage is caused by the 
hypoperfusion, due to reduced nutrients and energy to sustain 
cellular viability and function and, consequently, compromising 
the turnover of enterocytes occurring along the intestinal tract 
(Söderholm and Perdue, 2001; Lambert, 2009; van Wijck et  al., 
2012; Dokladny et al., 2016; Slimen et al., 2016). Also, as previously 
mentioned, heat stress causes reduction in voluntary feed intake. 
According to Bernabucci et al. (2009) and Morera et al. (2012), heat 
stress upregulates the secretion of two adipokines, leptin, and 
adiponectin, as well as the expression of their receptors. These 
adipokines negatively regulate feeding behavior, resulting in a 
markedly reduced feed intake (Richards et  al., 2010). This form 
of caloric restriction allows hyperthermic animals to reduce 
metabolic heat generation, which otherwise would exacerbate 
the effects of heat stress (Slimen et  al., 2016). However, this 
abrupt reduction of feed intake leads to additional alterations 
and damage to the intestinal mucosa, as discussed further ahead.

It is well-known that the exposure to high environmental 
temperatures results in activation of the HPA and of the brain–gut 
axis, as well as elevated plasma corticosterone concentrations 
(Garriga et al., 2006; Star et al., 2008; Quinteiro-Filho et al., 2010, 
2012b). In combination with reduced voluntary feed intake, 
these will affect the functionality of the entire digestive system, 
leading to changes in motility and flux patterns, secretory 
activity, content viscosity, and pH (Tur and Rial, 1985; Mitchell 
and Carlisle, 1992; Geraert et al., 1996a, 1996b; Hai et al., 2000).

It is very important to highlight that nutritional factors, such 
as diet quantity and composition, markedly affect the regulation 
of the energy flow in poultry. As already mentioned, exposure 
to increased environmental temperature leads to reduced feed 
intake, which in turn leads to reduced maintenance energy 
requirement, as well as reduced intestinal enzymatic secretory 
activity (e.g., trypsin, chymotrypsin, amylase). Additionally, the 
effects described above on the intestinal mucosa compromise 
digestive functionality, decreasing feed/nutrient digestibility, 
and increasing feed passage. Moreover, a metabolic shift takes 
place in birds subjected to heat stress conditions, in which 
decreased protein and increased lipid deposition occur, as part 
of the thermoregulatory mechanism, due to the increased energy 
required to digest protein, in comparison to fat digestion. Therefore, 
there is a significant reduction of feed efficiency, increased lipid 
accumulation through increased de novo lipogenesis, reduced 
lipolysis, and enhanced amino acid catabolism. (Geraert et  al., 
1996a, 1996b; Bonnet et al., 1997; Hai et al., 2000; Balnave, 2004; 
Sahin et al., 2009; Slimen et al., 2016; Habashy et al., 2017).

Effect of Heat Stress on Intestinal Integrity
The intestinal barrier is formed essentially by a single layer of 
enterocytes cells, their membranes, and the TJ between them 
along the intestinal epithelium, covered by a mucus layer, 
protected by humoral and cellular components of the local 
immune system (Vancamelbeke and Vermiere, 2017; Chelakkot 
et al., 2018). Integrity of the intestinal barrier is of paramount 
importance in poultry production. Loss of intestinal barrier 
integrity (or intestinal barrier dysfunction) leads to increased 
intestinal permeability, which is defined as the non-mediated 
diffusion of large (i.e., molecular weight >150  Da), normally 
restricted molecules from the intestinal lumen to the circulatory 
system (Lambert, 2009). Increased intestinal permeability usually 
results in harmful local, and possibly systemic inflammatory 
reactions. This situation is commonly referred to as “leaky gut” 
(Quigley, 2016; Mu et al., 2017; Chelakkot et al., 2018).

