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Abstract

Stress is a biological adaptive response to restore homeostasis, and occurs in every animal production system, due to the
multitude of stressors present in every farm. Heat stress is one of the most common environmental challenges to poultry
worldwide. It has been extensively demonstrated that heat stress negatively impacts the health, welfare, and productivity
of broilers and laying hens. However, basic mechanisms associated with the reported effects of heat stress are still not fully
understood. The adaptive response of poultry to a heat stress situation is complex and intricate in nature, and it includes
effects on the intestinal tract. This review offers an objective overview of the scientific evidence available on the effects of
the heat stress response on different facets of the intestinal tract of poultry, including its physiology, integrity, immunology,
and microbiota. Although a lot of knowledge has been generated, many gaps persist. The development of standardized
models is crucial to be able to better compare and extrapolate results. By better understanding how the intestinal tract is
affected in birds subjected to heat stress conditions, more targeted interventions can be developed and applied.
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Introduction individuals within the same population or observational group,
not only because stressors are variable and experienced in
different degrees but also because they rarely occur singly.
This is particularly important when considering poultry
production, where large populations or groups of birds (broilers,
layers, turkeys) are kept together and under the same general
conditions, but nevertheless, will experience stress in a wide
range of magnitude (Stott, 1981; Young et al., 1989; Rostagno,
2009; Koolhaas et al., 2010).

Understanding and controlling environmental conditions
are crucial to poultry production, health, and well-being. Heat
stress is a top environmental concern in poultry production
worldwide, being potentially triggered by a variety of conditions,
such as climatic conditions common in some regions of the
world, failure of ventilation and temperature controls (manual
or automatic systems), inadequate brooding conditions, stocking
density at the end of the growing phase, and new or alternative
(“open”) production systems (e.g., free-range, organic) that
create challenges for efficient environmental controls and
frequent exposure to the external environment.

Stress is the reaction of the animal organism to stimuli (real or
perceived) that disturb its normal physiological status, or in other
words, a biological adaptive response to restore homeostasis.
However, this definition or concept becomes more complex,
when considered that stress can be experienced within a short
period of time (i.e., acute stress) and/or during prolonged periods
of time (i.e., chronic stress), which can also occur continuously
or intermittently. Moreover, it is important to keep in mind
that stress is not always negative or detrimental (“distress”),
but in some cases, it can actually be positive or beneficial to an
individual (“eustress”). Although defining and discussing all the
different aspects and types of stress are a fascinating subject,
it is out of the scope of this literature review and, therefore,
readers are referred to some of the many published studies
available in the scientific literature (Selye, 1936, 1955, 1976;
Moberg, 1987; Veissier and Boissy, 2007; Koolhaas, 2008; McEwen
and Akil, 2020). However, for the purpose of this review, it is
critical to understand that the stress response varies between
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Abbreviations

ANS autonomic nervous system
CNS central nervous system

ENS enteric nervous system

HPA hypothalamus-pituitary axis
HSF heat shock factors

HSP heat shock proteins

TJ tight junctions

Heat stress occurs whenever there is a negative balance
between the net amount of heat energy flowing from the animal
to the environment and the amount of heat energy produced by
the animal (Renaudeau et al., 2012). This imbalance is caused
by variations of a combination of several environmental factors
(e.g.,sunlight, thermalirradiation, and air temperature, humidity,
and movement), and characteristics of the animal (e.g., species,
metabolism rate, and thermoregulatory mechanisms).

The intestinal tract is particularly responsive to any type
of stress, including heat stress (Calefi et al., 2014, 2017; Tellez
Jr. et al, 2017; Slawinska et al., 2019). Effective functionality
of the intestinal tract is critical to poultry production, as
it has major broad implications for the overall health and
performance of the birds (Skinner et al., 2010; Kaldhusdal et al.,
2016; Kadykalo et al., 2018). However, as a very complex and
intricate system, the intestinal tract is still viewed by most as a
“black box” with many basic and important gaps of knowledge
that still need to be uncovered. Besides, the intestinal tract
actively interacts bidirectionally with many other complex
systems in the animal’s body, such as the neuroendocrine and
immune systems, making it very difficult to fully unravel this
multifaceted interrelationship. Therefore, this review attempts
to provide a concise compilation of the current knowledge and
evidence available in the scientific peer-reviewed literature
about the impact of heat stress on the intestinal tract of poultry.

