S

ELS

Since January 2020 Elsevier has created a COVID-19 resource centre with
free information in English and Mandarin on the novel coronavirus COVID-
19. The COVID-19 resource centre is hosted on Elsevier Connect, the

company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related
research that is available on the COVID-19 resource centre - including this
research content - immediately available in PubMed Central and other
publicly funded repositories, such as the WHO COVID database with rights
for unrestricted research re-use and analyses in any form or by any means
with acknowledgement of the original source. These permissions are
granted for free by Elsevier for as long as the COVID-19 resource centre

remains active.

Computers & Industrial Engineering 147 (2020) 106610

=

con
industrial engineering

Contents lists available at ScienceDirect

Computers & Industrial Engineering

journal homepage: www.elsevier.com/locate/caie e

Check for
updates

Accelerating supply chains with Ant Colony Optimization across a range of
hardware solutions

Ivars Dzalbs, Tatiana Kalganova®

Brunel University London, Kingston Lane, Uxbridge UB8 2PX, UK

ARTICLE INFO ABSTRACT

Keywords:

Transportation network optimisation
Ant Colony Optimization

Parallel ACO on Xeon Phi/GPU

Ant Colony algorithm has been applied to various optimisation problems, however, most of the previous work on
scaling and parallelism focuses on Travelling Salesman Problems (TSPs). Although useful for benchmarks and
new idea comparison, the algorithmic dynamics do not always transfer to complex real-life problems, where
additional meta-data is required during solution construction. This paper explores how the benchmark perfor-
mance differs from real-world problems in the context of Ant Colony Optimization (ACO) and demonstrate that
in order to generalise the findings, the algorithms have to be tested on both standard benchmarks and real-world
applications. ACO and its scaling dynamics with two parallel ACO architectures — Independent Ant Colonies
(IAC) and Parallel Ants (PA). Results showed that PA was able to reach a higher solution quality in fewer
iterations as the number of parallel instances increased. Furthermore, speed performance was measured across
three different hardware solutions — 16 core CPU, 68 core Xeon Phi and up to 4 Geforce GPUs. State of the art,
ACO vectorisation techniques such as SS-Roulette were implemented using C+ + and CUDA. Although excellent
for routing simple TSPs, it was concluded that for complex real-world supply chain routing GPUs are not suitable
due to meta-data access footprint required. Thus, our work demonstrates that the standard benchmarks are not

suitable for generalised conclusions.

1. Introduction and motivation

Supply chain optimisation has become an integral part of any global
company with a complex manufacturing and distribution network. For
many companies, inefficient distribution plan can make a significant
difference to the bottom line. Modelling a complete distribution net-
work from the initial materials to the delivery to the customer is very
computationally intensive. With increasing supply chain modelling
complexity in ever-changing global geo-political environment, fast
adaptability is an edge. A company can model the impact of currency
exchange rate changes, import tax policy reforms, oil price fluctuations
and political events such as Brexit, Covid-19 before they happen. Such
modelling requires fast optimisation algorithms.

Mixed Integer Linear Programming (MILP) tools such as Cplex are
commonly used to optimise various supply chain networks (Esmaeilikia
et al., 2016). Although MILP tools can obtain an optimum solution for a
large variety of linear models, not all real-world supply chain models
are linear. Furthermore, MILP is computationally expensive and on
large instances can fail to produce an optimal solution. For that reason,
many alternative algorithmic approaches (heuristics, meta-heuristics,
fuzzy methods) have been explored to solve large-complex SC models

* Corresponding author.
E-mail address: Tatiana.Kalganova@brunel.ac.uk (T. Kalganova).

https://doi.org/10.1016/j.cie.2020.106610

(Esmaeilikia et al., 2016). One of these algorithms is the Ant Colony
Optimization (ACO), which can be well mapped to real-world problems
such as routing (Schyns, 2015) and scheduling (Zhang, Zhang, & Feng,
2014). Supply Chain Optimization Problem (SCOP) includes both,
finding the best route to ship a specific order and finding the most
optimal time to ship it, such that it reaches expected customer sa-
tisfaction while minimising the total cost occurred. Although other
metaheuristics algorithms exist in the literature for solving SCOPs, such
as Genetic Algorithm (GA) (Azad, Aazami, Papi, & Jabbarzadeh, 2019;
Yeh & Chuang, 2011) and Simulated Annealing (SA; Fathollahi-Fard,
Govindan, Hajiaghaei-Keshteli, & Ahmadi, 2019; Mohammed &
Duffuaa, 2019), ACO was chosen due to the long history of the algo-
rithm applied to various vehicle routing (Kalayci & Kaya, 2016; Zhang,
Zhang, Gajpal, & Appadoo, 2019) and supply chain (Bottani, Murino,
Schiavo, & Akkerman, 2019; Panicker, Reddy, & Sridharan, 2018)
problems with great solution quality and speed. Also, a recent study in
(Valdez, Moreno, & Melin, 2020) concluded that compared to GA and
SA, the ACO performs the best for routing problems such as the Tra-
velling Salesman Problem (TSP).

Ant colony algorithms try to mimic the observed behaviour of ants
inside colonies to solve a large range of optimisation problems. Since

Received 10 October 2019; Received in revised form 7 May 2020; Accepted 12 June 2020

Available online 29 June 2020
0360-8352/ © 2020 Elsevier Ltd. All rights reserved.

http://www.sciencedirect.com/science/journal/03608352
https://www.elsevier.com/locate/caie
https://doi.org/10.1016/j.cie.2020.106610
https://doi.org/10.1016/j.cie.2020.106610
mailto:Tatiana.Kalganova@brunel.ac.uk
https://doi.org/10.1016/j.cie.2020.106610
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cie.2020.106610&domain=pdf

L. Dzalbs and T. Kalganova

Table 1

ACO architecture and hardware configurations explored. LAC - Longest Common Subsequence Problem, MKP - Multidimensional Knapsack Problem, TSP - Travelling Salesman problem. IAC — Independent Ant Colonies,

IntAC - Interactive Ant Colonies, PA — Parallel Ants.

Data parallelism, PA

Task parallelism, PA

Task parallelism, IntAC

Task parallelism, IAC

TSP (Zhou, He, Hou, & Qiu, 2018)

Supply chain [this paper]

TSP (Guerrero, Cecilia, Llanes, Garcia, Amos, & Ujaldén, 2014;

Yang, Fang, & Duan, 2016)

Scheduling (Thiruvady, Ernst, &

Singh, 2016)

Scheduling (Thiruvady, Ernst, &

Singh, 2016)

CPU

Scheduling (Thiruvady, Ernst, & Singh, 2016)

Supply chain [this paper]

TSP (Zhou, He, Hou, & Qiu, 2018; Cecilia, Llanes, Abelldn, Gémez-Luna, Chang,

& Hwu, 2018; Skinderowicz, 2020)

Protein folding (Llanes, Vélez, Sanchez, Pérez-Sanchez, &

Cecilia, 2016)

n/a

n/a

GPU

Edge detection (Dawson & Stewart, 2014)

Supply chain [this paper]

TSP (Guerrero, Cecilia, Llanes, Garcia, Amos, & Ujaldén, 2014)

MKP (Fingler, Caceres, Mongelli, & Song, 2014)

LAC (Markvica, Schauer, & Raidl, 2015)

n/a

TSP (Weidong, Jingiao, Yazhou, Hongjun, & Jidong, 2015)

Supply chain [this paper]

TSP (Randall & Lewis, 2002)

n/a

Scheduling (Huo & Huang, 2016)
n/a

CPU cluster
Xeon Phi

TSP (Tirado, Urrutia, & Barrientos, 2015; Tirado, Barrientos, Gonzélez, & Mora,

2017; Lloyd & Amos, 2017)
Supply chain [this paper]

Computers & Industrial Engineering 147 (2020) 106610

the introduction by Marco Dorigo in 1992, many variations and hybrid
approaches of Ant Colony algorithms have been explored (Wang,
Osagie, Thulasiraman, & Thulasiram, 2009; Kiran, Ozceylan, Giindiiz, &
Paksoy, 2012). Most ant colony algorithms consist of two distinct stages
— solution construction and pheromone feedback to other ants. Typi-
cally, an artificial ant builds its solution from the pheromone left from
previous ants, therefore allowing communication over many iterations
via a pheromone matrix and converges to a better solution. The process
of solution creation and pheromone update is repeated over many
iterations until the termination criterion is reached; this can be either
total number of iterations, total computation time or dynamic termi-
nation.

Researchers in (Wang & Lee, 2015) compared an industrial opti-
misation-based tool — IBM ILOG Cplex with their proposed ACO algo-
rithm. It was concluded that the proposed algorithm covered 94% of
optimal solutions on small problems and 88% for large-size problems
while consuming significantly less computation time. Similarly, (Wong
& Moin, 2017) compared ACO and Cplex performance on multi-product
and multi-period Inventory Routing Problem. On small instances, ACO
reached 95% of the optimal solution while on large instances performed
better than time-constrained Cplex solver. Furthermore, ACO im-
plementations of Closed-Loop Supply Chain (CLSC) have been pro-
posed; CLSC contains two parts of the supply chain - forward supply
and reverse/return. (Vieira, Vieira, Gomes, Barbosa-Pévoa, & Sousa,
2015) solved CLSC models, where the ACO implementation out-
performed commercial MILP (Cplex) on nonlinear instances and ob-
tained 98% optimal solution with 40% less computation time on linear
instances.

Academic literature suggests that Graphical Processing Units (GPUs)
are very suitable for solving benchmark routing problems such as
Travelling Salesman Problem (TSP), with speedups of up to 60x
(Yelmewad, Kumar, & Talawar, 2019) and even 172x (Zhou, He, &
Zhang, 2017) when compared to the sequential CPU implementation.
This paper aims to explore if the same ACO architectures that are so
well suited for TSP can be applied for a real-world supply chain opti-
misation problem. Furthermore, investigate what hardware archi-
tectures are the best suited for the supply chain problem solved.

The paper is structured as follows: Section 2 explores the current
state of the art parallel implementations of ACO across CPU, GPU and
Xeon Phi; Section 3 introduces the hardware and software solutions
used; Section 4 described the real-world problem being solved; Section
5 details the parallel ACO implementations and Section 6 compares the
results. Finally, Section 7 concludes the paper.

