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Abstract

Rationale: Longitudinal studies are required to distinguish within versus between-individual 

variation, and repeatability of gene expression. They are uniquely positioned to decipher genetic 

signal from environmental noise, with potential application to gene variant and expression studies. 

However, longitudinal analyses of gene expression in healthy individuals—especially with regards 

to alternative splicing—are lacking for most primary cell types, including platelets.

Objective: To assess repeatability of gene expression and splicing in platelets and use 

repeatability to identify novel platelet eQTLs and sQTLs.

Methods and Results: We sequenced the transcriptome of platelets isolated repeatedly up to 4 

years from healthy individuals. We examined within and between-individual variation and 

repeatability of platelet RNA-expression and exon skipping, a readily measured alternative 

splicing event. We find that platelet gene expression is generally stable between and within 

individuals over time—with the exception of a subset of genes enriched for the inflammation gene 

ontology. We show an enrichment among repeatable genes for associations with heritable traits, 
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including known and novel platelet eQTLs. Several exon skipping events were also highly 

repeatable, suggesting heritable patterns of splicing in platelets. One of the most repeatable was 

exon 14 skipping of SELP. Accordingly, we identify rs6128 as a platelet sQTL and define an 

rs6128-dependent association between SELP exon 14 skipping and race. In vitro experiments 

demonstrate that this single nucleotide variant directly affects exon 14 skipping and changes the 

ratio of transmembrane versus soluble P-selectin protein production.

Conclusions: We conclude that the platelet transcriptome is generally stable over 4-years. We 

demonstrate the use of repeatability of gene expression and splicing to identify novel platelet 

eQTLs and sQTLs. rs6128 is a platelet sQTL that alters SELP exon 14 skipping and soluble versus 

transmembrane P-selectin protein production.
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INTRODUCTION

Platelets are abundant, accessible blood cells that are increasingly used in gene expression 

studies. Like nucleated cells, platelets possess a diverse portfolio of RNAs, including coding 

mRNAs, small non-coding RNAs, lncRNAs, and others1–3. Yet their anucleate nature offers 

unique advantages over nucleated cells for studying gene expression. For one, ex vivo 

handling (cell isolation method, processing time, buffers, etc.) of nucleated cells can 

immediately affect the expression of thousands of transcripts4–6. On the other hand, platelets 

are transcriptionally unaffected by isolation7,8, allowing capture of the native in vivo gene 
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expression signature. These attractive features render platelets an excellent choice for RNA 

diagnostics and gene expression studies.

Platelets have been used in GWAS, gene-phenotype9,10, diagnostic11, and differential 

expression studies with an emphasis on RNA abundance to elucidate mediators of platelet 

reactivity in health and disease12. Genetic modifiers of RNA abundance in platelets, called 

expression quantitative trait loci (eQTL), have also been described13,14. eQTLs are DNA 

sequence variants associated with gene expression that affect nearby (cis-) or remote (trans-) 

genes in a cell type specific manner. eQTLs are particularly important in genetic studies 

because they provide an intermediate and mechanistic link between a phenotype and gene 

association.

Beyond RNA abundance, it is now known that platelets and megakaryocytes harbor 

alternative structural features of RNA, including alternative start and stop sites, and 

alternative splicing12, that diversify the transcriptome and proteome15,16 and alter cellular 

function. In platelets, activation induces RNA splicing, and thereby modulates functional 

protein expression15,17. It is probable that genetic variants called splice QTLs (sQTLs) also 

influence basal and activation dependent RNA splicing levels in platelets. However, sQTLs 

for platelets have not yet been described.

Other major knowledge gaps exist regarding RNA abundance and structure in platelets. 

Nearly all platelet studies have been cross-sectional, examining gene expression at a single 

time point. Yet, gene expression can vary both between-individuals and within-individuals 

over time. Hormonal changes, circadian rhythm, inflammation, diet, and aging are examples 

of environmental cues that might alter gene expression within healthy individuals18–20. Such 

normal changes in gene expression can mask the ability to detect signal in differential gene 

expression, diagnostic, and genetic studies, and confound their analysis. Thus, understanding 

within individual versus between individual variation in gene expression is important for the 

design and interpretation of gene expression studies, and can be used to prioritize candidates 

in genetic studies.

With regards to genetic studies, several reports have suggested using repeatability to identify 

eQTL genes21–23. In vivo repeatability can only be calculated from multiple samplings from 

the same individual, and refers to the proportion of variation attributed to between-individual 

versus within-individual variation24. In the straightforward view, repeatability sets an upper-

bound to broad sense heritability25: if between individual differences are not repeatable 

because of low between, and/or high within-individual variation, there will be insufficient 

power to detect heritable, genetic signal. For this reason, it has been recommended to 

measure the repeatability of a trait before performing GWAS21. Carlborg et. al.22 found that 

censoring mouse eQTL data on repeatability was an effective method for prioritizing 

transcripts with a high a priori likelihood of successful eQTL identification. Hoffman et. al.
23 also demonstrated the potential use of within-individual technical variation to narrow 

candidates and facilitate eQTL prediction, although this study employed only single time 

point replicates. Together, these studies imply that longitudinal analysis of gene expression 

may facilitate prospective eQTL (and sQTL) gene discovery. Surprisingly, longitudinal 

analyses of gene expression are scarce in primary cells from healthy individuals, and absent 
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for platelets. To our knowledge, the repeatability of alternative splicing over time has not 

been established for any primary cell type.

In this study, we use longitudinal RNA-seq analysis to examine within (intra-) and between 

(inter-) individual variability of the human platelet transcriptome. We examine repeatability 

of gene abundance and exon skipping, a readily measured alternative splicing event. We 

retrospectively demonstrate the use of repeatability to decipher heritable signal from 

environmental noise, and identify eQTL genes. We prospectively use repeatability to 

prioritize eQTL and sQTL gene candidates for novel platelet eQTL and sQTL discovery.

METHODS

The data that support the findings of this study are available from the corresponding author 

upon reasonable request.