How are Stress and the Intestinal Tract
Connected?

The brain and digestive systems communicate continuously and
bidirectionally through several complex pathways involving the
enteric nervous system (ENS), the autonomic nervous system
(ANS), the hypothalamus-pituitary axis (HPA), and the central
nervous system (CNS). This bidirectional network is known as
the brain-gut axis. Signals from the brain can modify the motor,
sensory, secretory, and immune functions of the intestinal tract,
and conversely, visceral messages from the intestinal tract
can influence brain functions in a top-down and bottom-up
relationship (Bueno, 2000; Bhatia and Tandon, 2005; Jones et al.,
2006; Konturek et al., 2011; Brzozowski et al., 2016; Liu and Zhu,
2018; Cryan et al., 2019).

The ENS is an integrative network located within the wall
of the entire intestinal tract, containing millions of neurons,
and controlling the microcirculation, motility, and all exocrine
and endocrine secretions (Goyal and Hirano, 1996; Bueno, 2000;
Costa, 2000). Although we are only beginning to understand the
complex functionality of the brain-gut interactions involved in
stress-related intestinal alterations, there is clear evidence that
stress can lead to functional disorders, as well as to inflammation
and infections of the intestinal tract. Stress triggers the HPA and
the activation of the ANS, as well as an increase in corticosterone
levels and proinflammatory cytokines. These downstream
signals act via neural connections of the brain-gut axis together
with reactive oxygen metabolites, local inflammatory factors,

and circulating cytokines, affecting intestinal homeostatic
functions (de Kloet et al., 2005; Jones et al., 2006; Lambert, 2009;
Ulrich-Lai and Herman, 2009; Konturek et al., 2011; Spiers et al.,
2015; Breit et al., 2018; Mukhtar et al., 2018).

Functional intestinal disorders are defined as a variable
combination of intestinal symptoms that do not have an
identified underlying pathophysiology (Corazziari, 2004).
However, besides dysfunction of the gut-brain axis, several other
factors play a role in functional intestinal disorders, including
low-grade mucosal inflammation and chronic infections, which
can be caused by many external factors, such as diet and stress,
including heat stress (Spiller, 2004; Holtmann et al., 2017).

Behavioral Effects of Heat Stress

Poultry are endothermic homeotherm animals, which are
animals that keep their body temperature within a relatively
narrow range over a wide range of environmental conditions
by balancing heat production (thermogenesis) and heat loss or
dissipation. When birds are subjected to conditions leading to
heat stress, behavioral and physiological changes or adaptations
occur seeking thermoregulation to restore homeostasis (Yahav
et al.,, 2004; Cangar et al., 2008; Farag and Alagawany, 2018).
However, it is very important to keep in mind that in general,
although the heat stress response of different types of birds is
similar, there are individual variations in intensity and duration
within the same population or flock (Mignon-Grasteau et al.,
2015; Farag and Alagawany, 2018). This consideration is very
important in cases of mild-moderate heat stress conditions
in the field, as it poses a challenge for producers to quickly
and correctly identify and attempt to correct environmental
conditions and minimize negative effects. Another cause of
response variation resides in the fact that heat stress is often
not experienced in isolation, being usually accompanied by
other stressors, such as limited housing space and insufficient
ventilation (Rostagno, 2009; Lara and Rostagno, 2013; He
et al., 2018; Saeed et al., 2019). Furthermore, there is evidence
indicating that much of the variation in response to heat stress
is also genetically based (Lu et al., 2007; Soleimani et al., 2011,
Felver-Gant et al., 2012; Mack et al., 2013; Mignon-Grasteau et al.,
2015; Lan et al., 2016; Monson et al., 2018).

