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Abstract

Alcohol use disorder (AUD) is a serious public health problem that results in tremendous social, 

legal and medical costs to society. Unlike other addictive drugs, there is no specific molecular 

target for ethanol (EtOH). Here, we report a novel molecular target that mediates EtOH effects at 

concentrations below those that cause legally-defined inebriation. Using the patch-clamp recording 

of human α6*-nicotinic acetylcholine receptor (nAChR) function when heterologously expressed 
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in human epithelial cells (SH-EP1 cells), we find that 0.1–5 mM EtOH significantly enhances 

α6*-nAChR-mediated currents in effects that are influenced by both EtOH and nicotine 

concentrations. EtOH exposure increases both whole-cell current rising slopes and decay 

constants. This EtOH modulation is selective for α6*-nAChRs since it does not affect α3β4-, 

α4β2-, or α7-nAChRs. In addition, 5 mM EtOH also increases the frequency and amplitude of DA 

transients in mouse brain nuclear accumbens slices, and these are blocked by an α6-nAChR 

antagonist, α-conotoxin MII, suggesting a role for native α6*-nAChRs in low-dose EtOH effects. 

Collectively, our data suggest that α6*-nAChRs are sensitive targets mediating low dose EtOH 

effects through a positively allosteric mechanism, which provides new insight into mechanisms 

involved in pharmacologically-relevant alcohol effects contributing to AUD.

Keywords

nicotinic acetylcholine receptor; alpha 6 subunit; alcohol; ethanol; patch-clamp; SH-EP1 cells

1. Introduction

Alcohol is the most widely used drug in society, and alcohol abuse is by far the most 

common form of substance abuse. Alcohol use disorder (AUD), a serious public health 

problem worldwide, affects approximately 17 million Americans and results in tremendous 

social, legal, and medical costs estimated at >$249 billion per year (Sacks et al., 2015). As a 

result, more than 700,000 people in the United States receive alcoholism treatment in either 

inpatient or outpatient settings (Fuller and Hiller-Sturmhofel, 1999). The Centers for Disease 

Control and Prevention (CDC) report that there are approximately 80,000 deaths attributable 

to excessive alcohol use each year in the United States. Based on a WHO report, alcohol 

consumption is the world’s third largest risk factor for disease and disability. Excessive 

drinking accounted for 1 in 10 deaths among working-age adults in the United States (Stahre 

et al., 2014). However, mechanisms involved in AUD remain obscure, and therapeutics for 

AUD are still limited.

Unlike other addictive drugs (e.g., morphine, cocaine or nicotine) that have specific 

molecular targets on neurons, no specific molecular target has been validated or accepted by 

the alcohol research community. The prevailing view is that glutamatergic (GLUergic) and 

GABAergic receptors and GLU and GABA synaptic transmission are possible targets for 

ethanol (EtOH), but often the EtOH concentrations needed to modify glutamate or GABA 

synaptic transmission are physiologically/pharmacologically relevant only in the context of 

toxic loss of consciousness and death. For example, EC50 values are 37 mM for EtOH 

modulation of L-type Ca2+ channels (Mullikin-Kilpatrick and Treistman, 1994), 30–100 

mM for NMDA receptors (Lovinger et al., 1989; Weight et al., 1991), and 220 mM for 

kainate/quisqualate-activated channels is 220 mM (Weight et al., 1993). 20% enhancement 

of GABA-induced chloride channels is achieved at 30 mM EtOH (Nishio and Narahashi, 

1990), 40% enhancement of serotonin-induced current occurs at 50 mM EtOH (Lovinger, 

1991), and the EC50 for functional blockade of α4β2-nicotinic acetylcholine receptors 

(nAChRs) are 75 mM (Zuo et al., 2002). In human drinkers, however, blood alcohol levels 

are 6–13 mM for impairment of attention and onset of relaxed and joyous behavior, 17 mM 
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(0.08%) for most legal definitions of alcohol intoxication (triple risk for an accident; 

impaired reasoning, perception and reaction time), 20–22 mM for sedation and ataxia, 50 

mM for loss of consciousness, and 110 mM or higher for death (Little, 1991). Therefore, 

there remains a gap in our understanding of mechanisms and molecular targets involved at 

lower doses (<10 mM) of EtOH that are important to reward and dependence and to 

treatment of AUD.

The mesolimbic dopamine (DA) system is implicated in pleasure, reward, and mood control 

and in drug reward and dependence, including for nicotine (NIC) and EtOH. It includes the 

midbrain ventral tegmental area (VTA) and its projections to structures such as the nucleus 

accumbens (NAc) and prefrontal cortex [PFC; (de Rover et al., 2002)]. The VTA receives a 

variety of inputs, including cholinergic innervation not just on DA neurons, but also on VTA 

GABAergic neurons (Fiorillo and Williams, 2000; Garzon et al., 1999). Neurons within the 

VTA express a wide variety of nAChRs (Mansvelder et al., 2002; Mansvelder and McGehee, 

2000; Wooltorton et al., 2003; Yang et al., 2009a). NIC can activate both DA and γ-

aminobutyric acid (GABA) neurons (Mansvelder et al., 2002; Yin and French, 2000) via an 

increase in activation, and perhaps desensitization of specific nAChRs, suggesting roles for 

nAChRs not just in NIC dependence, but also in EtOH dependence and in NIC and EtOH 

modulation of pleasure, mood, and reward (Mansvelder et al., 2002; Mansvelder and 

McGehee, 2000; Wu et al., 2004). In addition to α4β2- and homomeric α7-nAChRs, there is 

a considerable expression of heteromeric nAChRs containing α6 subunits (α6*-nAChRs; 

the * signifies that there are or may be additional nAChR subunits that co-assemble with the 

indicated subunit) in the VTA (Azam et al., 2002; Klink et al., 2001). α6*-nAChRs have 

been implicated in DA transmission and NIC dependence (Brunzell et al., 2010; Drenan et 

al., 2010; Drenan et al., 2008; Exley et al., 2008; Gotti et al., 2010; Jackson et al., 2009; 

Pons et al., 2008; Sanjakdar et al., 2015; Yang et al., 2009c). α6*-nAChRs are located on 

GABA terminals on VTA DA neurons, and their activation by acetylcholine (ACh) enhances 

GABAergic synaptic inhibition to VTA DA neurons (Drenan et al., 2008; Yang et al., 2011). 