Human subjects and Platelet isolation.

Subjects were independently recruited from the University of Utah and Duke University 

(Table 1).

All subjects provided informed consent and this study was IRB approved by each institution. 

Subjects were healthy and without active medical conditions. No subjects had undergone 

surgery for the past 4 months. Any illness required resolution of symptoms for at least 7 

days prior to sampling. Cohort 2 subjects were prospectively recruited. Cohort 1 subjects 

were part of a clinical study where they were previously exposed to aspirin, however no 

subjects were on aspirin for at least 4 weeks prior to each blood sampling. Blood was drawn 

by venipuncture into citrate tubes (cohort 1) or acid-citrate-dextrose (cohort 2) and sample 

processing initiated within 30 minutes of phlebotomy. Platelets were isolated via magnetic 

leukocyte depletion using CD45 microbeads (Miltenyi) as we have previously 

described1,2,26.

RNA isolation and sequencing.

RNA was isolated using phenol-chloroform extraction (cohort 1) as previously described1 or 

DirectZol kit (cohort 2, Zymogen). More details on RNA isolation are found in the Online 

Supplemental Methods. Sequencing libraries for cohorts 1 and 2 were barcoded and 

prepared using kits: KAPA Stranded mRNA-Seq Kit (Roche #KK8421) and TruSeq 

unstranded v2 with poly(A) selection (Illumina #RS-122) respectively. Libraries were 

sequenced 50 cycles, single end, on Illumina HiSeq 4000 (cohort 1) or Illumina HiSeq 2000 

(cohort 2) to a depth of ~20–40 million mapped reads per sample. Fastq files have been 

deposited in the NIH Sequence Read Archive PRJNA531691.

RNA-seq analysis.

For analysis of expression variation, reads were aligned to GRCh38/hg38 using Novoalign 

(Novocraft) as we have previously described1. Reads were assigned to flattened Ensembl 

gene annotations using the USeq analysis package27. Read counts were normalized 

separately for each cohort using the DESeq2 analysis package28. Non-coding RNAs were 
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selected according to Ensembl transcript biotype. Heatmaps, clustering (complete linkage), 

density plots, boxplots, and scatterplots, were generated in R29. Read distribution plots were 

generated using integrative genomics viewer (IGV)30. Gene ontology enrichment was 

analyzed using DAVID31.

Analysis of individual transcript variation.

RNA-seq data has a strong mean-variance relationship. The DESeq2 regularized log 

transformation (RLD)28 was applied to counts which preferentially shrinks the overall 

variance among low abundant transcripts (while retaining outliers), thus allowing a more 

straightforward comparison of transcript variation across all expression levels. Lowest 

abundant transcripts were also arbitrarily removed. Within-individual variation was 

calculated as the standard deviation of all samples from the same individual. Total variation 

was calculated as the standard deviation of samples across all individuals in each cohort, 

thus within-individual variation is a sub-component of total individual variation. Sources of 

variance were quantified with a linear mixed model using the R package variancePartition23. 

Repeatability was calculated with the formula σb
2/( σw

2 + σb
2) in the R package 

‘heritability’32, including correction for sex in repeatability calculations for eQTL 

enrichment analysis and gene prioritization for eQTL and sQTL discovery.

Exon skipping analysis.

Exon skipping events were identified from triads of Exon/Exon and Exon/Intron junctions 

with > 5 reads per junction and the calculated percent spliced in (PSI; see Figure 5D) > .05 

and < .95 in > 30% of samples. Junctions were excluded where the flanking Exon/Intron 

junction pairs varied by more than 10 fold in > 70% of samples. By this strategy we 

identified 245 exons (from 194 different transcripts) that were skipped in a significant 

fraction of the transcripts in some but not all samples.

SELP mini-gene.

The complete open reading frame for SELP transcript ENST00000263686.10 with a c-

terminal DYK tag, and introns 13 and 14 that flank exon 14, were cloned into PCDNA-CMV 

and pCDH-MSCV-GFP vectors. A single nucleotide change C->T was made at rs6128. 

293T cells (HEK 293T/17, ATCC CRL-11268) were maintained according to ATCC 

recommendations and used between passages 10–20. 293T cells were transfected with 

lipofectamine 2000. 24 hours after transfection, SELP RNA splicing was analyzed by PCR 

at cycles 25 and 30 using primers flanking exon 14 (5’-gtcaactaccgtgccaacct; 5’-

taaggactcgggtcaaatgc). For flow cytometry experiments, cells were either co-transfected 

with a GFP plasmid (PCDNA-CMV) or GFP was contained within the same backbone as 

SELP (PCDH-MSCV). Surface expression of P-selectin was assessed by staining with 

Psel.KO2.3 APC antibody (ThermoFisher #17–0626-82) and analyzed by flow cytometry on 

a CytoFLEX analyzer (Beckman Coulter). MFI of P-selectin was normalized to GFP 

expression as assessed on live/transfected cells gated according to forward/side scatter (live) 

and FL-1 (GFP+) intensity. Soluble P-selectin was measured using a Quantikine ELISA kit 

(R&D Systems #DPSE00). For western blots, cells were lysed with RIPA, lysates denatured 

and reduced, proteins separated using an 10% SDS-PAGE, transferred onto a PVDF 

membrane, and blotted for tagged P-selectin with anti-DYK antibody (Cell Signaling Tech. 
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#2368S), followed by anti-rabbit HRP secondary antibody (Rockland #18–8816-33) and 

chemiluminescent detection (ThermoFisher #34580).

Novel platelet eQTL and sQTL analysis.