2. Parallel Ant Colony Optimization

Since the introduction of ACO in 1992, numerous ACO algorithms
have been applied to many different problems, and many different
parallel architectures have been explored previously. (Randall & Lewis,
2002) specifies 5 of such architectures:

e Parallel Independent Ant Colonies — each ant colony develop their
solutions in parallel without any communication in-between;

e Parallel Interacting Ant Colonies — each colony creates a solution in
parallel and some information is shared between the colonies;

® Parallel Ants — each ant builds solution independently, then all the
resulting pheromones are shared for the next iteration;

® Parallel Evaluation of Solution Elements — for problems where fit-
ness function calculations take considerably more time than the
solution creation;

e Parallel Combination of Ants and Evaluation of Solution Elements —
a combination of any of the above.

Researchers have tried to exploit the parallelism offered from recent
multi-core CPUs (Prakasam & Savarimuthu, 2016), along with clusters
of CPUs (Giilcli, Mahi, Baykan, & Kodaz, 2018 ; Weidong, Jinqiao,

L. Dzalbs and T. Kalganova

Computers & Industrial Engineering 147 (2020) 106610

Table 2
Meta-data required during solution creation based on problem type.
Problem Meta-data required during solution creation Comment
Scheduling 2 Resource and precedence constraints
TSP 1 Has the city been visited
Protein Folding 1 Has the sequence been visited
MKP 1 Total weight per knapsack
LAC 1 Tracking of current position in string
Edge detection 1 Has edge already been visited
Supply chain (this paper) 3 Capacity, daily order, freight weight constraints

Yazhou, Hongjun, & Jidong, 2015) and most recently GPUs (Tan &
Ding, 2016) and Intel’s many-core architectures such as Xeon Phi (Sato,
Tsutsui, Fujimoto, Sato, & Namiki, 2014). Breakdown of the strategies
and problems solved are shown in Table 1.

During the search, an Ant has to keep track of the existing state
meta-data, for instance Travelling Salesman Problem only need to keep
the record of what cities have been visited as part of problem con-
straint. However, real-life problems have a lot more constraints and
therefore requires a lot of meta-data storage during solution creation.
This paper explores such problem in the supply chain domain. Table 2
shows the most common problems solved by ACO and their corre-
sponding associated constraints/meta-data required during solution
creation.

2.1. CPU

Parallel ACO CPU architectures have been applied to various tasks —
for example, (Thiruvady, Ernst, & Singh, 2016) applied ACO for supply
chain scheduling problem in mining domain. Authors managed to re-
duce the execution time from one hour (serial) to around 7 min. Both
(Seshadri, 2015) and (Aslam, Khan, & Beg, 2015) used ACO for image
edge detection with varying results, (Seshadri, 2015) achieved a
speedup of 3-5 times while (Aslam et al., 2015) managed to reduce
sequential runtime by 30%. Most commonly, ACO has been applied to
the Travelling Salesman Problem (TSP) benchmarks. For instance,
(Yang, Fang, & Duan, 2016) proposed ACO approach with randomly
synchronised ants, the strategy showed a faster convergence compared
to other TSP approaches. Moreover, authors in (Zhou, He, Hou, & Qiu,
2018) proposed a new multi-core Single Instruction Multiple Data
(SIMD) model for solving TSPs. Similarly, both (Chitty, 2018) and
(Ismkhan, 2017) tries to solve large instances of TSP (up to 200 k and
20 k cities, respectively) where the architectures are limited to the size
of the pheromone matrix. (Ismkhan, 2017) discusses such limitations
and proposes a new pheromone sharing for local search - effective
heuristics ACO (ESACO), which was able to compute TSP instances of
20 k. In contrast, authors in (Chitty, 2018) eliminate the need for
pheromone matrix and store only the best solutions similar to the Po-
pulation ACO. Furthermore, researchers implement a Partial Ant, also
known as the cunning ant, where ant takes an existing partial solution
and builds on top of it. Speedups of as much as 1200x are achieved
compared to sequential Population ACO.

Generally, CPU parallel architecture implementations come down to
three programming approaches - Message Passing Interface (MPI) par-
allelism, OpenMP parallelism (Abouelfarag, Aly, & Elbialy, 2015) and
data parallelism with the vectorisation of SIMD. For instance, (Li, Lu,
Shan, & Zhang, 2015) explored both master-slave and coarse-grained
strategies for ACO parallelisation using MPI. It was concluded that fine-
grained master-slave policy performed the best. (El Baz, Hifi, Wu, &
Shi, 2016) used MPI with ACO to accelerate Maximum Weight Clique
Problem (MWCP). The proposed algorithm was comparable to the ones
in literature and outperformed Cplex solver in both — time and per-
formance. Moreover, authors in (Huo & Huang, 2016) implemented
parallel ACO for solving Flow shop scheduling problem with restric-
tions using MPIL. Compared to the sequential version of the algorithm,

93 node cluster achieved a speedup of 16x. (Mehne, 2015) compared
ACO parallel implementation on MPI and OpenMP on small vector es-
timation problem. It was found that maximum speedup of OpenMP was
24x while MPI — 16x. Furthermore, (Zhou, He, Hou, & Qiu, 2018) ex-
plored the multi-core SIMD CPU with OpenCL and compared it to the
performance of the GPU. It was found optimised parallel CPU-SIMD
version can achieve similar solution quality and computation time than
the state of art GPU implementation solving TSP.

2.2. Xeon Phi

Intel’s Xeon Phi Many Integrated Core (MIC) architecture offers
many cores on the CPU (60-72 cores per node) while offering lower
clock frequency. Few researchers have had the opportunity to research
ACO on the Xeon Phi architecture. For instance, (Tirado, Urrutia, &
Barrientos, 2015) showed how utilising L1 and L2 cache on Xeon Phi
coprocessor allowed a speedup of 42x solving TSP compared to se-
quential execution. Due to the nature of SIMD features such as AVX-512
on Xeon Phi, researchers in both (Tirado, Barrientos, Gonzalez, & Mora,
2017) and (Lloyd & Amos, 2017) proposed a vectorisation model for
roulette wheel selection in TSP. In the case of (Lloyd & Amos, 2017), a
16.6x speedup was achieved compared to sequential execution. To the
best of the authors' knowledge, Xeon Phi and ACO parallelism have not
been explored to any other problem except TSP.

2.3. GPUs

General Purpose GPU (GPGPU) programming is a growing field in
computer science and machine learning. Many researchers have tried
exploiting latest GPU architectures to speed optimise the convergence
of ACO. ACO GPU implementation expands to many fields, such as edge
detection (Dawson & Stewart, 2014 ; Dawson, 2015), protein folding
(Llanes, Vélez, Sanchez, Pérez-Sanchez, & Cecilia, 2016), solving Mul-
tidimensional Knapsack Problems (MKPs) (Fingler, Caceres, Mongelli, &
Song, 2014) and Vertex colouring problems (Murooka, Ito, & Nakano,
2016). Moreover, researchers have used GPU implementations of ACO
for classification (Tufteland, @desneltvedt, & Goodwin, 2016; Gao,
Chen, Gao, & Zhang, 2016) and scheduling (Kallioras, Kepaptsoglou, &
Lagaros, 2015; Wang, Li, & Zhang, 2015) with various speedups com-
pared to the sequential execution.

However, the majority of publications are solving Travelling
Salesman Problems (Khatri & Kumar Gupta, 2015), although useful for
benchmarking and comparison, little characteristics transfer to other
application areas. For instance, highly optimised local memory on GPU
(Compute Unified Device Architecture - CUDA) can significantly speed
up the execution for TSP. However, when applied to real-life problems
where additional restrictions and metadata is required to build a solu-
tion, most of the data needs to be stored on much slower global
memory. Authors in (Guerrero et al.,, 2014) did extensive research
comparing server, desktop and laptop hardware solving TSP instances
on both CUDA and OpenCL. Although there are a couple of ACO
OpenCL implementations on GPU (Markvica, Schauer, & Raidl, 2015 ;
NSharma & Garg, 2015), the majority of studies use CUDA. For in-
stance, (Wagh & Nemade, 2017) implemented a GPU-based ACO and

L. Dzalbs and T. Kalganova

achieved a speedup of 40x compared to sequential ACS. Similarly, a 22x
speedup was obtained in (Uchida, Ito, & Nakano, 2014) solving pr1002
TSP and 44x on fnl4461 TSP instance in (Zhou, He, & Qiu, 2017).
However, there are also various hybrid approaches for solving TSP - (O.
U. B and R. Tarnawski, 2018) uses parallel Cultural ACO (pCACO) (a
hybrid of genetic algorithm and ACO). Research showed that pCACO
outperformed sequential and parallel ACO implementations in terms of
solution quality. Furthermore, (Bali, Elloumi, Abraham, & Alimi, 2017)
solved TSP instances using ACO-PSO hybrid and authors in (Llanes
et al., 2016) explored heterogeneous computing with multiple GPU
architectures for TSP. Finally, authors in (Skinderowicz, 2020) explored
six different min-max ACO architectures on GPU and their performance
on the TSP.

Although task parallelism has potential for a speedup, (Cecilia,
Garcia, Nisbet, Amos, & Ujaldon, 2013) showed how data parallelism
(vectorisation) on GPU could achieve better performance by proposed
Independent Roulette wheel (I-Roulette). Authors then expanded the I-
Roulette implementation in (Cecilia, Llanes, Abellan, Gémez-Luna,
Chang, & Hwu, 2018), where SS-Roulette wheel was introduced. SS-
Roulette stands for Scan and Stencil Roulette wheel. It mimics a se-
quential roulette wheel while allowing higher throughput due to par-
allelism. First, the Tabu list is multiplied by the probabilities and the
results stored in a choice vector (scan). Then a stencil pattern is applied
to the choice vector based on a random number to select an individual
(stencil). Further, (Zhou, He, & Zhang, 2017) implements a G-Roulette —
a grouped roulette wheel selection based on I-Roulette, where cities in
TSP selection are grouped in CUDA warps'. An impressive speedup of
172x was achieved compared to the sequential counterpart.