Functional and pharmacological properties of α6*-nAChRs are largely unknown, there are 

no selective α6*-nAChR agonists, and α6 subunits sometimes are co-expressed with nAChR 

α4subunits to form natural α4α6*-nAChRs, which could mask properties of α6*(no α4)-

nAChRs. Moreover, the ability to heterologously express functional α6 nAChRs has been 

challenging (Dash et al., 2014).

Recently, we have found that low concentrations of EtOH (1–10 mM) enhance GABAA 

receptor (GABAAR)-mediated spontaneous and evoked inhibition of IPSCs via processes 

blocked by the α6*-nAChR-selective antagonist α-conotoxin MII (α-Ctx MII) and that 

there is lowered EtOH sensitivity and reward in nAChR α6 subunit knock-out (KO) mice 

(Steffensen et al., 2017). Moreover, we have established functional, heterologous expression 

of α6*-nAChRs by co-transfection of an α6/3 subunit chimera together with β2 and β3 

subunits into the human SH-EP1 cell line (Chen et al., 2018). This transfected α6*-nAChR 

exhibits robust function and has been used for drug screening, and use of the chimera avoids 

the enhanced agonist potency and efficacy effects associated with including a 9’S mutant 

subunit (Letchworth and Whiteaker, 2011). In the present study, we used the α6/α3*-

nAChR cell model to demonstrate that low dose EtOH selectively enhances α6*-nAChR-

mediated currents in both EtOH- and nicotine-dependent manners, suggesting a positive 
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allosteric modulation, and we extended our work to show modulation of NAc DAergic 

transients via block of putative, natïve α6*nAChRs.

2. Methods

2.1. Expression of human neuronal α6/α3β2β3-nAChR in human SH-EP1 cells

Construction of the cell line expressing α6Nα3Cβ2β3-nAChR was first described by 

Breining et al. and Letchworth et al. (Breining et al., 2012; Letchworth and Whiteaker, 

2011). α6Nα3C (α6/3) denotes a chimeric subunit composed of the extracellular, ligand-

binding domain of the human α6 subunit fused to the first transmembrane domain and 

following sequence of the human α3 nAChR subunit (see 3D structure in Supplemental Fig. 

3A), this approach reproducibly increases expression compared to that seen for native α6 

subunits while retaining α6-like pharmacology (Kuryatov et al., 2000). More detailed 

information of the process of expression of this α6Nα3Cβ2β3-nAChR and maintenance of 

SH-EP1-α6/3 cells was as previously described (Chen et al., 2018).

2.2. Patch-clamp recordings

Conventional patch-clamp whole-cell current recordings coupled with a computer-controlled 

fast drug application and removal were implemented as previously described (Wu et al., 

2006). Briefly, cells plated on 35-mm culture dishes were placed on the stage of an inverted 

microscope (Olympus IX7, Lake Success, NY, USA) and continuously superfused with 

standard external solution (2 ml/min). Glass microelectrodes (1.5×100 mm, Narishige, East 

Meadow, NY, USA) were made in two steps using a vertical electrode puller (P83, 

Narishige, East Meadow, NY, USA). Electrodes with a resistance of 3–5 MΩ were used to 

form tight seals (>1 GΩ) on the cell surface until suction was applied to break the membrane 

and convert to conventional whole-cell recording. After that, the recorded cell was lifted of 

the culture dish surface to allow more efficient and thorough perfusion with applied ligands 

and then voltage-clamped at a holding potential (VH) of –40 mV (unless specifically 

mentioned), and ionic currents in response to application of nicotinic ligands were measured 

(Axopatch 200B amplifier, Axon Instruments, Foster City, CA, USA). Whole-cell access 

resistance was less than 20 MΩ before series resistance compensation and monitored 

throughout the experiment. If access resistance varied by more than 20%, data were 

discarded. Both pipette and whole-cell current capacitances were minimized, and series 

resistance was routinely compensated to 80%. Typically, current output was filtered at 2 

kHz, displayed and digitized at 10 kHz on-line (Digidata 1550 series A/D board, Axon 

Instruments, Foster City, CA, USA), and streamed to disk. Data acquisition and analyses of 

whole-cell currents were done using Clampex v10.2 (Axon Instruments, Foster City, CA, 

USA), and results were plotted using Origin 8.0 (Microcal, North Hampton, MA, USA) or 

Prism 5.0 (GraphPad Software, Inc., San Diego, CA, USA). Concentration-response curves 

were fit to the Hill equation. nAChR acute desensitization was analyzed for decay time 

constant (τ), peak current (Ip), and steady-state current (Is) using fits to the single 

exponential function: I = [(Ip − Is) et/τ] + Is, or to its double-exponential variant as 

appropriate, using data from 90% to 10% of the period between the peak amplitude of the 

inward current and the termination of the typical 1-sec period of agonist exposure. Replicate 

determinations of τ (a measure of the rate of acute desensitization), the current rising slope 
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and peak current amplitude are presented as means ± standard error of the mean (SEM), and 

were analyzed for statistical significance using Student’s t test (paired or independent). All 

experiments were performed at room temperature (22 ± 1°C).