RNA-seq fastq files for 234 previously published samples (Best et. al.8,33, Netherlands 

cohort; hereafter referred to as NL cohort) were retrieved from NCBI short read archive 

PRJNA35358833. These, and fastq files for cohort 1, were aligned with STAR34 to human 

reference genome (build HG38) in a splice-aware manner, and variants were called and 

filtered using the workflow built from the Genome Analysis Toolkit (GATK)35 best practices 

for variant calling on RNA-seq. Additional details on variant calls, filters used, and a note on 

the caveats and limitations of RNA-seq based variant analysis are included in the Online 

Supplemental Methods. Variants tested for eQTLs were limited to within 2 kb of all genes 

not identified as eQTLs by the previously published PRAX113 dataset, and with 

repeatability > 0.9 (238 genes) in the cohort 1 dataset. For comparison, the equivalent 

number of genes with lowest repeatability were also included. Combined filtering resulted in 

641 variants across 181 genes that were tested for gene abundance–variant association. 

Gene-variant association was tested in the R package SNPassoc36 using an additive model of 

variant-allele dosage (0,1,2), while controlling for the covariates sex, age, and population 

structure37,38 (see Online Figure X and Online Supplemental Methods for details). 

Benjamini and Hochberg FDR correction for multiple testing (641 gene-variant tests) is 

reported. However, a conservative significance threshold of p < 1e-6 was used to filter novel 

eQTLs as if genome wide analysis had been performed13. Allelic imbalance of each 

significant eQTL was evaluated with the Wilcoxon rank sum test on the proportion of 

reference variant reads to total reads in each heterozygote individual.

A generalized linear model was used for logistic regression analysis in R to test the 

association of SELP exon 14 splicing and self-reported race or rs6128 variant-allele dosage. 

For this, SELP exon 14 inclusion counts versus total inclusion + exclusion counts were used 

as the binomial response variable. Where specified, models controlled for potential 

covariates including race or population structure, rs6128 genotype, sex, and age.

Statistics.

Significance for multimodality was calculated according to Hartigan’s dip test statistic. 

Wilcoxon test with adjustment for multiple comparisons was used to test for similarity in 

distributions of between and within sample correlations. Kolmogorov–Smirnov test was 

used to test for enrichment in the rank of genes associated with genetic/heritable traits. Gene 

Set Enrichment Analysis (GSEA)39 pre-ranked was used to evaluate enrichment among 

genes tested for the presence of significant eQTLs as identified in the PRAX1 cohort. For 

this, only the subset of genes tested by PRAX1 were included. The association between 

eQTL presence and different repeatability thresholds was estimated with odds ratio (odds at 

each threshold compared to no threshold) and significance evaluated with Chi-square test of 

independence. Two sided T-tests and correlation tests for significance (alpha = 0.05) were 

performed in R29 using functions cor.test and t.test, which sets a lower p value limit of 

2.2e-16.
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RESULTS

To assess within and between individual variation of the platelet transcriptome, we 

performed RNA-seq analysis of leuko-depleted platelets isolated longitudinally from two 

independent cohorts of healthy individuals. For cohort 1, we analyzed platelets from 31 

individuals at an initial visit (T0) and 4 months later. For cohort 2 we analyzed platelets 

from 7 individuals at T0 and then longitudinally over 4 years. The characteristics of the two 

cohorts are detailed in Table 1.

Platelets contain a stable within-individual gene expression signature.

Unsupervised clustering analysis of all pair-wise distances within and between individual 

transcriptomes in cohort 1 indicated a robust within-individual (self) RNA expression 

signature (Figure 1A), with most self-pairs clustering as nearest neighbor pairs. As depicted 

in Figures 1B-C, the mean within-individual correlation of platelet transcriptomes isolated 4 

months apart was very high (r mean±sd=0.987±0.012). Between-individual correlations of 

the global platelet transcriptome were also high (0.947±0.024), but significantly lower (p < 

2.2e-16) than within-individual correlations. Grouping samples by race, age, and sex only 

partly corrected the difference (Figure 1C). Within individual clustering of non-coding 

RNAs was also robust (Online Figure I A), with a mean within-individual correlation of 

0.984±0.013. The mean between individual correlation for non-protein coding transcripts 

(0.905±0.031, Online Figure I B-C) was significantly weaker compared to protein coding 

transcripts (p < 2.2e-16), which is consistent with previous cross-sectional studies40. Raw 

and normalized counts for each transcript in cohort 1 are found in Online Datasets I and II.

Unsupervised clustering of total RNA transcriptomes in cohort 2 resulted in robust self-

clustering and suggested minimal transcriptional drift over 4 years (Figure 1D). Within-

individual correlations for samples isolated 4 years apart remained comparable to within-

individual correlations for samples isolated only 2 weeks apart, and significantly higher than 

between-individual correlations regardless of time-point (Figure 1E-F). As shown in Online 

Figure I D, the within-self non-coding RNA signature was also robust, and uniquely 

identified individuals at all time points over the 4 years without exception—a reflection of 

the significantly higher within-self correlations in non-coding RNA expression compared to 

those between-individuals (Online Figure I E-F). Raw and normalized counts for each 

transcript in cohort 2 are found in Online Datasets III and IV.

Within and between individual transcript variation in platelets is reproducible across 
cohorts.

Together, the data in Figure 1 indicate similar patterns of gene expression variation between 

cohorts 1 and 2: the average within-individual correlations were similar (0.983±0.13 vs 

0.987±0.12) for each cohort, as were the average between-individual correlations 

(0.958±0.021 vs 0.947±0.024). We further defined the specific transcripts in each cohort that 

displayed the least and most overall (total) variation compared to within individual variation 

(see Online Datasets V-VI). As depicted in Figure 2A and Online Figure II A-B, high within 

individual variation was limited to a small number of moderately expressed transcripts that 

were consistently variable in both cohorts 1 and 2. Transcripts that varied the most within 
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individuals in both cohorts were enriched for those within the inflammatory and defense 

response gene ontologies (GO; Figure 2B)18,41. As shown in Figure 2C and Online Figure II 

C-D, transcripts with high total variation spanned a broader range of expression levels, yet 

the extent of variation was still consistent between cohorts 1 and 2. The transcripts with the 

highest total variation predominantly overlapped those that varied the most within-

individuals (Online Figure II E-F) leading to an enrichment in the inflammatory and defense 

response GO (Figure 2D). In addition to inflammatory transcripts, we noted several genes 

with high total variation that were previously associated with sex, race, or platelet 

eQTLs10,13,42. However, unlike the inflammatory transcripts, most of these did not 

demonstrate high within individual variation (see bottom right quadrants of Online Figure II 

E-F).