2.4. Comparing hardware performances

Fairly comparing parallel performances of different hardware ar-
chitectures is by no means trivial. Most research compares a sequential
CPU ACO implementation to one of the parallel GPUs, which is hardly
fair (Skinderowicz, 2016). In addition, unoptimised sequential code is
compared to highly optimised GPU code. Such comparisons result in
misleading and inflated speedups (Tan & Ding, 2016). Furthermore,
(Markvica, Schauer, & Raidl, 2015) argues that often the parameter
settings chosen for the sequential implementation is biased in favour of
GPU. (Tan & Ding, 2016) proposes criteria to calculate the real-world
efficiency of two different hardware architectures by comparing the
theoretical peak performances of GPU and CPU. While the proposed
method is more appropriate, it still does not account for real-life sce-
narios where memory latency/speed, cache size, compilers and oper-
ating systems all play a role of the final execution time. Therefore, two
different systems with similar theoretical floating-point operations per
second running the same executable can have significantly different
execution times.

Furthermore, in some instances, only execution time or solution
quality is compared, rarely both are taken into consideration when
analysing results.

3. Background

This section briefly covers the tools and hardware-specific lan-
guages used in the implementation.

3.1. Parallel processing with OpenMP

OpenMP? is a set of directives to a compiler that allows a pro-
grammer to create parallel tasks as well as vectorisation (Single

! Groups of 32 threads, are known as CUDA warps. For information refer to:
https://devblogs.nvidia.com/using-cuda-warp-level-primitives/
2 OpenMP API website and documentation https://www.openmp.org/

Computers & Industrial Engineering 147 (2020) 106610

Instruction Multiple Data - SIMD) to speed up execution of a program. A
program containing parallel OpenMP directives starts as a single
thread. Once directive such as #pragma omp parallel is reached, the
main thread will create a thread pool and all methods within the
#pragma region will be executed in parallel by each thread in the thread
group. Moreover, once the thread reaches the end of the region, it will
wait for all other threads to finish before dissolving the thread group
and only the main thread will continue.

Furthermore, OpenMP also supports nesting, meaning a thread in a
thread-group can create its own individual thread-group and become
the master thread for the newly created thread-group. However, thread-
group creation and elimination can have significant overhead and
therefore, thread-group re-use is highly recommended (Rohit Chandra,
Dagum, & Kohr, 2000).

This paper utilises both omp parallel and omp simd directives.

3.2. CUDA programming model

Compute Unified Device Architecture (CUDA) is a General-purpose
computing model on GPU developed by Nvidia in 2006. Since then, this
proprietary framework has been utilised in the high-performance
computing space via multiple Artificial Intelligence (AI) and Machine
Learning (ML) interfaces and libraries/APIs. CUDA allows writing C
programs that take advantage of any recent Nvidia GPU found in lap-
tops, workstations and data centres.

Each GPU contains multiple Streaming Multiprocessors (SM) that
are designed to execute hundreds of threads concurrently. To achieve
that, CUDA implements SIMT (Single Instruction Multiple-Threads)
architecture, where instructions are pipelined for instruction-level
parallelism. Threads are grouped in sets of 32 — called warps. Each warp
executes one instruction at a time on each thread. Furthermore, CUDA
threads can access multiple memory spaces — global memory (large size,
slower), texture memory (read only), shared memory (shared across
threads in the same SM, lower latency) and local memory (limited set of
registers within each thread, fastest)”.

A batch of threads is grouped into a thread-block. Multiple thread-
blocks create a grid of thread blocks. The programmer specifies the grid
dimensionality at kernel launch time, by providing the number of
thread-blocks and the number of threads per thread-block. Kernel
launch fails if the program exceeds the hardware resource boundaries.

3.3. Xeon Phi knights landing architecture

Knights Landing is a product code name for Intel’s second-genera-
tion Intel Xeon Phi processors. First-generation of Xeon Phi, named
Knights Corner, was a PCI-e coprocessor card based on many Intel Atom
processor cores and support for Vector Processing Units (VPUs). The
main advancement over Knights Corner was the standalone processor
that can boot stock operating systems, along with improved power ef-
ficiency and vector performance. Furthermore, it also introduced a new
high bandwidth Multi-Channel DRAM (MCDRAM) memory. Xeon phi
support for standard x86 and x86-64 instructions, allows majority CPU
compiled binaries to run without any modification. Moreover, support
for 512-bit Advanced Vector Extensions (AVX-512) allows high
throughput vector manipulations.

The Knights Landing cores are divided into tiles (typically between
32 and 36 tiles in total). Each tile contains two processor cores and each
core is connected to two vector processing units (VPUs), shown in
Fig. 1. Utilising AVX-512 and two VPUs, each core can deliver 32 dual-
precision (DP) or 64 single-precision (SP) operations each cycle
(Sodani, 2016). Furthermore, each core supports up to four threads of
execution — hyper threads where instructions are pipelined.

3CUDA documentation https://docs.nvidia.com/cuda/cuda-c-programming-
guide/index.html.

https://devblogs.nvidia.com/using-cuda-warp-level-primitives/
https://www.openmp.org/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

L. Dzalbs and T. Kalganova

Computers & Industrial Engineering 147 (2020) 106610

Fig. 1. Knights Landing tile with a larger processor die (Sodani, 2016).

Another introduction with the Knights Landing is the cluster modes
and MCDRAM/DRAM management. The processor offers three primary
cluster modes* — All to all mode, Quadrant mode and Sub-Numa Cluster
(SNC) mode and three memory modes — cache mode, flat mode and
hybrid mode. For a detailed description of the Knights Landing Xeon
Phi architecture refer to (Sodani, 2016).

4. Problem description

A real-world dataset of an outbound logistics network is provided by
a global microchip producer. The company provided demand data for
9216 orders that need to be routed via their outbound supply chain
network of 15 warehouses, 11 origin ports and one destination port (see
Fig. 2). Warehouses are limited to a specific set of products that they
stock, furthermore, some warehouses are dedicated for supporting only
a particular set of customers. Moreover, warehouses are limited by the
number of orders that can be processed in a single day. A customer
making an order decides what sort of service level they require - DTD
(Door to Door), DTP (Door to Port) or CRF (Customer Referred Freight).
In the case of CRF, the customer arranges the freight and company only
incur the warehouse cost. In most instances, an order can be shipped via
one of 9 couriers offering different rates for different weight bands and
service levels. Although most of the shipments are made via air trans-
port, some orders are shipped via ground - by trucks. The majority of
couriers offer discounted rates as the total shipping weight increases
based on different weight bands. However, a minimum charge for
shipment still applies. Furthermore, faster shipping tends to be more
expensive, but offer better customer satisfaction. Customer service level
is out of the scope of this research.

Fig. 2 shows a simplified example case of the supply chain model.
Warehouses i; and i, can be supplied by either origin ports p, or p,. In
contrast, warehouse i; can only be supplied via origin port p, and
warehouse ijs can be only supplied by origin port p;;. In the example

* Detailed description of Xeon Phi memory and cache modes available at:
https://software.intel.com/en-us/articles/intel-xeon-phi-x200-processor-
memory-modes-and-cluster-modes-configuration-and-use-cases

shipping lane p,j, cis1tmy is chosen between p, and destination port j;
with courier ¢, service level s, delivery time #; and transportation mode
my.

4.1. Dataset

Dataset (Ivars Dzalbs) is divided into seven tables, one table for all
orders that need to be assigned a route — OrderList table, and six addi-
tional files specifying the problem and restrictions. For instance, the
FreightRates table describes all available couriers, the weight gaps for
each lane and rates associated. The shipping lane refers to courier-
transportation mode-service level combination between two shipping
ports. The PlantPorts table describes the allowed links between the
warehouses and shipping ports in the real world. Furthermore, the
ProductsPerPlant table lists all supported warehouse-product combina-
tions. The VmiCustomers contains all edge cases, where the warehouse is
only allowed to support specific customer, while any other non-listed
warehouse can supply any customer. Moreover, the WhCapacities lists
warehouse capacities measured in the number of orders per day and the
WhCosts specifies the cost associated in storing the products in a given
warehouse measured in dollars per unit.

4.2. Fitness function

The main goal of optimisation is to find a set of warehouses, ship-
ping lanes and couriers to use for the most cost-effective supply chain.
Therefore the fitness function is derived from two incurred costs —
warehouse cost WC; and transportation cost TCyy; in Eq. (1). The to-
talling cost is then calculated across all orders k in the dataset.

. 1
min zk:l (WCy; + TCkpj) [6))

where WCy; is warehouse cost for orderk at warehouse iand TCyy is
transportation cost for order k between warehouse port p and customer
port j, the total number of orders .

WCki =qy X Pi (2)

where warehouse cost WCy; for order k at warehouse i is calculated in
(2), by the number of units in order g, multiplied by the warehouse

https://software.intel.com/en-us/articles/intel-xeon-phi-x200-processor-memory-modes-and-cluster-modes-configuration-and-use-cases
https://software.intel.com/en-us/articles/intel-xeon-phi-x200-processor-memory-modes-and-cluster-modes-configuration-and-use-cases

L. Dzalbs and T. Kalganova

Couriers
Origin Ports
Transportationmodes
Service levels

Warehouses

[3
o Ti
P1

CyStymy

Computers & Industrial Engineering 147 (2020) 106610

Destination port
Customers

L &
Re T N fo— 288

h

Fig. 2. Graphical representation of the outbound supply chain. Each warehouse i is connected to one or many origin ports p. The shipping lane between origin port p
and destination port j is a combination of courier c, service level s, delivery time t and transportation mode m.

storage rate B, (WhCosts table).

Furthermore, transportation cost TCy, for a given order k and
chosen line between origin port p and destination port j is calculated by
the algorithm in Fig. 3:

where s, is the service level for order k, p — origin port, j— desti-
nation port, ¢ — courier, s — service level, t — delivery time, m — trans-
portation mode. Furthermore, Mpjc, is the minimum charge for given
line pjcstm, Wipjesim is the weight in kilograms for order k. Rpjcum is the
freight rate (dollars per kilogram) for given weight gap based on the
total weight for the line pjcstm (FreightRates table).