2.3. Solutions and drug application

The standard external solution contained 120 mM NaCl, 3 mM KCl, 2 mM MgCl2, 2 mM 

CaCl2, 25 mM D-glucose, 10 mM HEPES, pH 7.4 with Tris-base. In some experiments 

using ACh as an agonist, 1 μM atropine sulfate was added to the standard solution to exclude 

any possible influences of muscarinic receptors. The pipette solutions used for conventional 

whole-cell recording were (in mM): Tris phosphate dibasic 110, Tris base 28, EGTA 11, 

MgCl2 2, CaCl2 0.1, Na-ATP 4, pH 7.3. This “Tris+” electrode solution was used by 

Huguenard & Prince (Huguenard and Prince, 1992) to prevent nAChR receptor functional 

rundown (Zhao et al., 2003)

To initiate whole-cell current responses, under constant superfusion of the recording 

chamber, nicotinic drugs were rapidly delivered to the recorded cell using a computer-

controlled ‘U-tube’ application system, in which the applied drug surrounded the recorded 

cell within 20 msec. Intervals between drug applications (20–60 sec) were adjusted 

specifically to ensure the stability of nAChR responsiveness (absence of functional 

rundown), and the selection of pipette solutions used in most of the studies described here 

was made with the same objective. Drugs used in the present study were: (−) nicotine, ACh, 

EtOH (Sigma Chemical Co., St. Louis, MO, USA). α-conotoxin MII was a gift from Dr. 

Michael McIntosh.

2.4. Fast Scan Cyclic Voltammetry Recordings

Slices obtained from the nucleus accumbens core (NAc) of C57BL6/J mice (28–42 PND) 

were transferred to the recording chamber and perfused with ACSF (34 °C) at a rate of ~1.8 

mL/min. Voltammetry recordings were performed and analyzed using Demon Voltammetry 

and analysis software (Yorgason et al., 2011). Carbon fiber electrodes used in voltammetry 

experiments were made in-house. Carbon fibers (7 μm diameter, Thornel T-650, Cytec, 

Woodland Park, NJ) were aspirated into borosilicate glass capillary tubes (TW150, World 

Precision Instruments, Sarasota, FL). Electrodes were then pulled on a PE-2 vertical pipette 

puller (Narishige, Amityville, NY) and cut so that 100–150 μm of carbon fiber protruded 

from the tip of the glass. The electrode potential was linearly scanned by a triangular 

waveform from −0.4 to 1.2 V and back to −0.4 V (Ag vs. AgCl) with a scan rate of 400 V/

sec, repeated every 100 msec. Carbon fibers were advanced completely into the tissue at a 

20° angle with the tip positioned ~85 μm below the slice surface. Dopamine transients were 

measured in the presence of 4-AP (30 μM) to facilitate detection (Yorgason et al., 2011).

2.5. Analysis of Dopamine Transients

Dopamine release was analyzed using Demon Voltammetry software and was measured at 

peak oxidation currents as described previously (Yorgason et al., 2017). Briefly, a running 

subtraction on recordings was performed to reduce drift and aliasing noise. Post-subtracted 

data was then compared across time against known cyclic voltammograms for DA, with a 

low threshold r2 value for initial detection (r2>0.3). Each detected event (legitimate and 
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spurious) was then verified manually using the original background subtraction (non-

running) data to remove spurious events and quantify release amplitude for each event. 

Signals smaller than the limit of detection (calculated by multiplying the median standard 

deviation for each file by 3) were automatically rejected. Detected events were 

simultaneously examined for evidence of a false positive caused by drift and aliasing noise 

coinciding with the oxidation potential.

Dopamine release concentrations were calculated from calibration values (at 1 μM DA). 

Baseline frequency of DA transients was measured during a 10 min period before drug 

application. Group data from experiments where a drug was applied was measured across 

the 10 min period where the drug was applied. NCSS 8 (NCSS; Kaysville, UT) and Prism 5 

(GraphPad; La Jolla, CA) were used for statistical analysis. Statistical significance was 

determined for groups of 2 variables using a two-tailed Student’s t-test. Experiments with >2 

groups, but only one factor, were tested for significance using a one-way ANOVA. For 

experiments that examined multiple factors, and possible interactions, a two-way ANOVA 

was used. Tukey’s HSD (for one-way ANOVAs where comparisons were not planned), and 

Dunnett’s (for one-way ANOVAs when comparisons against control values were planned) 

correction methods were used for post-ANOVA analysis. Bonferroni correction methods 

were used for post-ANOVA analysis of two-way ANOVAs only.

2.6. Homology modeling

The homology model of the α6/α3 chimera was built using the sequences described 

previously (Chen et al., 2018) without signal peptide submitted to the I-TASSER server 

(http://zhanglab.ccmb.med.umich.edu/I-TASSER/). One of the five top scored models was 

used for presentation. The 3D structural presentation of the α6α3 chimera and α6 mutant 

were made using Discovery Studio Visualizer 4.0 (Accelrys, San Diego, CA).

2.7. Data analysis and statistics

Data were given as mean ± SEM with numbers shown in parentheses (n). A probability level 

of p<0.05 was considered to be statistically significant. Significant differences were 

determined using the two-tailed Student’s t-test or One-way ANOVA as appropriate with the 

software of GraphPad Prism 8.01 (GraphPad Software, Inc, La Jolla, CA).