Variance partition analysis23 was used to further partition and quantify for each gene the 

amount of variation attributable to sex, race, and other covariates, and to decouple between 

from within and total variation. As shown in Online Figure III, for more than half of all 

genes, between individual variation was responsible for the majority (>50%) of gene 

expression variation, followed by residual within individual variation. On the other hand, sex 

and race affected only a small number of genes. Other known covariates including age and 

sample processing contributed to only a minor portion of variation for each gene.

Repeatability defines heritable platelet gene expression and predicts eQTL genes.

As discussed in the introduction, we hypothesized that repeatability, which captures the 

within and between individual variation in a single index (see methods), could be used to 

prioritize genes for eQTL analysis. Therefore, we calculated repeatability for each gene 

(Online Datasets V-VI), and retrospectively tested whether repeatability is associated with 

genetic and heritable regulation of gene expression in platelets. To do this we utilized the 

published PRAX113 dataset as an independent (no overlap with the current cohorts) and 

cross-platform (microarray) validation dataset. PRAX1 previously associated platelet 

transcripts with sex and race, and identified 612 platelet eQTL genes. We used cohort 1 for 

the analysis because it was larger in size than cohort 2 and better matched the diversity and 

demographics of PRAX1. We ranked all genes in the PRAX1 microarray according to the 

repeatability calculated by RNA-seq in cohort 1. Ranking by repeatability resulted in a 

significant enrichment for genes associated with sex, race, or eQTLs (p < 2e-16), that was 

significantly greater than ranking genes by abundance, within-individual, or total variation 

(p < 2e-6; also see Online Figure IV). As shown in Figure 3A, 100% of the top 15 

repeatability ranked genes are significantly associated in expression with sex, race, or a cis-

eQTL. As an example, MFN2 is an established platelet eQTL gene13 that was among the 

most repeatable genes (repeatability = 0.98). This is because MFN2 expression varies 

according to eQTL genotype13 by more than 8 fold between individuals, while remaining 

relatively constant within individuals over time (Figure 3B).

When assessing specifically the enrichment for eQTL genes, GSEA indicated a significant 

enrichment (p = 0) of known eQTLs as repeatability increased, with those with repeatability 

>0.68 (leading edge) accounting for the enrichment (Figure 3C). Significant enrichment was 

also observed when ranking by mean expression abundance or total variation, although the 
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enrichment score for these measures was lower than for repeatability. According to binned 

analysis of odds ratios, the odds of identifying an eQTL for a gene with a repeatability <0.5 

is 3.2 fold lower (p = 5e-15) than testing a gene at random (Figure 3D). The odds of 

identifying an eQTL for a gene with a repeatability > 0.9 is 6.2 fold higher (p = 6e-45) than 

random and 1.8 fold higher (p=0.006, adjusted) than ranking according to total variation. 

Furthermore, for known platelet cis-eQTLs, there was a significant correlation between the 

eQTL FDR and the repeatability of its associated transcript (Online Figure V). Thus, 

repeatability indicates an enrichment for and strength of cis-eQTL signal in platelets and 

may be a useful filtering and prioritization strategy to identify genes with an eQTL signal.

Microarrays differ from RNA-seq in accuracy, sensitivity, and comprehensiveness, and some 

eQTL genes identifiable by RNA-seq may have been missed by PRAX1. Therefore, we used 

RNA-seq data to re-interrogate 238 genes with high repeatability (>0.9), yet with no cis-

eQTLs previously found. We tested these for cis-eQTLs using a publicly available 

dataset13,42 collected in the Netherlands, of platelet RNA-seq from 234 healthy individuals 

(NL cohort). Genetic variants were called from RNA-seq reads across each gene, and tested 

for association with RNA-seq abundance. Despite the known limitations of RNA-seq in 

calling genetic variants (e.g. most variants are located in promoters and introns), 11 new 

probable platelet eQTL genes (Online Dataset VII) were identified. In contrast, when 

analyzing the same number of genes with the lowest repeatability, we did not identify any 

additional eQTLs—a difference which was statistically significant (11/238 vs 0/238, 

p=0.0009, Fisher Exact). Allele Specific Expression (ASE) analysis of allelic imbalance, 

which measures the ratio of read counts coming from each allele within heterozygotes, 

confirmed a significant and directionally consistent within-sample eQTL effect on allelic 

imbalance for 8 of the 11 genes (Online Dataset VII). An example of one of the novel 

platelet eQTL genes is long non-coding RNA LINC01089—one of the most repeatable 

(0.95) and abundant (top 10% by RNA-seq) transcripts in platelets. As shown in Figure 3E, 

there is a strong additive allele dosage effect of rs1168663 on LINC01089 expression among 

cohort 1 individuals at both time points, and among individuals in the NL cohort. As shown 

in Figure 3F, LINC01089 expression demonstrates significant allelic imbalance in cohort 1 

and in the NL cohort. Together these data define several novel platelet cis-eQTLs, 

demonstrating the utility of repeatability from longitudinal expression data to predict 

heritable gene expression variation and prioritize targets for prospective identification of cis-

eQTL genes.

Alternative exon skipping in platelets is maintained within-individuals over time.

To assess within-versus between-individual stability of alternative splicing, we focused on 

an alternative splicing event that is readily measured in RNA-seq data: exon skipping. We 

stringently identified exon skipping events in cohort 1 (see methods), and calculated Percent 

of exon Spliced In (PSI; Figure 4A) for each (Online Datasets VIII-XI). As shown in Figure 

4B, there was a broad range of exon skipping levels among the different exon skipping 

events that was mostly consistent between individuals and within-individuals over time. 