The algorithm first checks what kind of service level the order re-
quires, if the service level s; is equal to CRF (Customer Referred
Freight) — transportation cost is 0. Furthermore, if order transportation
mode m is equal to GROUND (order transported via truck), order
transportation cost is proportional to the weight consumed by the order
(Wipjesim) in respect of the total weight for given line pjestm and the rate
charged by a courier for full track Rpjcgn. In all other cases, the trans-
portation cost is calculated based on order weight wyyjcs» and the
freight rate Ry The freight rate is determined based on total weight
on any given line pjcstm and the corresponding weight band in the
freight rate table. Furthermore, a minimum charge M), is applied in
cases where the air transportation cost is less than the minimum charge.

4.3. Restrictions

The problem being solved complies with the following constraints:

Transportation cost (T Cy,;)
1. ifs, = CRF
2. then TCyp; = 0
3. elseifm = GROUND

R.:
_ pjcstm
4. then TCyp; = X Wipjcstm

25(=1 Wkpjestm
5. else
6. then TCypj = Rpjestm X Wipjestm

7. i TCrpj < Mpjcsem

8. then TCypj = Mpjcstm
9. end if
10. end if

Fig. 3. Pseudocode for calculating order transportation cost.

1
Zk=l 0 < G 3)

where oy; = 1 if order k was shipped from warehouse i and 0 otherwise.
C; is the order limit per day for warehouse i (WhCapacities table).

1
Zk:l Wipjestm < maXijcstm (4)

where wy,; is the weight in kilograms for order k shipped from
warehouse port p to customer port j via courier ¢ using service level s,
delivery time ¢ and transportation mode m. Fjjy, is the upper weight
gap limit for line pjcstm (FreightRates table).

k. i, 6))

where product z for order k belongs to supported products at ware-
house i (ProductsPerPlant table). Warehouses can only support given
customer in the VmiCustomers table, while all other warehouses that are
not in the table can supply any customer. Moreover, the warehouse can
only ship orders via supported origin port, defined in PlantPorts table.

5. Methods and implementation

To solve the transportation network optimisation problem, we are
using an Ant Colony System algorithm first proposed by (Dorigo &
Gambardella, 1997). Because ACO is an iterative algorithm, it does
require sequential execution. Therefore, the most naive approach for
parallel ACO is running multiple Independent Ant Colonies (IAC) with a
unique seed for the pseudo-random number generator for each colony
(high-level pseudocode in Fig. 4). Due to the stochastic nature of so-
lution creation, it is, therefore, more probabilistic to reach a better
solution than a single colony. This approach has the advantage of low
overhead as it requires no synchronisation between the parallel in-
stances during the search. At the very end of the search, the best so-
lution of all parallel colonies is chosen as the final solution. The main
disadvantage of IAC is that if one of the colonies finds a better solution,
there is no way to improve all the other colony’s fitness values.

Alternatively, the ACO search algorithm could also be letting the
artificial ant colonies synchronise after every iteration. Therefore, all
parallel instances are aware of the best solution and can share pher-
omones accordingly. High-level pseudocode of such Parallel Ant (PA)
implementation is shown in Fig. 5. The main advantage of this archi-
tecture is that it allows efficient pheromone sharing, therefore con-
verging faster. However, there is a high risk of getting stuck into local

L. Dzalbs and T. Kalganova

Independent Ant Colonies (IAC)
1. for all parallel instances m parallel do
2. forall iterations iter do
for all local ants a do
local pheromone = global pheromone
construct solution

3
4
5
6. local pheromone update
7 end for
8 update global pheromone update based on the best solution
9 end for

10. end for

11. find the best solution across parallel instances
Fig. 4. High-level pseudocode for Independent Ant Colonies (IAC) search al-
gorithm.

Parallel Ants (PA)

1. for all iterations iter do
2. for all parallel instances m parallel do
for all local ants a do
local pheromone = global pheromone
construct solution
local pheromone update
end for
end for

L XN UY AW

find the best solution across parallel instances
10. update global pheromone update based on the best solution
11. end for

Fig. 5. High-level pseudocode Parallel Ants (PA) search algorithm.

optima as all ants start iteration with the same pheromone matrix.
Furthermore, synchronisation of all parallel instances after every
iteration is costly.

Both IAC and PA implementations are exploiting task parallelism —
each parallel instance (thread) gets a set of tasks to complete. An al-
ternative approach would be to look at data parallelism and vector-
isation. In such a strategy, each thread processes a specific section of
the data and cooperatively complete the given task. Due to the highly
sequential parts of ACO, it would not be practical to only use vector-
isation alone. A more desirable path would be to implement vector-
isation in conjugate to the task parallelism. In case of CPU, task par-
allelism can be done by the threads, while vectorisation is done by
Vector Processing Units (VPUs) based on Advanced Vector Extensions 2
(AVX2) or AVX512. Moreover, in the case of GPU and CUDA - task
parallelism would be done at a thread-block level while data paralle-
lism would exploit WARP structures. Parallel Ants with Vectorisation
(PAwV) expands on the Parallel Ants architecture by introducing data-
parallelism of solution creation and an alternative roulette wheel im-
plementation — SS-Roulette, first proposed in (Cecilia et al., 2018).
Local search in Fig. 6 expands on the implementation in Fig. 5 (lines
3-7). First, the choiceMatrix is calculated by multiplying the probability
of the route to be chosen with the tabuList — a list of still available routes
(where 0 represents not available and 1 - route still can be selected). A
random number between 0 and 1 is generated to determine if a given
route will be chosen based on exploitation or exploration. In the case of
exploitation, the choiceMatrix is reduced to obtain the maximum and
the corresponding route index. Furthermore, in the case of exploration,
the route is chosen based on the SS-Roulette wheel described by (Cecilia
et al., 2018).

The main advantage of IAC is that it requires to synchronise be-
tween threads only at the start of the search and at the very end of the
search, therefore keeping synchronisation overhead low. However, as

Computers & Industrial Engineering 147 (2020) 106610

based on the SS-Roulette wheel described by [68].
Parallel Ants with Vectorization (PAWV)

1. forall local ants a do

2. local pheromone = global pheromone
3 for all orders o do

4 for all routes r for order do SIMD

5 choiceMatrix[r] = probability[r] * tabulList[r]
6. end for

7 if rand() <= q0 then

8 SIMD reduce max (choiceMatrix)

9

. else
10. SS-Roulette wheel [68]
11. end if
12. end for
13. local pheromone update
14. end for

Fig. 6. High-level pseudocode for Parallel Ants with Vectorization (PAwV)
search algorithm. Expanding on Fig. 5" lines 3-7.

there is no pheromone sharing, new better solutions cannot be shared
across the parallel instances. In contrast, both PA and PAwV offers
sharing of the best performing ants’ pheromone before the next itera-
tion begins. The potential drawback is that search might get stuck in
local optimum as all parallel instances share the same pheromone
starting point. Furthermore, pheromone sharing and therefore, syn-
chronisation between threads is costly overhead, especially if per-
formed after each iteration. The PAwV architecture exploits the use of
SIMD instructions for further data parallelism inside the Ant’s solution
construction. Table 3 summarises these architectural features.

6. Experiments

A sequential implementation of ACO described in (Dorigo &
Gambardella, 1997) is adapted from (Veluscek, Kalganova, Broomhead,
& Grichnik, 2015) by altering the heuristic information calculation for a
given route — defined as a proportion of order’s weight and the max-
imum weight gap (see Eq. (2)). Furthermore, the ACO set of parameters
were obtained from both work in (Veluscek, Kalganova, Broomhead, &
Grichnik, 2015) and empirical experimentation. Table 4 summarises
these algorithm hyperparameters. Moreover, we then implement three
different Parallel ACO architectures — Independent Ant Colonies (IAC),
Parallel Ants (PA) and Parallel Ants with Vectorisation (PAwV) in C+ +
and CUDA C.

Experiments were conducted on three different hardware config-
urations — CPU, GPU and Xeon Phi.

Hardware a - CPU

e CPU: AMD Ryzen™ Threadripper™ 1950X (16 cores, 32 threads),
running at 3.85 GHz.

o RAM: 64 GB 2400 MHz DDR4, 4 channels.

e OS: Windows 10 Pro, version 1703

e Toolchain: Intel C+ + 18.0 toolset, Windows SDK version 8.1, x64

Hardware B - Xeon Phi

Table 3
Comparison of Independent Ant Colonies (IAC), Parallel Ants (PA) and parallel
Ants with Vectorisation (PAwV) architectures.

1IAC PA PAWV
Synchronisation between threads during search No Yes Yes
Pheromone sharing between parallel instances No Yes Yes

Data parallelism No No Yes

L. Dzalbs and T. Kalganova

Table 4

Ant Colony System set of parameters for all configurations and ar-

chitectures.
Parameter Value
Pheromone evaporation rate (rho) 0.1
Weight on pheromone information (o) 1
Weight on heuristic information () 8
Exploitation to exploration ratio (q0) 0.9

e CPU: Intel® Xeon Phi™ Processor 7250F (68 cores, 272 hyper-
threads), running at 1.4 GHz. Clustering mode set to Quadrant and
memory mode set to Cache mode.

e RAM: 16 GB on-chip MCDRAM and 96 GB 2400 MHz DDR4 ECC.

e OS: Windows Server 2016, version 1607

® Toolchain: Intel C+ + 18.0 toolset, Windows SDK version 8.1, x64,
KMP_AFFINITY = scatter

Hardware C - GPU

o CPU/RAM/OS - see host Hardware A.

e GPUs: 4x Nvidia GTX1070, 8 GB GDDR5 per GPU, 1.9 GHz core,
4.1 GHz memory. PCle with 16x/8x/16x/8x.

® Toolchain: Visual Studio v140 toolset, Windows SDK version 8.1,
x64, CUDA 9.0, compute_35, sm_35

Hardware architecture C shares the same host CPU as Hardware A.

6.1. Benchmarks

It is crucial to consider both elapsed time and solution quality when
referring to speed optimisation of optimisation algorithms. One could
get superior convergence within iteration but, take twice as long to
compute. Similarly, one could claim that the algorithm is much faster at
completing a defined number of iterations but sacrifice solution quality.
Furthermore, there is little point comparing sequential execution of one
hardware platform to parallel implementation of another. A compar-
ison should take into consideration all platform strengths and weak-
nesses and set up the most suitable configuration for a given platform.