3. Results

3.1. Effects of acute exposure to low dose EtOH on α6*-nAChR-mediated currents

To examine acute effects of low dose EtOH on human α6*-nAChR-mediated inward whole-

cell current responses, we applied 1 μM NIC to cultured SH-EP1 cells expressing α6*-

nAChRs. Applications were repeated until NIC-induced responses became stable. Then, we 

co-applied 1 μM NIC and 0.1 mM EtOH to cells to define EtOH effects, and we followed 

with another agonist challenge after washout of EtOH. Nicotine-induced currents where 

enhanced by 0.1 mM EtOH co-application (Fig. 1A). After washout of EtOH for 2–3 min, 

this enhancement was reversed. To evaluate the effects of 0.5 mM EtOH on 1 μM NIC-

induced currents with different pre-treatment times, we compared the effects of EtOH on 

NIC currents with pre-treatments for 0, 20, 40, 60, 80 ms (Supplemental Fig. 1A), and found 
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no difference of EtOH’s effects with different pre-treatment times (Supplemental Fig. 1B). 

Thus, all of the following experiments used the EtOH and NIC co-application protocol. We 

also demonstrated stable recording of α6*-nAChR-mediated currents under our recording 

experimental conditions (Supplemental Fig. 1C). Figure 1B summarizes pooled data from 20 

cells and demonstrates a consistent potentiation of NIC-induced inward current amplitude by 

0.1 mM EtOH. Figure 1C shows normalized results of 1 μM NIC-induced responses before, 

during, and after acute EtOH exposure. One-way ANOVA analysis demonstrated that effects 

of EtOH on α6*-nAChR-mediated currents were significant (F(2,57) = 32.57, p < 0.001, 

Tukey’s comparison showed that control vs. EtOH, p < 0.001, and control vs. washout, p = 

0.989). These results indicate that acute low dose EtOH enhances α6*-nAChR-mediated 

currents in human SH-EP1 cells.

3.2. EtOH effects on α6*-nAChR-mediated currents are concentration dependent

We next defined effects of different concentrations of EtOH (from 0.01 to 50 mM) on α6*-

nAChR-mediated currents. At a range of concentrations between 0.1 and 5 mM, EtOH 

enhanced 1 μM NIC-induced whole-cell current amplitude (Fig. 2A), while at either 0.01 or 

50 mM, EtOH failed to enhance NIC-induced currents. (Fig. 2B). Thus, there is a bell-

shaped concentration-response relationship for EtOH potentiation of NIC-induced currents 

with no potentiation at the higher or lower end of the range of EtOH concentrations (0.01 

and 50 mM), but functional potentiation at intermediate EtOH levels. One-way ANOVA 

analysis demonstrated that the differences of NIC responses modulated by different EtOH 

concentrations are significant (F(4,85) = 8.156, p < 0.001). Tukey’s comparison showed that 

compared to normalized NIC alone (1.0, indicated by a blue horizontal dashed-line), EtOH’s 

effects were dependent on EtOH concentrations: EtOH 0.01 mM = 1.082 ± 0.047, n = 10, p 
= 0.367; EtOH 0.1 mM = 1.244 ± 0.037, n = 20, p < 0.001; EtOH 0.5 mM = 1.175 ± 0.033, 

n = 30, p < 0.001; EtOH 5 mM = 1.138 ± 0.047, n = 10, p = 0.020; and EtOH 50 mM = 

0.983 ± 0.374, n = 20, p = 0.994. Thus, EtOH potentiates NIC current at a range of EtOH 

concentrations (from 0.1 to 5 mM). This suggests that there are the conditions where EtOH 

acts as a positive allosteric modulator to enhance α6*-nAChR function.

3.3. Kinetic analysis of EtOH-induced potentiation of α6*-nAChR-mediated currents

To understand the nature of EtOH effects on α6*-nAChR function, we assessed influences 

of EtOH at select concentrations on whole-cell current rising slope and decay (Fig. 3). 

Figure 3A shows typical 1 μM NIC-induced current traces (black) before and after 0.1 (left 

and middle panels) or 50 mM (right panel) EtOH exposure. EtOH treatment at 0.1 mM 

increased peak amplitude (red trace, left panel) and current rising slope but did not alter 

current decay time constant (blue trace, middle panel). EtOH exposure at 50 mM accelerated 

current decay constant (green trace) compared to control NIC current (black trace; Fig. 3A, 

right panel showed that). Pooled data (Fig. 3B) confirmed the elevation in 1 μM NIC-

induced, α6*-nAChR-mediated peak current in the presence of 0.1 or 5, but not 50 mM 

EtOH (left panel), faster rise to peak current in the presence of 0.1 mM EtOH (middle 

panel), but also faster decay of current amplitude in the presence of 50 mM EtOH (right 

panel). One-way ANOVA analysis demonstrated that effects of EtOH at each concentration 

on current peak amplitude (Fig. 3B left panel) were significant (F(2,26) = 8.375, p = 0.002). 

Tukey’s comparison showed that normalized to current levels elicited by NIC alone (1.0, 
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indicated by a red horizontal dashed-line), peak current levels at the indicated concentration 

of EtOH were: 0.1, 1.341 ± 0.049, n = 11 (p < 0.001); 0.5 mM, 1.163 ± 0.049, n = 11, (p = 

0.006); 50 mM, 1.082 ± 0.056, n = 7 (p = 0.336). Effects of EtOH at each concentrations on 

current rising time (Fig. 3B middle panel) were significant (F(2,26) = 8.812, p = 0.001). 