Unsupervised clustering analysis using PSI resulted in a preference for within-individual 

clustering compared to between-individual clustering (Online figure VI), although this was 

not as robust as clustering based on expression. Nonetheless, the within-individual 
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correlation of PSI was significantly higher than between-individual correlation, independent 

of age, race, or sex (Figure 4B-C), suggesting a heritable component of exon skipping levels 

in platelets.

Identification of a platelet splice QTL associated with race that affects exon 14 skipping in 
SELP.

Unlike eQTLs, platelet sQTLs have not previously been identified. We therefore used 

repeatability to prioritize exon skipping events, with the goal of identifying novel, robust, 

and physiologically relevant platelet cis-sQTLs. To this end, we assessed the within/between 

individual variation of PSI for each exon skipping event, and ranked each by repeatability 

(Online Dataset VIII for full table). As shown in Figure 5A, Exon 14 of SELP, which codes 

the leukocyte adhesion and platelet activation marker P-selectin, ranked second among 

repeatable exon skipping events. The difference in exon 14 exon skipping between donors, 

but stability within individuals is illustrated by the alignment plots in Figure 5B and the 

correlation plot in Figure 5C.

Exon 14 skipping predicts an in-frame deletion of the transmembrane domain of P-selectin. 

An exon 14 deficient isoform of P-selectin was previously detected in endothelial cells and 

platelets43–45 and at significant levels in the human circulation44–46. PCR (Online Figure 

VII), cloning, and Sanger sequencing (data not shown) verified that the RNA isoform 

predicted by RNA-seq in our own cohorts matches the previously described soluble protein 

isoform in plasma. Together, this implicates exon 14 skipping as a heritable source of 

variability in P-selectin protein cell surface and soluble plasma levels between individuals.

Previous studies have associated soluble P-selectin in the plasma with a variety of clinical 

and genetic factors including race and single nucleotide polymorphisms (SNPs)47–50. As 

shown in Figure 5D, we observed a significant increase of SELP exon 14 inclusion among 

blacks/African Americans compared to whites at both time points. A search for the most 

likely responsible genetic variants identified a SNP, rs6128, within exon 14 of SELP with a 

homozygous MAF (T/T) that is much higher among Africans (0.29) compared to Europeans 

(0.04)51. Intriguingly, rs6128 has been associated with plasma P-selectin52 levels and 

diabetic retinopathy, especially among African Americans50. However, the direct 

relationship of rs6128 to soluble P-selectin is unclear since the C to T transition does not 

change the protein sequence or modify canonical splice sites. Bioinformatic analysis53 of the 

sequence surrounding rs6128 predicted a net loss of an exonic splicing silencer (ESS) motif 

and a net gain of 2 exonic splicing enhancer motifs (ESE) (Figure 6A). To determine 

whether rs6128 is associated with SELP exon 14 splicing in platelets, we inferred rs6128 

genotypes from RNA-seq reads in cohort 1 and the NL cohort33 (variant details are in 

Online Dataset XII). As shown in Figure 6B-C, the rs6128 SNP is significantly associated in 

both cohorts with SELP exon 14 skipping in platelets. The association of rs6128 with SELP 
exon 14 skipping was independent of age, sex, race, or population structure.

We tested whether the difference in rs6128 MAF between Africans and Europeans might 

account for the association of exon 14 skipping with race indicated in Figure 5D. Consistent 

with this, there was no difference in exon 14 skipping levels between blacks/African 

Rondina et al. Page 10

Circ Res. Author manuscript; available in PMC 2021 February 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Americans and whites after correcting for rs6128 (p = .4 and .3 for T=0 and T=4 months 

respectively).

Given the importance of P-selectin in disease, we extended the SELP exon 14 splicing 

analysis to additional diseases also available through Best et. al.8,33. As shown in Online 

Figure VIII, none of the diseases examined (non-small cell lung cancer, multiple sclerosis, 

or pulmonary hypertension) was significantly associated with SELP exon 14 splicing, or the 

effect of rs6128 on splicing. This indicates that the levels of exon 14 skipping are very stable 

within the individual, even in the context of environmental stressors which have been shown 

to trigger changes in platelet transcript abundance11,33.

Rs6128 directly affects SELP exon 14 skipping and the proportion of soluble to surface P-
selectin in vitro.

Non-causal markers are commonly falsely identified in genetic association studies because 

of linkage with other unobserved variables54. To specifically test a causative effect of rs6128 

on SELP exon 14 splicing, we generated mini-gene constructs of the SELP ORF with rs6128 

C/C or T/T, and included introns flanking exon 14 (Figure 7A). Since it is known that 

promoter differences can influence splicing55, two different promoters (CMV or MSCV) 

were tested for each minigene construct. Constructs were expressed in HEK 293 cells, which 

lack endogenous P-selectin. Following transfection, RT-PCR analysis confirmed that the 

single nucleotide change from C/C to T/T resulted in a significant shift in the ratio of SELP 
RNA isoforms (Figure 7B), in the direction consistent with RNA-seq results. This occurred 

for both promoters, but with a more pronounced shift observed for the CMV promoter. 

Western blot analysis indicated that the T/T variant resulted in a shift toward exon 14 

inclusion in P-selectin protein (Online Figure IX). As shown in Figure 7C, and consistent 

with inclusion of the transmembrane domain, the single nucleotide change from C/C to T/T 

significantly increased (2 fold) the amount of surface P-selectin on HEK 293 cells. In 

contrast, the T/T variant significantly decreased the amount of soluble P-selectin in the 

supernatant as measured by ELISA (Figure 7D). Together this data demonstrates a causal 

relationship between rs6128 genotype, the amount of exon 14 inclusion in SELP RNA, and 

the proportion of soluble to surface P-selectin expression.