To obtain a baseline fitness convergence rate at a various number of
parallel instances, we create Iterations vs Parallel Instances matrix for
all architectures. An example of such matrix for Parallel Ants is shown
in Table 5. The matrix is derived by averaging the resulting fitness
obtained from 10 independent simulations with a unique seed value for
each given Parallel Instances configuration. All configurations are run
for x number of iterations, where x is based on the total number of
solutions explored and is a function of the number of Parallel Instances.
The total number of solutions explored is set to 768 k. The number of
Parallel Instances is varied by 2"~! with maximum n of 11, i.e. 1024
parallel instances. The best value after every 5 iterations is also re-
corded.

We then compute the number of iterations required to reach a
specific solution quality for different ACO architectures in Table 6,
expressed as proximity to the best-known optimal solution. For the
particular problem and dataset, the best solution is the total cost of
2,701,367.58. There are six checkpoints of solution quality ranging
from 99% to 99.9%. Although at first 1% gain might not seem sig-
nificant, one must remember that global supply chain costs are mea-
sured in hundreds of millions, and even 1% savings do affect the bottom
line. Empty fields (-) represent instances where the ACO was not able to
converge to given solution quality.

On all experiments, IAC was able to obtain solution quality only
below 99.6%. In contrast, PA and PA with 5 ant local search were able
to achieve above 99.9% solution quality with 512 and 1024 parallel
instances. Furthermore, IAC did not see any significant benefit of

Computers & Industrial Engineering 147 (2020) 106610

adding more parallel instances for 99% and 99.25% checkpoints.

In contrast, PA does benefit from the increase in the number of
parallel instances. For instance, PA can obtain the same solution quality
in half the number of iterations at 99% checkpoint (scaling of 2x for
sequential vs 1024 parallel instances). Scaling of 633.7x in case of
99.5% checkpoint for sequential counterpart. Similarly, PA with 5 ant
sequential local search has the same dynamics, with scaling of 4x at
99% checkpoint compared to sequential and 140x at 99.6% checkpoint
compared to 2 and 1024 parallel instances. One can also note that at
increased solution quality and a little number of parallel instances, PA
with 5 ant local search also offers improved efficiency in terms of total
solutions explored. For example, at the 99.5% checkpoint with 2 par-
allel instances, PA takes 2590 iterations, while PA with 5 ant local
search only requires 65 (decrease of 40x iterations or 8x total solutions
explored). However, in most instances, PA without any local search is
more efficient.

6.2. Speed performance

To evaluate speed performance, we ran each given configuration
and parallel architecture for 500 iterations or 10 min wall-clock time
(whichever happens first) and recorded the total number of iterations
and wall-clock time for three independent runs. Then, average wall-
clock time per iteration was calculated. It is essential to measure the
execution time correctly, just purely comparing computation per
kernel/method may not show the real-life impact. For that reason, total
time is measured from the start of the memory allocation to the freeing
of the allocated memory, however it does not include the time required
to load the dataset into memory. This allows us to estimate, with rea-
sonable accuracy, what is the wall-clock time needed to run a specific
architecture and configuration to converge to a given fitness quality.
Although running each given architecture and configuration 10 times
would produce more accurate convergence rate estimates, it would also
require significantly more computation time. Furthermore, all vec-
torised implementations went through iterative profiling and optimi-
sation process to obtain the fastest execution time. To the best of the
authors’ knowledge, all vectorised implementations have been fully
optimised for the given hardware.

6.2.1. CPU

ACO implementation of IAC, PA and PAwV was implemented in C+
+ and multiple experiments of the configurations are shown in Table 7.
Intel C++ 18.0 with OpenMP 4.0 was used to compile the im-
plementation. KMP® (an extension of OpenMP) config was varied based
on total hardware core and logical core count (16c,2t = 32 OpenMP
threads).

Very similar results were obtained for both IAC double precision
and PA double precision, with PA having around 5% overhead com-
pared to IAC. In both instances, running 32 OpenMP threads offered
around 24% speed reduction compared to 16 threads. Furthermore,
PAwV with double precision vectorisation using AVX2 offered speed
reduction of 26%, while scaling from 16 OpenMP threads to 32 offered
almost no scaling at 256 parallel instances upwards.

The nature of ACO pheromone sharing and probability calculations
does not require double precision and therefore can be substituted with
single-precision calculations.

AVX2 offers 256-bit manipulations, therefore increasing theoretical
throughput by a factor of 2, compared to double precision. 36% de-
crease in execution time was obtained, as not all parts of the code can
take advantage of SIMD.

Furthermore, doing 5 ant sequential local search within each par-
allel instance increases time linearly and produces little time savings in

5 OpenMP Thread Affinity Control https://software.intel.com/en-us/articles/
openmp-thread-affinity-control

https://software.intel.com/en-us/articles/openmp-thread-affinity-control
https://software.intel.com/en-us/articles/openmp-thread-affinity-control

L. Dzalbs and T. Kalganova

Table 5

Computers & Industrial Engineering 147 (2020) 106610

Parallel Ants fitness value baseline for different configurations of the number of parallel instances and the number of iterations. Each Parallel Instance data point is an
average of 10 individual runs (table derived from 11*10 = 110 runs). Expressed as a percentage of the proximity of the best-known solution (2,701,367.58). Colour-

coded from worse — in red, to the best — in green.

Baseline for Parallel Ants (PA)

The number of Parallel Instances

1 2 4 8 16 32 64 128 256 512 1024
5 98.646% 98.701% 98.740% 98.713% 98.813% 98.825% 98.857% 98.859% 98.881% 98.931% 98.923%
20 98.921% 98.935% 98.973% 98.987% 98.980% 99.063% 99.053% 99.082% 99.102% 99.133% 99.150%
40 99.165% 99.265% 99.315% 99.300% 99.343% 99.355% 99.366% 99.413% 99.410% 99.427% 99.443%
60 99.354% 99.413% 99.466% 99.503% 99.530% 99.536% 99.541% 99.562% 99.573% 99.592% 99.598%
80 99.438% 99.459% 99.547% 99.547% 99.585% 99.585% 99.582% 99.630% 99.638% 99.660% 99.667%
. 0 . an .. 0 .. 0 .. 0 .. 0 .. 0 . 0 .| 0 . 0 . 0
100 99.444% 99.459% 99.548% 99.559% 99.589% 99.592% 99.584% 99.646% 99.641% 99.672% 99.674%
200 99.452% 99.461% 99.551% 99.569% 99.601% 99.605% 99.599% 99.724% 99.717% 99.846% 99.844%
2 300 99.452% 99.461% 99.558% 99.574% 99.615% 99.615% 99.606% 99.734% 99.743% = 99.869% 99.878%
o
B 400 99.456% 99.464% 99.559% 99.577% 99.615% 99.628% 99.631% 99.739% 99.763% = 99.877% 99.885%
S
g 500 99.456% 99.465% 99.560% 99.584% 99.624% 99.637% 99.641% 99.739% 99.772% 99.884% 99.891%
‘S 600 99.456% 99.471% 99.560% 99.584% 99.624% 99.641% 99.643% 99.740% 99.772% 99.891% 99.898%
S
2 750 99.458% 99.474% 99.560% 99.588% 99.634% 99.647% 99.645% 99.753% 99.778% = 99.896% 99.901%
g 1500 99.462% 99.494% 99.572% 99.590% 99.638% 99.662% 99.656% 99.764% 99.792% . 99.917%
f=
o 3000 99.471% 99.504% 99.582% 99.601% 99.651% 99.672% 99.666% 99.779% 99.812%
=
= 6000 99.486% 99.506% 99.596% 99.616% 99.659% 99.675% 99.675% 99.787%
12000 99.494% 99.517% 99.604% 99.626% 99.666% 99.681% 99.692%
24000 99.498% 99.540% 99.611% 99.629% 99.681% 99.693%
48000 99.508% 99.546% 99.622% 99.638% 99.685%
96000 99.514% 99.555% 99.622% 99.643%
192000 99.527% 99.563% 99.622%
384000 99.538% 99.569%
768000 99.551%

terms of solutions explored. The overall scaling factor at 1024 parallel
instances compared to sequential execution at PAWV (single precision
with AVX2 and 16c2t) is therefore 25.4x.

6.2.2. Xeon Phi
Similar experiments were also conducted on the Xeon Phi hardware,
Table 8. Due to the poor convergence rate and search capability, the

Table 6

execution time for IAC was not measured. Xeon Phi differs from
Hardware A with the ability to utilise up to 4 hyper-threads per core
and AVX512 instruction set. Although Hardware B has 68 physical
cores, for more straightforward comparison on base 2, only 64 were
used in experiments. At 1024 parallel instances on double-precision PA,
having 2 threads and 4 threads per core does offer speedup of 30% and
42% respectively, compared to 1 thread per core. Moving to the

The number of iterations required to reach a specific solution quality. Each data point in the table is an average of 10 individual runs. Empty fields (-) represent
instances where ACO did not obtain specified solution quality in 768 k solutions explored. The solution quality is expressed as a percentage of the proximity of the

best-know solution (2,701,367.58).

The number of iterations required to reach specific solution quality

Checkpoint of optimal solution

The number of parallel instances

Architecture 1 2 4 8 16 32 64 128 256 512 1024

Independent Ant Colonies 99.00% 30 30 35 30 30 35 30 30 25 25 25
99.25% 45 45 40 40 45 40 40 35 3 35 35
99.50% 31,685 31,055 29,550 28,895 29,075 15,910 10,950 - - - -
99.60% - - - - - - - - - - -
99.75% - - - - - - - - - - -
99.90% - - - - - - - - - - -

Parallel Ants 99.00% 30 25 25 25 25 25 20 15 15 15 15
99.25% 45 40 40 35 35 35 35 35 30 30 30
99.50% 31,685 2590 65 60 60 55 55 55 55 50 50
99.60% - - 9190 2640 195 170 230 70 70 65 65
99.75% - - - - - - - 685 310 140 135
99.90% - - - - - - - - - 800 675

Parallel Ants with 5 sequential ant local search ~ 99.00% 20 15 15 15 15 10 10 10 10 10 5
99.25% 30 30 30 30 30 25 30 25 20 25 20
99.50% 400 65 55 55 50 50 50 50 45 45 45
99.60% - 7715 160 135 90 65 60 65 60 55 55
99.75% - - - -

99.90% -

6630 205 150 155 130 125 125
- - - - 460 255 160

L. Dzalbs and T. Kalganova

Table 7

Computers & Industrial Engineering 147 (2020) 106610

Hardware A wall-clock time per iteration, in seconds. KMP config is environment variable set as part of KMP_PLACE THREADS, for all instances

KMP_AFFINITY = scatter, optimisation level /O3, favour speed /Ot.