Many different psychological and physiological stressors can 
negatively impact the intestinal barrier integrity (Söderholm 
and Perdue, 2001; Hart and Kamm, 2002; Gareau et  al., 2008; 
Lambert, 2009; Keita and Söderholm, 2010). In situations of 
heat stress, reduced availability of oxygen and nutrients due 
to the diminished blood supply and reduced feed intake leads 
to morphologic changes and mucosal damage, resulting from 
oxidative stress and inflammation. Furthermore, the increased 
serum levels of corticosterone and catecholamines (epinephrine 
and norepinephrine) caused by heat stress also affect TJ and 
the immune system. In fact, several studies (Quinteiro-Filho 
et  al., 2010, 2012a, 2012b, 2017) have demonstrated how heat 
stress affects the integrity of the intestinal barrier, leading to 
increased intestinal permeability and local inflammation in 
poultry, characterized by increased lymphoplasmacytic infiltrate 
along the small intestine (duodenum, jejunum, and ileum). The 
presence of heterophils in the observed inflammatory infiltrate 
reflects bacterial invasion from the intestinal epithelia to the 
lamina propria. In studies by Quinteiro-Filho et al. (2012a) and 
Alhenaky et al. (2017), heat-stressed broilers had increased serum 
concentrations of corticosterone, endotoxin lipopolysaccharide, 
and systemic inflammatory cytokines, Tumor Necrosis Factor-α 
and Interleukin-2. In the same studies, higher prevalence of 
Salmonella spp. in spleen and liver were reported (respectively) 
in heat-stressed birds, as compared with control. The authors 
concluded that heat stress disrupted the intestinal barrier, 
resulting in increased intestinal permeability to endotoxin, and 
translocation of intestinal pathogens. According to the studies 
by Song et al. (2014) and Wu et al. (2018), the increased intestinal 
permeability occurring in birds subjected to heat stress are 
caused by disruption of both, transcellular (intracellular) as well 
as paracellular (intercellular) TJ disruption.

Interestingly, a study by Varasteh et  al. (2015) provided 
evidence of difference in susceptibility between intestinal 
segments to heat stress, as demonstrated by the assessment 
of different biomarkers, including heat shock proteins (HSP), 
heat shock factors (HSF), adherens junctions, TJ, cytokines, and 
oxidative stress markers. Alterations in the level of expression of 
these biomarkers were more pronounced in the ileum, compared 
with the jejunum. Upregulated and activated HSFs target the 
major heat-inducible proteins, such as HSP70 and HSP90, which 
have a central role in the regulation of protein homeostasis, and 
are considered as general markers of tissue injury, playing an 
important role in the protection and repair of cells and tissues 
(Gu et  al., 2012; Arnal and Lallès, 2016). Moreover, the heat 
stress-induced changes were accompanied by an inflammatory 
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reaction and tissue/cell damage, likely caused by the intestinal 
barrier disruption and penetration of pathogens.

Many studies have reported morphometric and 
histopathological changes occurring in the intestinal tract of 
poultry subjected to heat stress conditions. The vast majority of 
these consistently report the observation of reduced villi height 
and increased crypt depth, leading to lower villi:crypt ratio 
(Garriga et al., 2006; Burkholder et al., 2008; Bozkurt et al., 2012; 
Deng et al., 2012; Song et al., 2014; He et al., 2018; Wu et al., 2018). 
Additionally, Santos et al. (2015) also described the occurrence of 
increased width of villi base and decreased epithelial cell area, 
in the duodenal, jejunal, and ileal mucosa in broilers subjected 
to heat stress.

Effects of Heat Stress on the 
Immune System
A major component of the immune system is the gut-associated 
lymphoid tissue, which in poultry consists of lymphoid cells 
located in the epithelial lining (intraepithelial lymphocytes) and 
the lamina propria, as well as specialized lymphoid structures, 
such as Peyer’s patches, Meckel’s diverticulum, cecal tonsils, and 
bursa of Fabricius (Lillehoj and Trout, 1996; Bar-Shira et al., 2003; 
Casteleyn et al., 2010; Nochi et al., 2018). As previously described, 
the intestinal immune system, CNS, and the endocrine system 
interact with each other through bidirectional pathways. 
Moreover, there is plenty of evidence showing that enteric 
neurons and intestinal immune cells share common regulatory 
mechanisms and can coordinate their responses to challenges, 
with various stressors dysregulating the immune response by 
affecting the interplay of these systems and, consequently, 
increasing susceptibility to pathogens, influencing the severity 
of infections and pathologies, and even negatively affecting 
responses to vaccines (Glaser and Kiecolt-Glaser, 2003; Chrousos, 
2009; Shini et  al., 2010). It has been shown that lymphocytes, 
monocytes or macrophages, and granulocytes exhibit 
receptors for many neuroendocrine products of the HPA and 
Sympathetic-adrenal-medullary axes, such as corticosterone 
and catecholamines, which can affect cellular trafficking, 
proliferation, cytokine secretion, antibody production, and 
cytolytic activity. This topic has been the subject of several 
extensive reviews (Ader and Cohen, 1993; Besedovsky and del 
Rey, 1996; Butts and Sternberg, 2008; Marketon and Glaser, 
2008; Ashley and Demas, 2017; Verburg-van Kemenade et  al., 
2017). However, knowledge continues to be generated, providing 
increasing insights on the interplay among these systems.