Sensible heat loss does not seem to play an important role
in poultry, as limited body surface areas are not covered with
feathers (e.g., legs, head, wattle, and comb). Thus, latent heat
loss by panting (i.e., increased respiratory rate, consisting of
short, quick breathing) is the main mechanism used by poultry
for heat dissipation (Marder and Arad, 1989; Tzschentke et al.,
1996; Yahav et al., 2004; Mutaf et al., 2009). This mechanism for
reducing body temperature is known as respiratory evaporative
cooling and is based on heat exchange with the environment
through the air sacs (Marder and Arad, 1989; Comito et al., 2007).
Air sacs are very useful during panting, as they promote air
circulation on surfaces contributing to increase gas exchanges
with the air, and consequently, the evaporative loss of heat
(Fedde, 1998).

In addition to panting, birds subjected to heat stress
conditions will spend less time feeding and more time drinking,
as well as more time with their wings elevated, less time moving
or walking, and more time inactive (Marsden and Morris, 1987,
Lara and Rostagno, 2013; Mack et al., 2013; Bahry et al., 2018).
From a practical point of view, under commercial poultry
production conditions, it is very important to closely monitor
water and feed consumption during periods of higher heat



stress risk. Rapid increase in water and a decrease in feed intake
can be good indicators of flocks being subjected to heat stress
conditions.

Physiological Effects of Heat Stress

The primary cardiovascular adaptive response of animals under
heat stress conditions consists of increasing blood flow to the
external surface of the body (i.e., skin) in an attempt to promote
heatloss and reduce heat gain from the surrounding environment.
However, a compensatory decrease in splanchnic blood flow
(i.e., reduced blood flow to internal organs or hypoperfusion)
occurs as a mechanism to maintain overall blood pressure
stable (Rowell, 1974; Lambert, 2009; van Wijck et al., 2012). The
resultant ischemic environment causes a reduced oxygen flow
to the intestinal mucosa (i.e., hypoxia), promoting oxidative and
nitrosative stress that cause intestinal epithelial tight junctions
(TJ) to become loose and “leaky.” Further damage is caused by the
hypoperfusion, due to reduced nutrients and energy to sustain
cellular viability and function and, consequently, compromising
the turnover of enterocytes occurring along the intestinal tract
(Soderholm and Perdue, 2001; Lambert, 2009; van Wijck et al.,
2012; Dokladny et al., 2016; Slimen et al., 2016). Also, as previously
mentioned, heat stress causes reduction in voluntary feed intake.
According to Bernabucci et al. (2009) and Morera et al. (2012), heat
stress upregulates the secretion of two adipokines, leptin, and
adiponectin, as well as the expression of their receptors. These
adipokines negatively regulate feeding behavior, resulting in a
markedly reduced feed intake (Richards et al., 2010). This form
of caloric restriction allows hyperthermic animals to reduce
metabolic heat generation, which otherwise would exacerbate
the effects of heat stress (Slimen et al., 2016). However, this
abrupt reduction of feed intake leads to additional alterations
and damage to the intestinal mucosa, as discussed further ahead.

It is well-known that the exposure to high environmental
temperatures results in activation of the HPA and of the brain-gut
axis, as well as elevated plasma corticosterone concentrations
(Garriga et al., 2006; Star et al., 2008; Quinteiro-Filho et al., 2010,
2012b). In combination with reduced voluntary feed intake,
these will affect the functionality of the entire digestive system,
leading to changes in motility and flux patterns, secretory
activity, content viscosity, and pH (Tur and Rial, 1985; Mitchell
and Carlisle, 1992; Geraert et al., 1996a, 1996b; Hai et al., 2000).