Hardware A - CPU computation time per iteration (in seconds)

Configuration The number of Parallel Instances
KMP config 1 2 4 8 16 32 64 128 256 512 1024
IAC, double precision 16¢,1t 0.078 0.081 0.083 0.085 0.112 0.196 0.372 0.691 1.368 2.661 5.263
16c¢,2t 0.148 0.277 0.517 1.002 2.014 4.093
PA, double precision 16¢,1t 0.082 0.084 0.085 0.090 0.115 0.205 0.383 0.705 1.411 2743 5.483
16¢,2t 0.153 0.288 0.539 1.044 2.088 4.220
PAwV, double precision, AVX2 16¢,1t 0.050 0.053 0.057 0.058 0.075 0.131 0.233 0.426 0.805 1.547 3.101
16¢,2t 0.107 0.189 0.351 0.749 1.536 3.095
PAwYV, single precision, AVX2 16¢,1t 0.049 0.050 0.052 0.055 0.066 0.111 0.206 0.367 0.699 1.355 2.664
16¢,2t 0.088 0.152 0.275 0.501 1.006 1.975
PAwV, single precision, AVX2, with 5 sequential ant local search ~ 16¢,1t 0.212 0.218 0.227 0.241 0.264 0.484 0918 1.722 3.380 6.759 13.461
16¢,2t 0.347 0.645 1.222 2369 4.659 9.704

vectorised implementation of 256-bit AVX2, gains additional speedup
of around 37% across all parallel instances, however, did not benefit
from 4 hyper-threads. Furthermore, exploiting the AVX512 instruction
set offers a further 24% speedup compared to AVX2. In this config-
uration having 4 hyper threads per core worsens the speed performance
(3.644 s vs 3 s). Like Hardware A, PAwWV was explored with single
precision and offered near-perfect scaling on 1024 parallel instances
with 4 hyper-threads per core, or 40% overall speed improvement
compared to PAwV with double precision (3 s vs 1.804 s). Alike
Hardware A, having 5 sequential local ants does not provide any time
savings and time increases linearly. The overall scaling factor at 1024
parallel instances compared to sequential execution at PAwV (single
precision with AVX512 and 64c4t) is therefore 148x.

6.2.3. GPUs

A further set of experiments were also conducted for GPU, Table 9.
The implementation with no vectorisation (Blocks x1), uses 1 thread
per CUDA block to compute one solution, therefore 1024 parallel in-
stances require 1024 blocks. Similarly, for (Blocks x32), 32 threads are
used per block, each thread computing its own solution independently.
For parallel instances of 32, only 1 block would be used with 32
threads. The implementation of no vectorisation utilises no shared
memory; however, all static problem metadata is stored as textures. A
single kernel is launched, and the best solution across all parallel in-
stances is returned.

Table 8

Vectorized version implements architecture described in (Cecilia
et al., 2018), storing the route choice matrix in shared memory and
utilising local warp reduction for sum and max operations. Each thread-
block builds its solution, while the extra 32 threads assist with the re-
duction operations, memory copies and fitness evaluation. Table 9
shows a comparison between the two implementations. Implementation
without vectorisation performs on average two times slower compared
to the vectorised version. Furthermore, 64 threads per block (Blocks
x64) performs slower than 32 threads per block (Block x32).

Next, scaling across multiple GPUs were explored. Each device takes
a proportion of 1024 instances with unique seed values and after each
iteration, the best overall solution is reduced. In the case of 2 GPUs and
1024 parallel instances, each device will compute 512 parallel instances
concurrently. Scaling across 2 (2x) and 4 GPUs (4x) did not provide any
significant speedup (only 10%). This is due to the fact that each itera-
tion consumes at least 50 s and scaling across multiple GPUs adds al-
most no overhead. The maximum number of parallel instances might
need to be increased to fully utilise all 4 GPUs to the point where all
Streaming Multiprocessors (SMs) are saturated and increasing block
count increases the computation time linearly.

GPU implementation is, therefore, one magnitude of order slower
than that of CPU. However, this could be explained by the nature of the
problem and not be specific to ACO architecture, as there have been a
lot of success on GPUs solving simple, low memory footprint TSP in-
stances (Uchida, Ito, & Nakano, 2014; Cecilia et al., 2018; Li, 2014).

Hardware B wall-clock time per iteration, in seconds. KMP config is environment variable set as part of KM_PLACE_THREADS, for all instances

KMP_AFFINITY = scatter, optimisation level /O3, favour speed /Ot.

Hardware B - Xeon Phi computation time per iteration (in seconds)

Configuration The number of Parallel Instances
KMP config 1 2 4 8 16 32 64 128 256 512 1024
PA, double precision 64c,1t 0.687 0.687 0.725 0.726 0.726 0.729 0.734 1.417 2787 5.941 11.089
64c,2t 1.014 1.974 3.845 7.669
64c,4t 1.087 1.606 3.226 6.438
PAwYV, double precision, AVX2 64c,1t 0.408 0.411 0.430 0.431 0.433 0.434 0.438 0.818 1.578 3.094 6.114
64c,2t 0.563 1.047 2.022 3.964
64c,4t 0.625 1.101 2.072 4.082
PAwV, double precision, AVX512 64c,1t 0.304 0.309 0.326 0.326 0.327 0.332 0.335 0.608 1.152 2.242 4.404
64c,2t 0.446 0.809 1.535 3.000
64c,4t 0.494 0.982 1.913 3.644
PAwV, single precision, AVX512 64c,1t 0.261 0.266 0.282 0.284 0.284 0.287 0.288 0.521 0.970 1.900 3.806
64c,2t 0.359 0.646 1.210 2.361
64c,4t 0.412 0.542 0.957 1.804
PAwV, single precision, AVX512, with 5 sequential ant local search 64c,1t 1.105 1.123 1.195 1.200 1.205 1.205 1.215 2.342 4.601 9.136 18.844
64c,2t 1.489 20915 5743 11.815
64c,4t 1.553 2.225 4.428 9.054

10

L. Dzalbs and T. Kalganova

Table 9

Computers & Industrial Engineering 147 (2020) 106610

Hardware C wall-clock time per iteration, in seconds. The total number of parallel instances are adjusted for the thread-block dimensions. Compiled with CUDA 9.0.

1x, 2x and 4x correspond to the number of devices used to compute.

Hardware C - GPU computation time per iteration (in seconds)

Configuration The number of Parallel Instances
1 2 4 8 16 32 64 128 256 512 1024

1x GPU no vectorisation (Blocks x 1) 46.792 47.634 47.610 47.499 47.458 48.914 50.811 53.474 60.845 126.897 229.080
1x GPU no vectorisation (Blocks x 32) - - - - - 108.316 110.571 112.512 113.214 114.512 115.219
1x GPU with vectorisation (Blocks x32) - - - - - 49.890 52.457 54.180 55.409 58.802 64.569
1x GPU with vectorisation (Blocks x64) - - - - - - 57.139 58.586 59.676 61.031 65.840
2x GPU with vectorisation (Blocks x32) - - - - - - 50.048 52.634 55.471 55.509 60.856
4x GPU with vectorisation (Blocks x32) - - - - - - - 50.062 52.702 54.406 55.879

However, the problem addressed in this paper requires a lot of random
global memory access to check for all restrictions such as order limits,
capacity constraints and weight limits, which are too big to be stored on
the shared memory.

6.3. Hardware comparison and speed of convergence

If both convergence rate of the architecture and the speed of the
hardware is considered, an estimate can be made on what would be the
average wall-clock time to converge to specific solution quality. The
fastest configuration for both Hardware A (Table 7) and Hardware B
(Table 8) was chosen and then multiplied by the number of iterations
required to reach a specific solution quality (Table 6) to obtain an es-
timate of the compute time required (Table 10). Therefore, a fairer real-
life impact can be derived.

If one only considers the best time to converge to 99% solution
quality, Hardware A can do that in 1.24 s on average while Hardware B
would take 6.66 s. Furthermore, if we look at 99.5% solution quality,
Hardware A would take 3.33 s while Hardware B — 17.01 s. Faster
clock speed for Hardware A gives an advantage over Hardware B at
lower solution quality checkpoints. In contrast, at 99.75% and 99.9%
solution quality, Hardware B outperforms. More experimentation is
required to determine if exploring more than 768 k solutions at lower
Parallel Instance count affects the dynamics at the 99.75-99.9% range.
In addition, best computation time to achieve specific solution quality
was also compared in Fig. 7, where the estimated best computation

Table 10

time required (in logarithmic) is plotted against three tested archi-
tectures across various solution quality checkpoints. Fig. 7 clearly
shows that GPU results (Hardware C) were considerably slower and
therefore, authors conclude that GPUs are not suitable for the supply
chain problem solved.

6.4. Comparisons using the travelling salesman problem

In addition to the real-world supply chain problem, a single TSP
instance with 318 cities (1in318) is selected for comparison. The 1in318
instance is small enough such that all experiments can be computed
quickly but large enough to see measurable differences between hard-
ware architectures explored. Like in the supply chain problem, solution
quality checkpoints against optimal fitness value of 42,029 were re-
corded during the convergence process. Moreover, just like in supply
chain problem, PA outperformed IAC architecture for solving 1in318.
The 1in318 computation time was plotted against various hardware
solutions and solution quality checkpoints in Fig. 8.

When solving the 1in318 TSP instance, Hardware A performs faster
than Hardware B for solution quality between 99.0 and 99.6% and
slower for higher solution quality, similar to the supply chain problem
results in Fig. 7. Although Hardware C - GPU performed magnitudes
slower in supply chain problem, for the TSP instance it was able to
converge faster than Hardware A and Hardware B. Therefore, authors
can confirm the findings of (Uchida, Ito, & Nakano, 2014; Cecilia et al.,
2018; Li, 2014), that suggest that GPUs offer speedup over CPU

Estimated time (in seconds) required to converge to specific solution quality. Calculated by multiplying the number of iterations by the time taken for iteration for
individual best performing hardware configuration. Solution quality is expressed as a percentage of the proximity of the best-know solution (2,701,367.58).