Tukey’s comparison showed that normalized to effects of NIC alone, (1.0), rising times at 

the indicated concentrations of EtOH were: 0.1 mM, 1.333 ± 0.055, n = 11, (p < 0.001); 0.5 

mM, 1.058 ± 0.055, n = 11, (p = 0.593); 50 mM, 1.119 ± 0.062, n = 7 (p = 0.158). Also, 

effects of each of the EtOH concentrations on current decay time constant (Fig. 3B right 

panel) were significant (F(2,26) = 7.949, p = 0.002). Tukey’s comparison showed that 

normalized to decay time constants for current in response to NIC alone (1.0), current decay 

time constants at the indicated concentration of EtOH were: 0.1 mM, 0.916 ± 0.055, n = 11, 

(p = 0.306); 0.5 mM, 0.885 ± 0.055, n = 11, (p = 0.109); 50 mM, 0.641 ± 0.062, n = 7 (p < 

0.001). Collectively, at low concentration, EtOH accelerates rising time but has lesser effects 

on decay of NIC-induced currents, whereas at higher concentrations (e.g., 50 mM), EtOH 

accelerates current decay, which neutralizes peak current enhancement. These results may 

explain, at least in part, the underlying mechanism of the bell-shaped EtOH concentration-

effect relationship.

3.4. NIC concentration dependence of α6*-nAChR functional potentiation by EtOH

Studies were done to determine effects of 0.5 mM EtOH exposure at different concentrations 

of NIC on α6*-nAChR function (Fig. 4). Results showed that 0.5 mM EtOH potentiation of 

NIC-induced currents was dependent on NIC concentration (Fig. 4A). One-way ANOVA 

analysis demonstrated that the effects of 0.5 mM EtOH at different NIC concentrations are 

significant (F(3,37) = 6.377, p<0.001). Relative to effects of NIC alone (t-test), peak current 

potentiation in the presence of 0.5 mM EtOH at the indicated concentration of NIC was: 10 

nM, 1.661 ± 0.143, t(7) = 4.347, p = 0.003; 100 nM, 1.313 ± 0.148; t(6) = 2.596, p =0.040; 1 

μM, 1.281 ± 0.148, t(6) = 3.306, p = 0.016; 10 μM, 1.034 ± 0.155, t(6) = 0.321, p = 0.759, 

respectively (Fig. 4B). Therefore, NIC concentration dependence of EtOH effects is 

consistent with a positive allosteric modulation mechanism for EtOH potentiation of α6*-

nAChR function. Supplemental Fig. 2 further supported this idea by showing potentiation in 

the presence of 0.1, 1, and 10 mM EtOH on 10 nM-induced NIC currents (Supplemental 

Fig. 2).

3.5. Effects of EtOH on function of different nAChR subtypes

To determine whether EtOH modulation of α6*-nAChR function is specific, we performed 

two sets of experiments. First, we compared effects of 0.5 mM EtOH on whole-cell current 

mediated by other nAChR subtypes including α4β2- and α7-nAChRs heterologously 

expressed in SH-EP1 cells and α3β4-nAChR naturally expressed by SHSY5Y cells (Liu et 

al., 2015; Wu et al., 2006; Zhao et al., 2003). Figure 5A shows typical traces of the effects of 

EtOH on ACh-, NIC-, or choline-induced currents at the EC50 concentrations for those 

agonists at the indicated nAChR subtype. Ethanol exposure at 0.5 mM did not significantly 

alter α3β4-, α4β2-, or α7-nAChR-mediated currents (One-way ANOVA statistical analysis 

showed a F(3,97) = 2.631, p = 0.0544). Second, we expressed a novel type of α6*-nAChR, 

the α6M211Lα3ICβ2β3. Compared to the α6N/α3C subunit construct (Supplemental Fig. 

3A), this variant contains more α6 content (α6 N-terminal and α6 transmembrane domains 
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with α3 second internal loop), and it has been reported that this α6 construct with one point 

mutation (e.g., M211F or F223L) can assemble to form functional receptors with β2 and β3 

subunits (Supplemental Fig. 3B) in Xenopus oocytes (Ley et al., 2014). The resultant α6*-

nAChR afforded the ability to assess location of the site of action of low dose EtOH on 

α6N/α3Cβ2β3-nAChR in SH-EP1 cells. Using two-electrode voltage-clamp recording of 

responses of receptors expressed in oocytes, we compared effects of different concentrations 

(0.1– 10 mM) of EtOH on α6M211Lα3ICβ2β3 and on α6N/α3Cβ2β3-nAChR-mediated 

currents induced by 30 μM ACh (close to the EC50 concentration), and we found that EtOH 

potentiated ACh-induced currents in α6M211Lα3ICβ2β3 and α6N/α3Cβ2β3 in the same 

manner (bell-shaped EtOH dose-effect relationship, Supplemental Fig. 3C and D). These 

results further support that low dose EtOH likely acts on the N-terminal of α6N/α3Cβ2β3.

3.6. EtOH enhancement of spontaneous dopamine release in the nucleus accumbens is 
blocked by the α6*-nAChR-selective antagonist, α-Ctx MII

Since EtOH enhanced α6*-nAChR function when heterologously expressed, we tested 

whether it would enhance ACh-mediated DA release in a native system. Spontaneous DA 

transients observed in the striatal slices of mice are dependent on local cholinergic activity 

mediated by nAChRs expressed on DA terminals (Yorgason et al., 2017). Therefore, the 

effects of EtOH on spontaneous DA release were tested. In the NAc core, EtOH (1–80 mM) 

increased the frequency of DA transients (Fig. 6 A–C; One-way ANOVA, F(5,98) = 4.328, p 
= 0.0013) with greatest enhancement observed at 5 mM EtOH. Administration of the α6*-

nAChR-selective antagonist, α-Ctx MII (100 nM), reduced DA transient frequency from 

2.53 ± 0.47 to 1.91 ± 0.31 transients/min (t(13) = 2.321, p = 0.0372). Pre-incubation with α-

CTx MII (100 nM) prevented EtOH-induced enhancement of DA transient frequency (Fig. 