It is very important to highlight that nutritional factors, such
as diet quantity and composition, markedly affect the regulation
of the energy flow in poultry. As already mentioned, exposure
to increased environmental temperature leads to reduced feed
intake, which in turn leads to reduced maintenance energy
requirement, as well as reduced intestinal enzymatic secretory
activity (e.g., trypsin, chymotrypsin, amylase). Additionally, the
effects described above on the intestinal mucosa compromise
digestive functionality, decreasing feed/nutrient digestibility,
and increasing feed passage. Moreover, a metabolic shift takes
place in birds subjected to heat stress conditions, in which
decreased protein and increased lipid deposition occur, as part
of the thermoregulatory mechanism, due to the increased energy
required to digest protein, in comparison to fat digestion. Therefore,
there is a significant reduction of feed efficiency, increased lipid
accumulation through increased de novo lipogenesis, reduced
lipolysis, and enhanced amino acid catabolism. (Geraert et al.,,
19963, 1996b; Bonnet et al., 1997; Hai et al., 2000; Balnave, 2004;
Sahin et al., 2009; Slimen et al., 2016; Habashy et al., 2017).
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Effect of Heat Stress on Intestinal Integrity

The intestinal barrier is formed essentially by a single layer of
enterocytes cells, their membranes, and the TJ between them
along the intestinal epithelium, covered by a mucus layer,
protected by humoral and cellular components of the local
immune system (Vancamelbeke and Vermiere, 2017; Chelakkot
et al.,, 2018). Integrity of the intestinal barrier is of paramount
importance in poultry production. Loss of intestinal barrier
integrity (or intestinal barrier dysfunction) leads to increased
intestinal permeability, which is defined as the non-mediated
diffusion of large (i.e., molecular weight >150 Da), normally
restricted molecules from the intestinal lumen to the circulatory
system (Lambert, 2009). Increased intestinal permeability usually
results in harmful local, and possibly systemic inflammatory
reactions. This situation is commonly referred to as “leaky gut”
(Quigley, 2016; Mu et al., 2017; Chelakkot et al., 2018).

Many different psychological and physiological stressors can
negatively impact the intestinal barrier integrity (S6derholm
and Perdue, 2001; Hart and Kamm, 2002; Gareau et al., 2008;
Lambert, 2009; Keita and Soderholm, 2010). In situations of
heat stress, reduced availability of oxygen and nutrients due
to the diminished blood supply and reduced feed intake leads
to morphologic changes and mucosal damage, resulting from
oxidative stress and inflammation. Furthermore, the increased
serum levels of corticosterone and catecholamines (epinephrine
and norepinephrine) caused by heat stress also affect TJ and
the immune system. In fact, several studies (Quinteiro-Filho
et al,, 2010, 2012a, 2012b, 2017) have demonstrated how heat
stress affects the integrity of the intestinal barrier, leading to
increased intestinal permeability and local inflammation in
poultry, characterized by increased lymphoplasmacytic infiltrate
along the small intestine (duodenum, jejunum, and ileum). The
presence of heterophils in the observed inflammatory infiltrate
reflects bacterial invasion from the intestinal epithelia to the
lamina propria. In studies by Quinteiro-Filho et al. (2012a) and
Alhenaky etal. (2017), heat-stressed broilers had increased serum
concentrations of corticosterone, endotoxin lipopolysaccharide,
and systemic inflammatory cytokines, Tumor Necrosis Factor-a
and Interleukin-2. In the same studies, higher prevalence of
Salmonella spp. in spleen and liver were reported (respectively)
in heat-stressed birds, as compared with control. The authors
concluded that heat stress disrupted the intestinal barrier,
resulting in increased intestinal permeability to endotoxin, and
translocation of intestinal pathogens. According to the studies
by Song et al. (2014) and Wu et al. (2018), the increased intestinal
permeability occurring in birds subjected to heat stress are
caused by disruption of both, transcellular (intracellular) as well
as paracellular (intercellular) TJ disruption.