Estimated time required (in seconds) to reach specific solution quality

Architecture Checkpoint of optimal solution The number of parallel instances
1 2 4 8 16 32 64 128 256 512 1024
Hardware A - TR1950x 99.00% 1.46 1.24 1.30 1.39 1.64 219 3.04 4.13 7.52 1510 29.63
99.25% 2.19 1.99 2.07 1.94 229 3.06 531 9.64 15.03 30.19 59.25
99.50% 1539.02 128.82 3.37 3.33 3.93 4.81 8.35 15.14 27.56 50.32 98.75
99.60% 476.40 146.33 1278 14.88 3492 19.27 35.07 6542 128.38
99.75% 188.60 155.33 140.91 266.63
99.90% 805.20 1333.13
Hardware B - Xeon Phi 7250F 99.00% 7.84 6.66 7.04 7.09 710 718 576 6.18 8.13 1436 27.06
99.25% 11.76 10.65 11.27 9.92 9.94 10.05 10.08 1442 16.26 2871 54.12
99.50% 8282.30 689.67 18.31 17.01 17.04 1579 15.84 2266 29.81 47.85 90.20
99.60% 2588.73 748.49 55.39 48.80 66.26 28.84 37.94 62.21 117.26
99.75% 282.22 168.02 133.98 243.54
99.90% 765.60 1217.70
Hardware C - GPU 99.00% 1404 1191 1190 1187 1186 1223 1001 751 791 816 838
99.25% 2106 1905 1904 1662 1661 1712 1752 1752 1581 1632 1676
99.50% 1,482,595 123,373 3095 2850 2847 2690 2753 2753 2899 2720 2794
99.60% 437,536 125,398 9254 8315 11,511 3504 3689 3536 3632
99.75% 16,338 7617 7544
99.90% 43,525 37,719

11

L. Dzalbs and T. Kalganova

Computers & Industrial Engineering 147 (2020) 106610

Parallel Ants estimated best computation time per solution quality for

W Hardware A - TR1950x

E supply chain problem

£ 100000 37719
c

§ 10000 7584

& 3504

£ 1581 2690

= 751 805766
T 1000

El 141134

o 100 29

9} 16 1

€ 6 10 3

F=] 10 3

Z 3| i

§ PE— [|

s 99.00% 99.25% 99.50% 99.60% 99.75% 99.90%
w

Solution quality

W Hardware B - Xeon Phi 7250F

Hardware C - GPU

Fig. 7. Parallel Ants best estimated computation time per solution quality for supply chain problem to converge to specific solution quality. Solution quality is
expressed as a percentage of the proximity of the best-know solution (2,701,367.58).

counterpart when routing simple TSPs. However, authors also ac-
knowledge that these dynamics do not apply for a more complex real-
world routing problem where GPU is magnitudes slower than CPU
counterparts (Hardware A or Hardware B) due to the additional meta-
data required to be stored during solution creation.

7. Conclusions & further work

Nature-inspired meta-heuristic algorithms such as Ant Colony
Optimization (ACO) have been successfully applied to multiple dif-
ferent optimisation problems. Most work focuses on the Travelling
Salesman Problem (TSP). While TSPs are a good benchmark for new
idea comparison, the dynamics of the proposed algorithms for bench-
marks do not always match to a real-world performance where the
problem has more constraints (more meta-data during solution crea-
tion). Furthermore, speed and fitness performance comparisons are not
always completely fair when compared to a sequential implementation.
This work explored the dynamics of different ACO architectures applied
to benchmark and real-world problem. The experimental results de-
monstrate that the results obtained from the TSP benchmarks cannot be
generalised to the real-world applications, especially in terms of

hardware performance and usage. Therefore, our findings demonstrate
that in order to achieve the generalisable conclusions, the experimental
work has to be completed on both: standard benchmarks and real-world
applications.

Furthermore, our work solves a real-world outbound supply chain
network optimisation problem and compares two different ACO archi-
tectures — Independent Ant Colonies (IAC) and Parallel Ants (PA). It was
concluded that PA outperformed IAC in all instances, as IAC failed to
find any better solution than 99.5% of optimal. In comparison, PA was
able to find a near-optimal solution (99.9%) in fewer iterations due to
effective pheromone sharing across ants after each iteration.
Furthermore, PA shows that it consistently finds a better solution with
the same number of iterations as the number of parallel instances in-
crease.

Moreover, a detailed speed performance was measured for three
different hardware architectures — 16 core 32 thread workstation CPU,
68 core server-grade Xeon Phi and general-purpose Nvidia GPUs.
Results showed that although GPUs can scale when solving simple TSP
(as confirmed by multiple other studies), those scaling dynamics do not
transfer to more complex the real-world problem. Memory access
footprint required to check capacity limits and weight constraints did

Parallel Ants computation time per solution quality for lin318 TSP instance

9.0
8.0
7.0
6.0
5.0
4.0
3.0
2.0
1.0
0.0

Computation time, seconds

99.00% 99.25%

99.50%

6.7 6.8

|| || |

99.60% 99.75% 99.90%

Solution quality

W Hardware A - TR1950x

M Hardware B - Xeon Phi 7250F

Hardware C - GPU

Fig. 8. Parallel Ants computation time per solution quality for 1in318 TSP to converge to specific solution quality. Solution quality is expressed as a percentage of the

proximity of the best-know solution (a distance of 42029).

12

L. Dzalbs and T. Kalganova

not fit on small shared memory on GPU. Thus, it performed 29 times
slower than the other two hardware solutions even when running 4
GPUs in parallel. Therefore, authors consider this finding a new
knowledge with surprise value.

When compared to a real-life impact on the time required to reach a
specific solution quality, both CPU and Xeon Phi optimised-vectorised
implementations showed comparable speed performance; with CPU
taking the lead with lower Parallel Instances count due to the much
higher clock frequency. At near-optimal solution (99.75% +) and 1024
parallel instances, Xeon Phi was able to take full advantage of AVX512
instruction set and outperformed CPU in terms of speed. Therefore,
compared to an equivalent sequential implementation at 1024 parallel
instances, CPU was able to scale 25.4x while Xeon Phi achieved a
speedup of 148x.

Since PA fitness performance increases as the number of parallel
instances increase, it would be worth looking into scaling above 1024
instances using either cluster of CPUs or clusters of Xeon Phi’s, which
will be part of the future work. Furthermore, Field Programmable Gate
Arrays (FPGAs) might have the potential to take advantage of highly
vectorised ACO, which is another area of possible future research.

CRediT authorship contribution statement

Ivars Dzalbs: Conceptualization, Methodology, Software,
Validation, Formal analysis, Investigation, Data curation, Writing -
original draft, Writing - review & editing, Visualization. Tatiana
Kalganova: Conceptualization, Resources, Writing - review & editing,
Visualization, Supervision, Project administration, Funding acquisition.

Acknowledgement

Authors would like to thank Intel Corporation for donating the Xeon
Phi hardware and for partially sponsoring this research.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.cie.2020.106610.

References

Abouelfarag, A. A., Aly, W. M., & Elbialy, A. G. (2015). Performance analysis and tuning
for parallelization of ant colony optimization by using openmp. Lect. Notes Comput.
Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), 9339, 73-85.
https://doi.org/10.1007/978-3-319-24369-6_6.

Aslam, A., Khan, E., & Beg, M. M. S., (2015). Multi-threading based implementation of
Ant-Colony Optimization algorithm for image edge detection. In 2015 Annual IEEE
India Conference (INDICON), 2015, vol. 151, no. 2005, pp. 1-6, doi: 10.1109/
INDICON.2015.7443603.

Azad, N., Aazami, A., Papi, A., & Jabbarzadeh, A. (2019). A two-phase genetic algorithm
for incorporating environmental considerations with production, inventory and
routing decisions in supply chain networks. In Proceedings of the genetic and evo-
lutionary computation conference companion on - GECCO ’19, pp. 41-42, doi: 10.
1145/3319619.3326781.

Bali, O., Elloumi, W., Abraham, A., & Alimi, A. M. (2017). ACO-PSO optimization for
solving TSP problem with GPU acceleration. Adv. Intell. Syst. Comput. 557, 559-569.
https://doi.org/10.1007/978-3-319-53480-0_55.

Bottani, E., Murino, T., Schiavo, M., & Akkerman, R. (2019). Resilient food supply chain
design: Modelling framework and metaheuristic solution approach. Computer
Industrial Engineering, 135, 177-198. https://doi.org/10.1016/j.cie.2019.05.011
October 2018.

Cecilia, J. M., Garcia, J. M., Nisbet, A., Amos, M., & Ujaldén, M. (2013). Enhancing data
parallelism for Ant Colony Optimization on GPUs. Journal of Parallel and Distributed
Computing, 73(1), 42-51. https://doi.org/10.1016/j.jpdc.2012.01.002.

Cecilia, J. M., Llanes, A., Abellan, J. L., Gémez-Luna, J., Chang, L.-W., & Hwu, W.-M. W.
(Mar. 2018). High-throughput Ant Colony Optimization on graphics processing units.
Journal of Parallel and Distributed Computing, 113, 261-274. https://doi.org/10.1016/
j.jpdc.2017.12.002.

Cecilia, J. M., Llanes, A., Abellan, J. L., Gémez-Luna, J., Chang, L. W., & Hwu, W. M. W.
(2018). High-throughput ant colony optimization on graphics processing units.
Journal of Parallel and Distributed Computing, 113, 261-274. https://doi.org/10.1016/
j-jpdc.2017.12.002.

Chitty, D. M. (2018). Applying ACO to large scale TSP instances. Adv. Intell. Syst. Comput.

13

Computers & Industrial Engineering 147 (2020) 106610

650, 104-118. https://doi.org/10.1007/978-3-319-66939-7 9.

Dawson, L., & Stewart, I. A. (2014). Accelerating ant colony optimization-based edge
detection on the GPU using CUDA. In 2014 IEEE congress on evolutionary compu-
tation (CEC), pp. 1736-1743, doi: 10.1109/CEC.2014.6900638.

Dawson, L. (2015). Generic techniques in general purpose gpu programming with ap-
plications To Ant Colony and Image Processing Algorithms.