6D; t(24) = 2.349, p = 0.0274). EtOH exposure also increased DA transient amplitude (Fig. 

6E,F: F(5,3739) = 15, p < 0.0001), with greatest increases at 5 mM (Fig. 6E). α-Ctx MII 

pretreatment prevented EtOH (5 mM)-induced increases in spontaneous DA release 

amplitude (Fig. 6F, : EtOH: F(1,2468) = 1.54, p = 0.214; MII: F(1,2468) =23.59, p < 0.0001; 

Interaction F(1,2468) = 20.56, p < 0.0001). Thus, α6-nAChRs contribute to transient DA 

release frequency, and EtOH, most potently at 5 mM, enhances DA transient frequency and 

amplitude by increasing α6-nAChR activity on DA terminals.

4. Discussion

The present study demonstrates that α6*-nAChRs are highly sensitive targets for 

functionally-relevant, low dose EtOH effects. The EtOH concentration dependence of these 

effects is bell-shaped, potentiating α6*-nAChR whole-cell current amplitudes in response to 

1 μM NIC at 0.1 to 5 mM, but not at lower or higher concentrations of EtOH. Effects also 

are influenced by the concentrations of NIC, with 0.5 mM EtOH potentiation evident for 

α6*-nAChR responses to NIC at 0.01–1 μM but not at 10 μM, These results suggest that 

EtOH serves as a positive allosteric modulator to enhance α6*-nAChR function. Since 

EtOH (0.5 mM) failed to potentiate other tested subtypes of nAChRs (α3β4, α4β2, α7), the 

potentiation effect of EtOH on the α6*-nAChR function is specific. Also, low dose EtOH 

enhanced DA release level in NAc in an α6*-nAChR-dependent manner. Collectively, our 

results provide innovative knowledge regarding molecular mechanisms of low-dose EtOH 
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effects. This study also provides a significant contribution to the field by forming a 

foundation for targeting α6*-nAChRs as a novel pharmacological intervention to alleviate 

alcohol consumption, AUD, and dependence.

nAChRs belong to the ligand-gated ion channel superfamily of neurotransmitter receptors 

and exist in the vertebrate brain as multiple, diverse subtypes composed as pentamers of 

unique combinations from a family of genetically distinct subunits. These receptors clearly 

are involved in nicotine-induced reward and dependence, but they also contribute to effects 

of other drugs, including alcohol, cocaine, amphetamine, and cannabinoids (Wu and Lukas, 

2011). nAChRs are highly expressed in the ventral tegmental area (VTA), and thus play a 

profound role in modulation of mesolimbic DA system function and response to drug 

exposure. nAChR α6 subunits are abundant in the VTA, suggesting that α6*-nAChRs could 

play critical roles in the process of drug reward and dependence (Drenan et al., 2008; Yang 

et al., 2011; Yang et al., 2009b). α6*-nAChRs are implicated in alcohol reward and 

dependence based on the ability of the α6*-nAChR-selective antagonist, α-Ctx MII, to 

inhibit EtOH consumption, EtOH operant responding, and DA release in the nucleus 

accumbens (NAc) of rats (Kuzmin et al., 2009; Larsson et al., 2004). Also, mice expressing 

an α6*-nAChR gain of function (α6L9’S) mutation are more highly sensitive to alcohol in 

several behavioral tests than are wild-type (WT) mice (Powers et al., 2013), whereas EtOH 

fails to increase VTA DA neuron firing in α6*-nAChR knock-out (KO) mice (Liu et al., 

2013). Our new results reported here validate roles for α6*-nAChR subtypes in EtOH-

induced behavioral alterations and more specifically illuminate mechanisms involved in 

effects of low dose EtOH on α6*-nAChRs and on mesolimbic DAergic neuron function. 

Effects on α6*-nAChR activity are consistent with EtOH action as a positive allosteric 

modulator and with those actions occurring at EtOH concentrations lower than those 

associated with EtOH-induced behavioral impairment, consistent with recently-

demonstrated, low dose EtOH-induced modulation of synaptic functions in mouse VTA 

GABA neurons (Steffensen et al., 2017).

Prior investigators have shown that EtOH can serve as a positive allosteric modulator to 

enhance GABAA receptor function, if the receptor consists of α6, β and γ subunits 

(Hanchar et al., 2005; Kuner et al., 1993; Liang et al., 2006; Wei et al., 2004) or if it contains 

δ subunits (Sundstrom-Poromaa et al., 2002; Wallner et al., 2003, 2006; Wallner and Olsen, 

2008). The allosteric binding site for EtOH is proposed to be located on the benzodiazepine 

binding site, and EtOH (<30 mM) affects GABAA receptor function, and also some animal 

behaviors, through this positive allosteric mechanism (Olsen, 2015). Since this putative 

high-affinity binding site is different from the transmembrane domain anesthetic site that 

exhibits lower affinity for EtOH, GABAA receptors containing α4/6, β, and δ subunits 

represent the brain target for EtOH at intoxicating blood and brain concentrations achieved 

in humans at 17 mM (Olsen, 2015). Here, we show that EtOH can allosterically potentiate 

α6*-nAChR function even at concentrations of EtOH below 1 mM, making a6*-nAChRs 

much more sensitive targets of EtOH. Other studies have shown nAChR-EtOH interactions, 

but only at much higher EtOH concentrations (Liu et al., 2013). An exception is a report that 

nAChRs naturally expressed in PC12 cells were found to be super sensitive to even lower 

EtOH concentrations upon prolonged exposure (“EC50”=88.5 μM) (Nagata et al., 1996). 