In poultry, the neuroendocrine–immune interaction is no 
different (Mashaly et al., 1998; Kaiser et al., 2009; Kuenzel and 
Jurkevich, 2010), and several studies have specifically investigated 
the effects of heat stress on the immune response. In general, 
all studies show an immunosuppressing effect of heat stress on 
broilers and laying hens, based on a variety of measurements, 
such as reduced number of intraepithelial lymphocytes and 
Immunoglobulin A-secreting cells along the intestinal tract, 
reduced antibody response, and reduced phagocytic activity 
of macrophages (Bartlett and Smith, 2003; Aengwanich, 2008; 
Niu et al., 2009; Quinteiro-Filho et al., 2010, 2017; Bozkurt et al., 
2012, Deng et al., 2012). Lower relative weights of thymus, bursa, 
spleen, and liver have also been described in broilers and laying 
hens subjected to heat stress (Niu et al., 2009; Quinteiro-Filho 
et  al., 2010; Shini et  al., 2010; Felver-Gant et  al., 2012; Ghazi 
et al., 2012; Calefi et al., 2014; Honda et al., 2015; Aguanta et al., 
2018). Moreover, several studies have demonstrated that heat 

stress can alter the levels of circulating cells, leading to an 
increase in heterophil:lymphocyte (H:L) ratio, due to reduced 
numbers of circulating lymphocytes and higher numbers of 
heterophils caused by the increased circulating concentrations 
of glucocorticoids, in particular corticosterone, released by 
activation of the HPA axis (Post et al., 2003; Prieto and Campo, 
2010; Shini et al., 2010; Felver-Gant et al., 2012; Honda et al., 2015; 
Scanes, 2016).

Effect of Heat Stress on the Intestinal 
Microbiota
The intestinal tract of poultry contains a very complex and 
highly diversified microbiota, which extensively interacts 
bidirectionally with the host and utilizes the diet as substrate 
(Oakley et al., 2014; Shang et al., 2018; Kogut, 2019; Yadav and 
Jha, 2019). Based on this close and intricate relationship, it is not 
surprising that the intestinal microbiota is highly susceptible 
to the effects of a multitude of host and environmental factors, 
including heat stress. Although it is increasingly recognized that 
stress modulates the intestinal microbiota community structure 
and activity, exact mechanisms underlying these effects or 
responses are still being unraveled (Karl et al., 2018; Kers et al., 
2018). In poultry, several studies have shown significant effects 
of heat stress on the intestinal microbiota composition and 
structure, both in broilers and in layers. Some specific alterations 
reported include lower levels of Lactobacillus and Bifidobacterium, 
and higher levels of Clostridium and total coliforms (Lan et al., 
2004; Burkholder et  al., 2008; Soliman et  al., 2009; Song et  al., 
2014; Sohail et al., 2015; Kers et al., 2018; Wang et al., 2018; Shi 
et al., 2019; Zhu et al., 2019). Interestingly, these studies suggest 
differing effects along the intestinal tract, with the small 
intestine being more sensitive in comparison to the ceca. 

There are several biological pathways through which heat 
stress can affect directly or indirectly the intestinal microbiota. 
A  lot of this basic research has been done in humans and 
different animal models. However, the knowledge acquired 
applies equally to poultry (Lara and Rostagno, 2013; Galley and 
Bailey, 2014; Scanes, 2016; Karl et  al., 2018; Kers et  al., 2018). 
For instance, as previously discussed, reduced feed intake and 
increased water consumption will affect the availability of 
nutrients in the intestinal tract to be used as a substrate by the 
microbiota, as well as trigger a variety of additional changes in 
the intestinal environment such as patterns of secretory activity 
and motility, and digesta viscosity (Thompson and Applegate, 
2006; Thompson et al., 2008; Lara and Rostagno, 2013; Karl et al., 
2018; Kers et  al., 2018; Metzler-Zebeli et  al., 2019; Xing et  al., 
2019). Also, the activation of the HPA axis will lead to alterations 
of the immune system, which in turn will result in altered 
host:microbiota interactions (Lara and Rostagno, 2013; Galley 
and Bailey, 2014; Scanes, 2016; Calefi et al., 2017). Moreover, the 
reduced blood flow directed to the intestinal tract and resulting 
hypoxia are known to cause marked damage to the mucosa, 
leading to the occurrence of oxidative stress and inflammation, 
and consequent disruption of the intestinal integrity (Lambert, 
2009; Galley and Bailey, 2014; Scanes, 2016; Karl et  al., 2018). 
With the intestinal barrier compromised, bacteria present in the 
intestinal lumen gain access to the host, potentially becoming 
systemic.