Interestingly, a study by Varasteh et al. (2015) provided
evidence of difference in susceptibility between intestinal
segments to heat stress, as demonstrated by the assessment
of different biomarkers, including heat shock proteins (HSP),
heat shock factors (HSF), adherens junctions, TJ, cytokines, and
oxidative stress markers. Alterations in the level of expression of
these biomarkers were more pronounced in the ileum, compared
with the jejunum. Upregulated and activated HSFs target the
major heat-inducible proteins, such as HSP70 and HSP90, which
have a central role in the regulation of protein homeostasis, and
are considered as general markers of tissue injury, playing an
important role in the protection and repair of cells and tissues
(Gu et al., 2012; Arnal and Lallés, 2016). Moreover, the heat
stress-induced changes were accompanied by an inflammatory
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reaction and tissue/cell damage, likely caused by the intestinal
barrier disruption and penetration of pathogens.

Many studies have reported morphometric and
histopathological changes occurring in the intestinal tract of
poultry subjected to heat stress conditions. The vast majority of
these consistently report the observation of reduced villi height
and increased crypt depth, leading to lower villi:crypt ratio
(Garriga et al., 2006; Burkholder et al., 2008; Bozkurt et al., 2012;
Dengetal., 2012; Song et al., 2014; He et al., 2018; Wu et al., 2018).
Additionally, Santos et al. (2015) also described the occurrence of
increased width of villi base and decreased epithelial cell area,
in the duodenal, jejunal, and ileal mucosa in broilers subjected
to heat stress.

Effects of Heat Stress on the
Immune System

A major component of the immune system is the gut-associated
lymphoid tissue, which in poultry consists of lymphoid cells
located in the epithelial lining (intraepithelial lymphocytes) and
the lamina propria, as well as specialized lymphoid structures,
such as Peyer’s patches, Meckel’s diverticulum, cecal tonsils, and
bursa of Fabricius (Lillehoj and Trout, 1996; Bar-Shira et al., 2003;
Casteleyn et al., 2010; Nochi et al., 2018). As previously described,
the intestinal immune system, CNS, and the endocrine system
interact with each other through bidirectional pathways.
Moreover, there is plenty of evidence showing that enteric
neurons and intestinal immune cells share common regulatory
mechanisms and can coordinate their responses to challenges,
with various stressors dysregulating the immune response by
affecting the interplay of these systems and, consequently,
increasing susceptibility to pathogens, influencing the severity
of infections and pathologies, and even negatively affecting
responses to vaccines (Glaser and Kiecolt-Glaser, 2003; Chrousos,
2009; Shini et al., 2010). It has been shown that lymphocytes,
monocytes or macrophages, and granulocytes exhibit
receptors for many neuroendocrine products of the HPA and
Sympathetic-adrenal-medullary axes, such as corticosterone
and catecholamines, which can affect cellular trafficking,
proliferation, cytokine secretion, antibody production, and
cytolytic activity. This topic has been the subject of several
extensive reviews (Ader and Cohen, 1993; Besedovsky and del
Rey, 1996; Butts and Sternberg, 2008; Marketon and Glaser,
2008; Ashley and Demas, 2017; Verburg-van Kemenade et al.,
2017). However, knowledge continues to be generated, providing
increasing insights on the interplay among these systems.

In poultry, the neuroendocrine-immune interaction is no
different (Mashaly et al., 1998; Kaiser et al., 2009; Kuenzel and
Jurkevich,2010), and several studies have specifically investigated
the effects of heat stress on the immune response. In general,
all studies show an immunosuppressing effect of heat stress on
broilers and laying hens, based on a variety of measurements,
such as reduced number of intraepithelial lymphocytes and
Immunoglobulin A-secreting cells along the intestinal tract,
reduced antibody response, and reduced phagocytic activity
of macrophages (Bartlett and Smith, 2003; Aengwanich, 2008;
Niu et al., 2009; Quinteiro-Filho et al., 2010, 2017; Bozkurt et al.,
2012, Deng et al., 2012). Lower relative weights of thymus, bursa,
spleen, and liver have also been described in broilers and laying
hens subjected to heat stress (Niu et al., 2009; Quinteiro-Filho
et al., 2010; Shini et al., 2010; Felver-Gant et al., 2012; Ghazi
et al., 2012; Calefl et al., 2014; Honda et al., 2015; Aguanta et al.,
2018). Moreover, several studies have demonstrated that heat

stress can alter the levels of circulating cells, leading to an
increase in heterophil:lymphocyte (H:L) ratio, due to reduced
numbers of circulating lymphocytes and higher numbers of
heterophils caused by the increased circulating concentrations
of glucocorticoids, in particular corticosterone, released by
activation of the HPA axis (Post et al., 2003; Prieto and Campo,
2010; Shini et al., 2010; Felver-Gant et al., 2012; Honda et al., 2015;
Scanes, 2016).