Although the nAChR subtype(s) involved were not identified, sustained EtOH treatment 
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acted to accelerate or to slow decay of ACh-induced currents dependent on the duration of 

ACh application, induced single channel bursts, but diminished mean channel open times, 

consistent with increases in receptor desensitization and ACh affinity. PC12 cells express rat 

α3β4*- and α7-nAChR subtypes (Lukas, 1989), which may differ from the human isoforms 

of these receptors, which were unaffected by EtOH at the concentrations used in the current 

study.

Beyond these EtOH and α6*-nAChR interactions at the molecular level, there are 

considerations at cellular, regional and circuit levels about how those interactions affect 

mesolimbic function and behavior as well as EtOH reward and dependence. On one hand, 

EtOH could work in parallel with presynaptic α6*- or other nAChR subtypes mediating, 

cholinergic modulation of GABA releases or on any somatodendritic nAChR subtypes more 

directly controlling DA release. On the other hand, EtOH could directly affect nAChR levels 

via stabilization or internalization of functional receptors or via allosteric modulation or 

desensitization of nAChR function (Dopico and Lovinger, 2009), thereby contributing to 

EtOH enhancement of mesolimbic DA signaling relevant to reward and dependence. Other 

in vivo studies have demonstrated that the selective α6*-nAChR antagonist, α-Ctx MII, 

administered in the VTA was able to reduce EtOH induced NAc DA release (Larsson et al., 

2004) and locomotor activity (Jerlhag et al., 2006). α-Ctx MII perfusion into the VTA also 

blocked recognition of EtOH-associated cues (Lof et al., 2007) and voluntary EtOH drinking 

in rodents (Larsson et al., 2004). The present findings show an increase in DA transient 

frequency after EtOH exposure. This increase is prevented by α-Ctx MII, suggesting that the 

increases observed in vivo may be attributed in part to enhanced α6*-nAChR activity on DA 

terminals. Striatal cholinergic interneurons are spontaneously active and drive DA release 

through direct activation of nAChRs on DA terminals. Striatal DA terminals express α6 

subunits (Azam and McIntosh, 2005; Klink et al., 2001; Salminen et al., 2004; Zoli et al., 

2002), and since EtOH enhances α6*-nAChR channel currents, EtOH is likely increasing 

α6*-nAChR conductance on DA terminals, resulting in overall DA terminal excitability, 

enhancing DA transient frequency and amplitude. It has been demonstrated previously that 

4-aminopyridine increases both frequency and amplitude of DA transients (Yorgason et al., 

2017), suggesting increased depolarization spread within the DA varicosity, which may 

result in additional release from nearby sites. EtOH may act similarly. Since DA transients 

are dependent upon local cholinergic activity (Yorgason et al., 2017), EtOH may enhance 

nAChR conductance resulting in greater influx of cations, and thus greater depolarization 

spread during an ACh release event. However, voltammetry cannot spatially differentiate 

between single and multiple varicosities and it is possible that EtOH is not just enhancing 

DA release from individual sites. Another important factor that was not tested here is 

whether EtOH is having effects on cholinergic terminals that may involve other local 

circuitry influenced by α6*-nAChRs, including potentially VTA projection GABA 

terminals, which are known to innervate cholinergic interneurons and may express α6*-

nAChRs at GABA terminals (Brown et al., 2012; Steffensen et al., 2017). Interestingly, 

when α-Ctx MII was combined with EtOH, we found a significant decrease in DA transient 

amplitude, but not frequency, suggesting that EtOH has effects on non-α6*-nAChRs. It 

should be noted that EtOH has diverse effects on this system that are heavily concentration 

dependent. For instance, while low concentrations in the present study show clear 
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enhancement of DA release, EtOH has also been shown to inhibit evoked DA release at 

higher concentrations (>40mM) (Schilaty et al., 2014; Yorgason et al., 2014), an effect that 

is also blocked with α-Ctx MII. These higher concentrations also likely involve other 

neurotransmitters and their corresponding receptors, as well as downstream effects on 

nAChRs and, are likely more important in EtOH’s impairing effects on conditioned learning. 

Importantly, eEtOH’s effects on α6*-nAChRs are also concentration dependent, with robust 

increases in α6*-nAChR conductance at low concentrations (0.1–1 mM) but no effect at 

higher concentrations (10–50 mM). Higher concentrations of EtOH (50 mM) decreased the 

decay time constant in our heterologous expression system, suggesting that EtOH can 

potentiate α6*-nAChR desensitization. Therefore, the high concentration (>40mM) EtOH-

induced decreases in stimulated DA release reported previously may be due to increased 

α6*-nAChR desensitization, and subsequent decreases in cholinergic activity on DA 

terminals (Schilaty et al., 2014; Yorgason et al., 2014). It is important to note that there are 

inherent differences between evoked DA release in the previous studies (Schilaty et al., 

2014; Yorgason et al., 2014) and transient DA release in the current study. For instance, 

electrical stimulation is inherently non-specific, whereas DA transients are entirely 

dependent on cholinergic interneuron activity (Yorgason et al., 2017) and therefore more 

physiologically relevant. This underscores the relevancy of α6* nAChR on low-dose EtOH 

effects on DA transmission in the mesolimbic reward system.
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HIGHLIGHTS:

1. A novel heterologous expression system for human α6 subunit-containing 

nicotinic acetylcholine receptors (α6*-nAChR) is used to evaluate acute 

effects of alcohol exposure.