DISCUSSION

Analysis of within-individual versus between individual variation in two independent 

cohorts indicated that the human platelet transcriptome is highly stable in healthy individuals 

for up to 4 years. There are very few longitudinal studies available on primary nucleated 

cells for comparison. One study with similar design by Radich56 et. al. observed a 30% 

within-individual misclassification rate for leukocyte transcriptomes even after selecting for 
a gene signature that maximized variation between individuals. Although differences exist 

between this published study and our current work, we identified that platelets had a lower 

within-individual misclassification rate (10–12%) without signature selection. We speculate 

that their anucleate nature and 7–10 day lifespan moderate in vitro and in vivo RNA changes 

in platelets, promoting a stable and defined in vivo healthy gene expression signature.
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Platelet gene expression profiling via RNA-sequencing is emerging as a relevant tool for 

platelet function studies, for defining the consequences and causes of disease, and for 

disease diagnostics8–10,12,14,33,57. However, almost all published studies to date, have relied 

on single-time point comparisons of the platelet transcriptome between a disease cohort and 

healthy subjects. As healthy subjects are often used as the “baseline” or “control” condition 

in these studies, understanding whether the platelet transcriptome is durable – or not – in 

health is critical to understanding the robustness of these comparisons. Our finding that the 

platelet transcriptome is generally stable over 4 years in healthy individuals lends validity to 

these comparisons. In depth analysis of the individual transcripts that do vary within and 

between individuals also suggest some limitations and caveats.

Although most transcripts were stable, a few transcripts varied substantially within 

individuals. Most within-variable transcripts were related to inflammation. These may 

inform studies evaluating the effects of inflammation on platelet gene expression, and may 

be of relevance to clinical findings that inflammatory stress is associated with platelet counts 

and function58. The range of variation for inflammatory transcripts in health compared to 

overt inflammatory disease may be worth investigating when assessing the impact of 

inflammatory gene changes on disease.

We observed major platelet expression differences between individuals. Sex and race 

accounted for some major differences. Other sources of individual variation contributed 

more. Our data suggest a prominent role for cis-eQTLs. Regardless of the source of 

variation, the propensity of a gene to vary between (or within) healthy individuals might be 

taken into consideration when interpreting differential disease-gene studies and designing 

experiments for validation. Genes with high inherent variation require larger sample sizes to 

reach statistical confidence. When sample sizes are small, false positives are more likely for 

genes with high inherent variation. Correction for known covariates might be helpful in this 

regard. While corrections for sex, race, and age are often considered in differential gene 

expression analyses, eQTLs are normally unavailable or ignored.

Stability information may also guide (along with the Minimum Information for Publication 

of Quantitative Real-Time PCR Experiments (MIQE59) guidelines) the selection of 

reference genes for normalization controls. Within/between stable genes such as SYK, 

AKT1/2, GP1BA, ACTB might be good choices. On the other hand, highly within-variable 

genes, such as the gene TUBB1, should generally be avoided as reference genes.

As an application of our longitudinal dataset, we used repeatability as a filtering strategy to 

identify new platelet eQTLs. Because of the limitation of multiple testing60, even large scale 

gene expression association studies employ a filtering and prioritization strategy to 

circumvent testing thousands of genes (and even more alternative splice events) against 

millions of genetic loci. Common filtering strategies include hard filtering on abundance61 

or total variance. However, filtering for total variance alone will also enrich for transcripts 

overly-influenced by technical or environmental noise. To avoid this, several studies21–23 

(see introduction) have suggested using repeatability instead. Here we have used platelet 

longitudinal data to experimentally test this idea. We observed a significant enrichment for 
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cis-eQTLs among the most repeatable genes that significantly improved the ability to 

identify eQTL genes compared to using abundance or total variation.

Although significantly enriched for eQTLs, the association with repeatability was not 

perfect. Cohort 1 was assayed on a different platform (RNA-seq vs microarray), was smaller 

(31 vs 154), and had similar, but not identical demographics to PRAX1 (race (Blacks/

African Americans): 45% vs 42%, ns; sex (M): 49% vs 32%, ns; age: 42+/−11 vs 29+/−7, p 

< .05). Repeatability measured in the same samples used for eQTL analysis would 

presumably result in the best predictions. However, large longitudinal studies are often 

impractical because of the costs and challenges of repeated sampling. Moreover, 

repeatability can add a layer of confidence to eQTL results if measured in an independent 

cohort. For this, larger sample sizes that reflect the demographics and environment of the 

test cohorts will presumably fare better. Cohorts that are too small to capture genetic 

variation (i.e. low MAF eQTLs), or are subject to systematic environmental perturbations, 

will suffer from overall lower repeatability, and lack sensitivity to predict eQTLs. Additional 

studies are needed to determine how repeatability might be applied more generally in the 

analysis of additional datasets, cell types, and to handle gene-environment interactions.

We used an additional RNA-seq cohort (NL cohort) to test for unreported platelet eQTL 

genes among the most repeatable genes in cohort 1. Of the identified eQTLs, 22/27 (for 7/11 

eQTL genes) have been reported in other tissues (The Genotype-Tissue Expression (GTEx) 

Project, see Online Dataset VII). Noteworthy among eQTL candidate genes is TECPR2, 

which was previously associated with platelet counts by GWAS62. Long non-coding RNA 

eQTL genes were also identified: LINC01089, MAGI2-AS3, KANSL1-AS1. Like these 3 

genes, we found that non-coding RNAs are generally stable within individuals, yet more 

variable between individuals compared to protein-coding RNAs, suggesting more genetic 

diversity among non-coding RNAs. Long non-coding RNAs have gained attention for their 

multi-faceted ability to regulate gene expression, but are understudied in platelets. How 

diversity in expression of long non-coding RNAs relates to functional gene expression 

differences between individuals is a subject of interest for future investigation.

Repeatability was further applied to prioritize exon skipping events to find those with the 

greatest likelihood of identifying a biologically tractable sQTL signal. A robust association 

between rs6128 and SELP exon 14 skipping was identified. During the course of this work, 

a significant association between rs6128 splicing and exon 14 skipping was also identified in 

whole blood samples63, further strengthening the findings.