Effect of Heat Stress on the Intestinal
Microbiota

The intestinal tract of poultry contains a very complex and
highly diversified microbiota, which extensively interacts
bidirectionally with the host and utilizes the diet as substrate
(Oakley et al., 2014; Shang et al., 2018; Kogut, 2019; Yadav and
Jha, 2019). Based on this close and intricate relationship, it is not
surprising that the intestinal microbiota is highly susceptible
to the effects of a multitude of host and environmental factors,
including heat stress. Although it is increasingly recognized that
stress modulates the intestinal microbiota community structure
and activity, exact mechanisms underlying these effects or
responses are still being unraveled (Karl et al., 2018; Kers et al.,
2018). In poultry, several studies have shown significant effects
of heat stress on the intestinal microbiota composition and
structure, both in broilers and in layers. Some specific alterations
reported include lower levels of Lactobacillus and Bifidobacterium,
and higher levels of Clostridium and total coliforms (Lan et al,,
2004; Burkholder et al., 2008; Soliman et al., 2009; Song et al.,
2014; Sohail et al., 2015; Kers et al., 2018; Wang et al., 2018; Shi
et al., 2019; Zhu et al., 2019). Interestingly, these studies suggest
differing effects along the intestinal tract, with the small
intestine being more sensitive in comparison to the ceca.

There are several biological pathways through which heat
stress can affect directly or indirectly the intestinal microbiota.
A lot of this basic research has been done in humans and
different animal models. However, the knowledge acquired
applies equally to poultry (Lara and Rostagno, 2013; Galley and
Bailey, 2014; Scanes, 2016; Karl et al.,, 2018; Kers et al., 2018).
For instance, as previously discussed, reduced feed intake and
increased water consumption will affect the availability of
nutrients in the intestinal tract to be used as a substrate by the
microbiota, as well as trigger a variety of additional changes in
the intestinal environment such as patterns of secretory activity
and motility, and digesta viscosity (Thompson and Applegate,
2006; Thompson et al., 2008; Lara and Rostagno, 2013; Karl et al.,
2018; Kers et al., 2018; Metzler-Zebeli et al., 2019; Xing et al.,
2019). Also, the activation of the HPA axis will lead to alterations
of the immune system, which in turn will result in altered
host:microbiota interactions (Lara and Rostagno, 2013; Galley
and Bailey, 2014; Scanes, 2016; Calefi et al., 2017). Moreover, the
reduced blood flow directed to the intestinal tract and resulting
hypoxia are known to cause marked damage to the mucosa,
leading to the occurrence of oxidative stress and inflammation,
and consequent disruption of the intestinal integrity (Lambert,
2009; Galley and Bailey, 2014; Scanes, 2016; Karl et al., 2018).
With the intestinal barrier compromised, bacteria present in the
intestinal lumen gain access to the host, potentially becoming
systemic.

Although the impacts of many different factors, including
stress, on the intestinal microbiota have been an area of great
focus recently, there is still a major need to better and more
specifically understand the consistency of the reported effects, as



well as the consequences. It is very easy to detect discrepancies
or divergences between studies on the reported results, probably
due to the complexity of the intestinal microbial ecosystem, and
the number of confounders included. More standardized models
and methodologies are needed to better unravel the response of
the intestinal microbiota to stressors in general, and heat stress
specifically, in poultry.

Heat Stress as a Food Safety Risk?