2. Under patch-clamp whole-cell recording conditions, bath-applied low doses 

of alcohol (0.1–5 mM) potentiates α6*-nAChR-mediated currents, but not 

α3β4-, α4β2- or α7-nAChR function.

3. Effects of alcohol on α6*-nAChRs are influenced by both alcohol and 

nicotine concentrations, suggesting that alcohol exerts effect through a 

positive allosteric mechanism.

4. 5 mM EtOH increases both frequency and amplitude of spontaneous DA 

transients in mouse brain slices containing nucleus accumbens core part, 

which was blocked by conotoxin MII, suggesting a role for α6-nAChRs in 

low-dose ethanol effects.

5. Therefore, α6*-nAChR is a sensitive target to mediate low dose EtOH effects 

through a positive allosteric mechanism.
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Fig. 1. Effects of low dose EtOH on α6*-nAChR-mediated whole-cell currents.
A: Typical traces demonstrate 1 μM NIC-induced inward current before, during and after 

washout of 0.1 mM EtOH. EtOH and NIC were co-applied. All three traces were recorded 

from the same cell. B: Comparison of peak amplitudes of NIC-induced inward currents 

before and during EtOH exposure. C: Bar graph summarizes the normalized peak amplitude 

of NIC-induced current before, during and after washout of EtOH. In this and all following 

figures the number inside each column indicates the number of cells tested, *** indicates 

p<0.001.

Gao et al. Page 18

Neuropharmacology. Author manuscript; available in PMC 2020 June 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. Effects of different concentrations of EtOH on 1 μM NIC-induced currents.
A: Representative traces showing effects of 0.5, 5 and 50 mM EtOH on 1 μM NIC-induced 

currents. B: Statistical analysis of effects of different concentrations of EtOH on normalized 

peak amplitudes of NIC-induced currents.
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Fig. 3. Effects of EtOH on whole-cell current kinetics of NIC-induced currents.
A: Comparison of the effects of 0.1 mM EtOH on peak amplitudes, current rising times and 

current decay times of 1 μM NIC-induced currents. NIC-induced currents before and during 

EtOH exposure are superimposed in middle panel. Right panel compared effects of 1 μM 

NIC-induced currents decay constant with (green trace) and without (black trace) 50 mM 

EtOH. B: Summary of pooled data to compare alterations of peak currents, rising times and 

decay times of NIC-induced currents during exposure to different concentrations of EtOH. * 

indicates p<0.05, ** indicates p<0.01, and *** indicates p<0.001.
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Fig. 4. Effects of 0.5 mM EtOH on different NIC-induced currents.
A: Typical traces of different NIC-induced currents from the same recorded cell before (top 

trace), during (middle trace), and after washout (bottom trace) of 0.5 mM EtOH. Dashed 

circle indicates magnified responses. B: Bar graph summarizes effects of 0.5 mM EtOH on 

NIC-induced currents at different NIC concentrations and shows that EtOH-induced 

enhancement of NIC responses declines as NIC concentrations increase.
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Fig. 5. 
Effects of 0.5 mM EtOH on function of different nAChR subtypes heterologously expressed 

in SH-EP1 cells (α4β2- and α7-nAChRs) or naturally expressed in SH-SY5Y cells (α3β4*-

nAChRs) A: Representative traces of nAChR-mediated current responses to agonists at their 

EC50 concentrations before and after exposure to 0.5 mM EtOH. When ACh was applied as 

an agonist (left traces) of α3β4-nAChRs, 1 μM atropine was added in in external solution. 

B: Summary of the pooled data to show effects of 0.5 mM EtOH on current peak amplitudes 

of three subtypes of nAChR-mediated currents.
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Fig. 6. Effects of low-dose EtOH on spontaneous DA release in the NAc core: Role of α6-
nAChRs.
A: Representative 1 min recordings of DA transients under control (top) and 5 mM EtOH 

(bottom) conditions. Asterisks denote currents corresponding to spontaneous DA release. B: 

The inset shows a cyclic voltammogram taken at the time indicated by the arrow. 

Voltammograms were recorded at 10 Hz with a voltage ramp from −0.4 V to 1.2 V to −0.4 

V. The color plot shows the DA signal associated with the DA transients in (A, bottom 

trace). C: Dose-response for EtOH (1–80 mM) effects on DA transient frequency. Ethanol 

significantly enhanced the frequency of DA transients at the 5 mM concentration. D: 

Comparisons of exposure to EtOH or to α-conotoxin MII (MII) plus EtOH on DA transient 

frequency with scatterplots of individual normalized values superimposed on the means ± 

SEM bars. MII (100 nM) prevented EtOH (5 mM) enhancement of DA transient frequency. 
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E: Dose-response for EtOH (1–80 mM) effects on DA transient amplitude. Ethanol 

significantly enhanced the amplitude of DA transients at the 5 mM level. The inset shows 

the DA transient amplitude distribution (normalized for frequency) for control and EtOH (5 

mM) exposed slices. F: MII (100 nM) significantly reduced EtOH (5 mM) enhancement of 

DA transient amplitude without having an effect on its own. There was also a significant 

difference between MII alone and MII+EtOH. Values in parentheses represent n values. 

Asterisks *, *** represent significance levels P<0.05 and 0.001, respectively.
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