To establish causality, we performed transfection experiments in HEK 293 cells, which 

advantageously do not express endogenous SELP. The results strongly implicate rs6128 as 

causal for differential SELP exon 14 splicing in platelets, but do not rule out potential 

contributing effects of the endogenous promoter, or of additional associated or linked 

variants. The confirmation of a platelet observation in an unrelated cell line suggests rs6128 

may affect SELP splicing in multiple tissues such as endothelial cells—another major 

producer of P-selectin.
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Surface P-selectin mediates leukocyte interactions and inflammation, is involved in 

atherogenesis, and plays a role in tumor metastasis. Soluble P-selectin is a functionally and 

clinically relevant platelet protein in the circulation associated with a variety of diseases47,64. 

While a major source of soluble P-selectin is related to activation induced shedding, a 

significant amount is heritable. Associations between rs6128 and soluble P-selectin protein 

levels in plasma have been reported50,52. The observed effects of rs6128 on exon 14 SELP 
splicing and soluble versus surface P-selectin localization establishes a link between these 

observations. They may explain previous clinical studies that have associated rs6128 with 

plasma P-selectin and diabetic retinopathy in African Americans50. Finally, the finding that 

SELP is differentially spliced according to race may be therapeutically relevant in light of 

promising clinical trials that effectively used P-selectin blockade to treat pain crisis in Sickle 

Cell Anemia, a disease that predominantly affects individuals of African descent47.
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NOVELTY AND SIGNIFICANCE

What Is Known?

• Human platelets have a rich repertoire of RNAs.

• Platelet RNA expression differs between individuals in health and disease, 

and is associated with platelet function.

• Single time-point studies of the platelet transcriptome are increasingly 

utilized for biological discovery in human health and disease.

What New Information Does This Article Contribute?

• Platelet RNA expression is stable and repeatable for up to 4 years when 

assessed over time in healthy human donors.

• The integrated use of longitudinal repeatability metrics significantly enhances 

the discovery of genetic variants that affect gene expression and splicing.

• A genetic variant in the SELP gene directs the removal of the P-selectin 

transmembrane domain.

Although anucleate, platelets possess a rich and dynamic transcriptome. Platelet 

transcriptomics are increasingly used, with applications ranging from cancer diagnostics 

to novel gene discovery. Our study adds to the field by establishing, for the first time, the 

stability – or reproducibility – of platelet gene expression and splicing in healthy donors 

assessed repeatedly for up to four years. This type of longitudinal assessment has been 

lacking for any primary human cell, let alone platelets. We found that the platelet 

transcriptome is exquisitely stable in health, which may aid comparisons in disease 

settings, and enhance diagnostics and prognostics that use platelet RNA. Moreover, we 

show that integrating measures of repeatability (e.g. between versus within-individual 

variation of platelet RNA expression and splicing) results in improved detection of genes 

affected by nearby genetic variants. We apply this technique in the discovery of a platelet 

SELP sQTL. Functionally, this splice QTL directs the removal of the transmembrane 

domain of P-selectin. We show that this transmembrane domain deletion is reduced in 

blacks compared to whites. In vitro, this increases surface, but decreases soluble, P-

selectin. We suggest that this may have implications in diseases more common in blacks 

where P-selectin is a therapeutic target (e.g. sickle cell disease).
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Figure 1. Within and between individual stability of platelet RNA expression over 4 months 
(cohort 1) and 4 years (cohort 2).
A and D: Unsupervised clustering and heatmaps of total RNA expression in platelets from 

all samples in A) cohort 1 and D) cohort 2. The histograms to the left of each heatmap show 

the distribution of distances between all pairs of samples, and the darkness of blue indicates 

the degree of similarity between pairs of samples. Samples that cluster as neighbors in the 

heatmap dendrograms reflect transcriptomes with the highest similarity. Nearest neighbor 

self-pairs are highlighted in yellow and gray, whereas nearest neighbor non-self pairs are 

highlighted in orange. B and E: Example individual correlation plots of all transcripts in B) 
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cohort 1 or E) cohort 2. Each data point represents the regularized, log-transformed 

expression level (RLD) of a single transcript from the specified donor at time 0 (x axis) 

versus 0, 2 wk, 4 months, or 4 years (y axis) within the same individual (top panels) or a 

different individual (bottom panels). Points are heat-colored according to density. P values 

are from Pearson correlation. C and F: Boxplots summarizing the RNA expression Pearson 

correlation between all within versus between-individual pairs at C) time 0 and 4 months or 

F) in aggregate at all time points (left) or at the individually specified time points (right). 

With regards to specified time points in F, note that the average within-individual correlation 

did not significantly decrease as samples taken farther apart were compared. For example, 

there was not a significant difference when comparing the average within-individual 

correlation of T0 versus 2 weeks with the average within-individual correlation of T0 versus 

4 years. Boxplots for cohort 1 (C) are shown before and after adjusting for age, sex, and 

race, whereas they are not adjusted for cohort 2 (F), because of the smaller sample size. P 

values are from Wilcox test, adjusted.
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Figure 2. Comparison between cohorts of the within and total variation of each transcript in 
platelets.
The mean within and total individual variation (standard deviation, SD) was calculated from 

the regularized log transformed expression (RLD) for each transcript. A and C: the A) 

within or C) total individual variation of each transcript in cohort 1 (x-axis) plotted against 

the respective variation of each transcript in cohort 2 (y-axis). The horizontal and vertical 

lines at 0.5 marks an arbitrary threshold of variation used for the Venn diagrams in B and D. 