Although the impacts of many different factors, including 
stress, on the intestinal microbiota have been an area of great 
focus recently, there is still a major need to better and more 
specifically understand the consistency of the reported effects, as 
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well as the consequences. It is very easy to detect discrepancies 
or divergences between studies on the reported results, probably 
due to the complexity of the intestinal microbial ecosystem, and 
the number of confounders included. More standardized models 
and methodologies are needed to better unravel the response of 
the intestinal microbiota to stressors in general, and heat stress 
specifically, in poultry.

Heat Stress as a Food Safety Risk?
Environmental stress is known to be a factor that can lead to 
increased colonization of animals by pathogens, fecal shedding, 
and horizontal transmission (Humphrey, 2006; Rostagno, 
2009; Verbrugghe et  al., 2012; Alverdy and Luo, 2017). As 
previously discussed, stress-induced loss of intestinal barrier 
integrity, disruption of immune response, and perturbation 
of the intestinal microbiota compromise innate protective 
mechanisms and increase the potential for pathogens, such 
as Salmonella, Campylobacter, and Escherichia coli, to colonize the 
intestinal tract and invade the host. Such colonization in poultry 
will increase the risk of carcass contamination during processing 
and will increase the potential for Salmonella to translocate to 
the reproductive tract, where it can contaminate eggs and chicks 
during formation. For instance, using an ex vivo approach, 
Burkholder et  al. (2008) showed that mucosal attachment of 
Salmonella Enteritidis increased when tissues originated from 
heat-stressed birds. Also, according to Quinteiro-Filho et  al. 
(2010, 2012a), increased inflammation and translocation of 
Salmonella Enteritidis were observed in broilers subjected to 
heat stress, resulting in increased levels of the pathogen in 
spleen samples. In another study, heat stress in broilers also 
increased Salmonella colonization in the crop and cecum, as well 
as an invasion to the spleen, liver, and bone marrow (Quinteiro-
Filho et al., 2017). In fact, several epidemiological studies have 
reported seasonal effects on the occurrence of Salmonella and 
Campylobacter in flocks of broilers and laying hens, as well as in 
retail poultry products (van der Fels-Klerx et al., 2008; Jorgensen 
et  al., 2011; Sibanda et  al., 2018; Velasquez et  al., 2018; Smith 
et al., 2019).

Therefore, it is reasonable to speculate that a direct 
consequence of the heat stress effects described in this review 
would lead to increased contamination risk of animal products 
and consequent increased food safety risk. Understanding 
the mechanisms by which heat stress alters normal intestinal 
characteristics and induces susceptibility to colonization 
and infection is an important first step in designing on-farm 
strategies aimed at reducing pathogen contamination in poultry.

Conclusions
As described in this review, the intestinal tract is very sensitive 
and responsive to heat stress and a variety of changes can 
be observed, including physiological and immunological 
responses, as well as impairment of the intestinal integrity 
and inflammation, and marked alterations in the microbiota. 
However, there is a lot of variability in the magnitude of these 
effects, essentially due to the complex multifactorial nature of 
heat stress, and broad variation on how birds within a group or 
population experience and react/adapt to such conditions.

As we strived to present a concise overview of the topic, 
many gaps of knowledge were encountered, such as differences 
between acute (which could occur singly or multiple times during 
periods of time) and chronic heat stress, age differences, and 

possible early-life experience leading to adaptation, nutrition, 
and feeding approaches to manipulate diet thermogenesis, and 
how changes in production systems affect risk and response to 
heat stress conditions. However, as every coin has two sides, we 
should look at this as an incredible open field of opportunities 
for talented and curious scientists to explore.

Worth mentioning is that intervention strategies to deal with 
heat stress conditions have been the focus of the vast majority 
of published studies, applying different approaches, mostly 
focusing on nutritional manipulation (i.e., diet formulation 
according to the metabolic condition of the birds), as well as 
the inclusion of feed additives in the diet (e.g., antioxidants, 
vitamins, minerals, probiotics, prebiotics, phytogenics) and 
water supplementation with electrolytes. Nevertheless, 
effectiveness of most of the interventions has been variable or 
inconsistent, likely due to variable study conditions and many 
confounders. There is a clear need to establish some basic 
common parameters and models to allow for better comparison 
and extrapolation of reported results from different studies, 
particularly if they are to be applied in commercial settings.

Heat stress is one of the most important environmental 
stressors challenging poultry production worldwide, leading to 
reduced production performance and decreased poultry and egg 
quality. However, a major concern should be the negative impact 
of heat stress on poultry welfare, which is clearly not sufficiently 
addressed in the scientific literature, as it should. The same is 
true for commercial production systems, where birds may still 
maintain relatively satisfactory productive performance, but 
at a negative individual’s well-being cost. Obviously, plenty of 
room exists for improvements in understanding and dealing 
with heat stress in poultry production.
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