Environmental stress is known to be a factor that can lead to
increased colonization of animals by pathogens, fecal shedding,
and horizontal transmission (Humphrey, 2006; Rostagno,
2009; Verbrugghe et al., 2012; Alverdy and Luo, 2017). As
previously discussed, stress-induced loss of intestinal barrier
integrity, disruption of immune response, and perturbation
of the intestinal microbiota compromise innate protective
mechanisms and increase the potential for pathogens, such
as Salmonella, Campylobacter, and Escherichia coli, to colonize the
intestinal tract and invade the host. Such colonization in poultry
will increase the risk of carcass contamination during processing
and will increase the potential for Salmonella to translocate to
the reproductive tract, where it can contaminate eggs and chicks
during formation. For instance, using an ex vivo approach,
Burkholder et al. (2008) showed that mucosal attachment of
Salmonella Enteritidis increased when tissues originated from
heat-stressed birds. Also, according to Quinteiro-Filho et al.
(2010, 2012a), increased inflammation and translocation of
Salmonella Enteritidis were observed in broilers subjected to
heat stress, resulting in increased levels of the pathogen in
spleen samples. In another study, heat stress in broilers also
increased Salmonella colonization in the crop and cecum, as well
as an invasion to the spleen, liver, and bone marrow (Quinteiro-
Filho et al,, 2017). In fact, several epidemiological studies have
reported seasonal effects on the occurrence of Salmonella and
Campylobacter in flocks of broilers and laying hens, as well as in
retail poultry products (van der Fels-Klerx et al., 2008; Jorgensen
et al., 2011; Sibanda et al., 2018; Velasquez et al., 2018; Smith
et al,, 2019).

Therefore, it is reasonable to speculate that a direct
consequence of the heat stress effects described in this review
would lead to increased contamination risk of animal products
and consequent increased food safety risk. Understanding
the mechanisms by which heat stress alters normal intestinal
characteristics and induces susceptibility to colonization
and infection is an important first step in designing on-farm
strategies aimed at reducing pathogen contamination in poultry.

Conclusions

As described in this review, the intestinal tract is very sensitive
and responsive to heat stress and a variety of changes can
be observed, including physiological and immunological
responses, as well as impairment of the intestinal integrity
and inflammation, and marked alterations in the microbiota.
However, there is a lot of variability in the magnitude of these
effects, essentially due to the complex multifactorial nature of
heat stress, and broad variation on how birds within a group or
population experience and react/adapt to such conditions.

As we strived to present a concise overview of the topic,
many gaps of knowledge were encountered, such as differences
between acute (which could occur singly or multiple times during
periods of time) and chronic heat stress, age differences, and
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possible early-life experience leading to adaptation, nutrition,
and feeding approaches to manipulate diet thermogenesis, and
how changes in production systems affect risk and response to
heat stress conditions. However, as every coin has two sides, we
should look at this as an incredible open field of opportunities
for talented and curious scientists to explore.

Worth mentioning is that intervention strategies to deal with
heat stress conditions have been the focus of the vast majority
of published studies, applying different approaches, mostly
focusing on nutritional manipulation (i.e., diet formulation
according to the metabolic condition of the birds), as well as
the inclusion of feed additives in the diet (e.g., antioxidants,
vitamins, minerals, probiotics, prebiotics, phytogenics) and
water supplementation with electrolytes. Nevertheless,
effectiveness of most of the interventions has been variable or
inconsistent, likely due to variable study conditions and many
confounders. There is a clear need to establish some basic
common parameters and models to allow for better comparison
and extrapolation of reported results from different studies,
particularly if they are to be applied in commercial settings.

Heat stress is one of the most important environmental
stressors challenging poultry production worldwide, leading to
reduced production performance and decreased poultry and egg
quality. However, a major concern should be the negative impact
of heat stress on poultry welfare, which is clearly not sufficiently
addressed in the scientific literature, as it should. The same is
true for commercial production systems, where birds may still
maintain relatively satisfactory productive performance, but
at a negative individual’s well-being cost. Obviously, plenty of
room exists for improvements in understanding and dealing
with heat stress in poultry production.
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