B and D: Venn diagrams of the overlap in the transcripts with highest B) within and D) total 

variation. Listed below each Venn are the significantly enriched GO terms for the transcripts 

overlapping both cohorts. FDR = Benjamini False Discovery Rate calculated by David65.
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Figure 3. Transcripts ranked by repeatability are enriched in heritable traits and eQTLs.
A) Table of transcripts with the highest repeatability in cohort 1 RNA-seq data, and their 

reported association with race, sex, or eQTLs in PRAX113,42 microarray data. Associations 

with FDR < 1e-4 are highlighted in pink. NS = not significant. B) Correlation plot of RNA 

expression (log normalized) of MFN2 at time 0 (x-axis) and 4 months (y-axis). Points are 

colored according to rs1474868 genotype (ND = not determined). Above is a density 

histogram showing a bimodal distribution according to genotype. Bimodal P value from 

Hartigan’s diptest for multi-modality. C) Top: enrichment plots for the presence of eQTLs 
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ranked according to different measures: within variation, mean expression abundance, total 

variation, or repeatability. The axis below the plot indicates the gene rank according to each 

measure, and indicates the value of the repeatability measure (the values of the other 

measures are not noted on the axis). Genes with a known eQTL are in red, those without are 

in blue. Thus, genes with the highest repeatability are nearly 100% eQTL genes, whereas 

those with the lowest repeatability are nearly 0%. Bottom: plot of cumulative enrichment 

scores for each metric. D) Odds ratios for the likelihood of identifying an eQTL for genes at 

the indicated repeatability thresholds compared to the same number of genes ranked by total 

variation. E) Boxplots of LINC01089 expression according to rs1168863 genotype in cohort 

1 at time 0 and 4 months and in the NL cohort33. *P values adjusted for age, sex, and cohort 

1) race or cohort 2) population structure (inferred genetic ancestry37,38). F) Boxplots 

demonstrating allelic imbalance of rs1168863 within heterozygotes in cohort 1 and the NL 

cohort. The proportion of RNA-seq reads with A nucleotide versus T nucleotide was 

calculated and plotted for each heterozygote individual.
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Figure 4. Within and between individual stability of exon skipping in platelets.
A) Schematic of how exon skipping events are defined. Percent exon Spliced In (PSI) is 

calculated using splice junction reads and is the ratio of exon inclusion junction reads over 

total junction reads. B) Correlation plots the PSI for all exon skipping events within (left 

panel) and between (right panel) individuals. Each point represents a single exon skipping 

event from the specified donor at time 0 (x axis) versus 0 or 4 months (y axis). C) Boxplots 

summarizing Pearson correlations of within versus between-individual pairs when analyzing 

PSI of all exon skipping events at time 0 and 4 months, and after adjusting for age, sex, and 

race. *Wilcox test, adjusted.
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Figure 5. Repeatability of Exon 14 skipping in SELP and association with race.
A: Table of the most repeatable exon skipping events in platelets. B: Representative IGV 

plots of sequencing reads from two different individuals at time 0 and 4 months, showing the 

differential distribution of reads between individuals that align to or skip exon 14 of SELP. 

The histograms indicate the cumulative abundance of reads that aligned to each exon. A 

subset of individual reads is shown below each histogram that indicate split splice junction 

reads by thin lines (absent in read) that connect to thick lines (mapped portion of read). Red 

and blue reads are splice junction reads that align to or skip exon 14 respectively. C: 

Correlation plot of SELP exon 14 PSI. Each point represents the PSI for an individual donor 

at time 0 (x-axis) and 4 months (y-axis). Donors represented in the IGV plots in B are 

labeled in red text. D) Boxplot of SELP exon 14 mean PSI according to race at T=0 and T=4 

months.
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Figure 6. rs6128 is a platelet SELP exon 14 splice QTL.
A) Close up IGV plot showing read distribution across SELP exon 14 for Top) an individual 

with rs6128 A/A and relatively high levels of exon skipping reads or Bottom) an individual 

with rs6128 (T/T) variant. The C->T change does not change amino acid sequence, but alters 

exonic splicing silencer and enhancer sites as predicted by Ex-Skip53. B) Boxplot of SELP 
exon 14 mean PSI according to rs6128 genotype inferred from RNA-seq in cohort 1 at time 

0 and 4 months. C) Boxplot of SELP exon 14 mean PSI according to rs6128 genotype 

inferred from RNA-seq data published in the NL cohort. *P values adjusted for age, sex, and 

B) race or C) population structure (inferred genetic ancestry37,38).
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Figure 7. rs6128 directly regulates exon 14 skipping in SELP and alters the ratio of surface to 
soluble P-selectin protein expression.
A) Schematic of mini-gene constructs of SELP that include the ORF of SELP, and the 

introns flanking exon 14. The C/C and T/T constructs vary by a single nucleotide at rs6128. 

Constructs were cloned into vectors with 2 different promoters (CMV or MSCV). After 

transfection into HEK 293 cells, the introns are spliced out and exon 14 is variably spliced 

out (skipped). The extent of exon 14 skipping is measured by PCR via exon 14 flanking 

primers that generate two PCR products of different sizes. B) RT-PCR analysis of SELP 
exon 14 skipping following transfection of HEK 293 cells with rs6128 C/C or T/T vectors. 

Shown is a representative result from 5 independent experiments. Below are bar graphs and 

standard error summary of PSI calculated according to densitometry analysis of the exon 14 

inclusion band (upper band) divided by the sum of the upper and lower bands (total).*paired 

t-test, n=5 independent experiments. C) Flow cytometry analysis of P-selectin surface 
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expression following transfection of HEK 293 cells with rs6128 C/C or T/T vectors. Top is a 

representative histogram overlay of P-selectin surface expression 24 hours after transfection 

with CMV promoter empty vector, rs6128 C/C, or T/T. Below are bar graph and standard 

error summaries of the fold change (normalized to transfection) of surface P-selectin MFI 

following transfection. *paired T test, n=5–6 pairs per group. D) ELISA analysis of soluble 

P-selectin in supernatants of HEK 293 cells following transfection with rs6128 C/C or T/T 

vectors. *paired T test, n=12–14 pairs per group.
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Table 1.

Characteristics of cohorts 1 and 2 and timeline of platelet collection.

Cohort 1 (=31) Cohort 2 (n=7)

Center Duke University University of Utah

Age (yrs) 42 ± 11 47 ± 9.1

Male Gender, n (%) 10 (32%) 5 (71%)

Race/Ethnicity, n (%)

 Black or African American 13 (42%) 0%

 Caucasian 15 (48%) 7 (100%)

 Unknown or Not Reported 3 (10%) 0%

Platelet RNA-sequencing
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