Dorigo, M., & Gambardella, L. M. (Apr. 1997). Ant colony system: A cooperative learning
approach to the traveling salesman problem. IEEE Transactions on Evolutionary
Computation, 1(1), 53-66. https://doi.org/10.1109/4235.585892..

El Baz, D., Hifi, M., Wu, L., & Shi, X. (2016). A parallel ant colony optimization for the
maximum-weight clique problem. In 2016 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), pp. 796-800, doi: 10.1109/IPDPSW.
2016.111.

Esmaeilikia, M., Fahimnia, B., Sarkis, J., Govindan, K., Kumar, A., & Mo, J. (2016).
Tactical supply chain planning models with inherent flexibility: Definition and re-
view. Annals of Operations Research, 244(2), 407-427. https://doi.org/10.1007/
510479-014-1544-3.

Fathollahi-Fard, A. M., Govindan, K., Hajiaghaei-Keshteli, M., & Ahmadi, A. (2019). A
green home health care supply chain: New modified simulated annealing algorithms.
J. Clean. Prod. 240, 118200. https://doi.org/10.1016/j.jclepro.2019.118200.

Fingler, H., Caceres, E. N., Mongelli, H., & Song, S. W. (2014). A CUDA based solution to
the multidimensional knapsack problem using the ant colony optimization. Procedia
Computer Science, 29(30), 84-94. https://doi.org/10.1016/j.procs.2014.05.008.

Gao, J., Chen, Z., Gao, L., & Zhang, B. (2016). GPU implementation of ant colony opti-
mization-based band selections for hyperspectral data classification. 2016 8th work-
shop on hyperspectral image and signal processing: Evolution in remote sensing
(WHISPERS) (pp. 1-4). . https://doi.org/10.1109/WHISPERS.2016.8071720.

Guerrero, G. D., Cecilia, J. M., Llanes, A., Garcia, J. M., Amos, M., & Ujaldén, M. (2014).
Comparative evaluation of platforms for parallel ant colony optimization. Journal of
Supercomputing, 69(1), 318-329. https://doi.org/10.1007/s11227-014-1154-5.

Giilcii, S., Mahi, M., Baykan, O. K., & Kodaz, H. (2018). A parallel cooperative hybrid
method based on ant colony optimization and 3-Opt algorithm for solving traveling
salesman problem. Soft Computing, 22(5), 1669-1685. https://doi.org/10.1007/
s00500-016-2432-3.

Huo, Y., & Huang, J. X. (2016). Parallel ant colony optimization for flow shop scheduling
subject to limited machine availability. IEEE international parallel and distributed
processing symposium workshops (IPDPSW) (pp. 756-765). . https://doi.org/10.1109/
IPDPSW.2016.151.

Ismkhan, H. (2017). Effective heuristics for ant colony optimization to handle large-scale
problems. Swarm and Evolutionary Computation, 32, 140-149. https://doi.org/10.
1016/j.swevo0.2016.06.006.

Ivars Dzalbs, T. K. Supply chain logistics problem dataset. [Online]. Available: https://
brunel.figshare.com/articles/Supply_Chain_Logistics_Problem_Dataset/7558679.
Kalayci, C. B., & Kaya, C. (2016). An ant colony system empowered variable neighbor-
hood search algorithm for the vehicle routing problem with simultaneous pickup and

delivery. Expert Systems with Applications, 66, 163-175. https://doi.org/10.1016/j.
eswa.2016.09.017.

Kallioras, N. A., Kepaptsoglou, K., & Lagaros, N. D. (2015). Transit stop inspection and
maintenance scheduling: A GPU accelerated metaheuristics approach. Transp. Res.
Part C Emerg. Technol. 55, 246-260. https://doi.org/10.1016/j.trc.2015.02.013.

Khatri, K., & Kumar Gupta, V. (2015). Research on solving travelling salesman problem
using rank based ant system on GPU. Compusoft, 4(5), 2320.

Kiran, M. S., Ozceylan, E., Giindiiz, M., & Paksoy, T. (2012). A novel hybrid approach
based on particle swarm optimization and ant colony algorithm to forecast energy
demand of Turkey. Energy Conversion Management, 53(1), 75-83. https://doi.org/10.
1016/j.enconman.2011.08.004.

Li, F. (2014). GACO: A GPU-based high performance parallel multi-ant colony optimi-
zation algorithm. Journal of Information Computing Science, 11(6), 1775-1784.
https://doi.org/10.12733/jics20103218.

Li, B. H,, Lu, M., Shan, Y. G., & Zhang, H. (2015). Parallel ant colony optimization for the
determination of a point heat source position in a 2-D domain. Applied Thermal
Engineering, 91, 994-1002. https://doi.org/10.1016/j.applthermaleng.2015.09.002.

Llanes, A., Cecilia, J. M., Sanchez, A., Garcia, J. M., Amos, M., & Ujaldén, M. (2016).
Dynamic load balancing on heterogeneous clusters for parallel ant colony optimiza-
tion. Cluster Computation, 19(1), 1-11. https://doi.org/10.1007/510586-016-0534-4.

Llanes, A., Vélez, C., Sanchez, A. M., Pérez-Sanchez, H., & Cecilia, J. M. (2016). Parallel
ant colony optimization for the HP protein folding problem. In F. Ortufo, & I. Rojas
(Eds.). Lecture notes in computer science (including subseries lecture notes in artificial
intelligence and lecture notes in bioinformatics) (pp. 615-626). Cham: Springer
International Publishing.

Lloyd, H., & Amos, M. (2017). A highly parallelized and vectorized implementation of
max-min ant system on Intel® Xeon Phi™. 2016 IEEE Symp Ser. Comput. Intell. SSCI,
2016. https://doi.org/10.1109/5SCI.2016.7850085.

Markvica, D., Schauer, C., & Raidl, G. R. (2015). CPU versus GPU parallelization of an ant
colony optimization for the longest common subsequence problem. In R. Moreno-
Diaz, F. Pichler, & A. Quesada-Arencibia (Eds.). Lecture notes in computer science
(including subseries lecture notes in artificial intelligence and lecture notes in bioinfor-
matics) (pp. 401-408). Cham: Springer International Publishing.

Mehne, H. H. (2015). Evaluation of parallelism in ant colony optimization method for
numerical solution of optimal control problems. J. Electr. Eng. Control Comput. Sci.
JEEECCS, 1(2), 15-20.

Mohammed, A., & Duffuaa, S. (2019). A meta-heuristic algorithm based on simulated
annealing for designing multi-objective supply chain systems. In 2019 Industrial &
systems engineering conference (ISEC), pp. 1-6, doi: 10.1109/IASEC.2019.8686517.

Murooka, R., Ito, Y., & Nakano, K. (2016). Accelerating ant colony optimization for the
vertex coloring problem on the GPU. In 2016 Fourth International Symposium on

https://doi.org/10.1016/j.cie.2020.106610
https://doi.org/10.1016/j.cie.2020.106610
https://doi.org/10.1007/978-3-319-24369-6_6
https://doi.org/10.1007/978-3-319-53480-0_55
https://doi.org/10.1016/j.cie.2019.05.011
https://doi.org/10.1016/j.jpdc.2012.01.002
https://doi.org/10.1016/j.jpdc.2017.12.002
https://doi.org/10.1016/j.jpdc.2017.12.002
https://doi.org/10.1016/j.jpdc.2017.12.002
https://doi.org/10.1016/j.jpdc.2017.12.002
https://doi.org/10.1007/978-3-319-66939-7_9
https://doi.org/10.1109/4235.585892
https://doi.org/10.1007/s10479-014-1544-3
https://doi.org/10.1007/s10479-014-1544-3
https://doi.org/10.1016/j.jclepro.2019.118200
https://doi.org/10.1016/j.procs.2014.05.008
https://doi.org/10.1109/WHISPERS.2016.8071720
https://doi.org/10.1007/s11227-014-1154-5
https://doi.org/10.1007/s00500-016-2432-3
https://doi.org/10.1007/s00500-016-2432-3
https://doi.org/10.1109/IPDPSW.2016.151
https://doi.org/10.1109/IPDPSW.2016.151
https://doi.org/10.1016/j.swevo.2016.06.006
https://doi.org/10.1016/j.swevo.2016.06.006
https://doi.org/10.1016/j.eswa.2016.09.017
https://doi.org/10.1016/j.eswa.2016.09.017
https://doi.org/10.1016/j.trc.2015.02.013
http://refhub.elsevier.com/S0360-8352(20)30344-2/h0125
http://refhub.elsevier.com/S0360-8352(20)30344-2/h0125
https://doi.org/10.1016/j.enconman.2011.08.004
https://doi.org/10.1016/j.enconman.2011.08.004
https://doi.org/10.12733/jics20103218
https://doi.org/10.1016/j.applthermaleng.2015.09.002
https://doi.org/10.1007/s10586-016-0534-4
http://refhub.elsevier.com/S0360-8352(20)30344-2/h0150
http://refhub.elsevier.com/S0360-8352(20)30344-2/h0150
http://refhub.elsevier.com/S0360-8352(20)30344-2/h0150
http://refhub.elsevier.com/S0360-8352(20)30344-2/h0150
http://refhub.elsevier.com/S0360-8352(20)30344-2/h0150
https://doi.org/10.1109/SSCI.2016.7850085
http://refhub.elsevier.com/S0360-8352(20)30344-2/h0160
http://refhub.elsevier.com/S0360-8352(20)30344-2/h0160
http://refhub.elsevier.com/S0360-8352(20)30344-2/h0160
http://refhub.elsevier.com/S0360-8352(20)30344-2/h0160
http://refhub.elsevier.com/S0360-8352(20)30344-2/h0160
http://refhub.elsevier.com/S0360-8352(20)30344-2/h0165
http://refhub.elsevier.com/S0360-8352(20)30344-2/h0165
http://refhub.elsevier.com/S0360-8352(20)30344-2/h0165

L. Dzalbs and T. Kalganova

Computing and Networking (CANDAR), pp. 469-475, doi: 10.1109/CANDAR.2016.
0088.

NSharma, S., & Garg, V. (2015). Multi colony ant system based solution to travelling
salesman problem using OpenCL. Int. J. Comput. Appl., vol. 118, no. 23, pp. 1-3, May
2015, doi: 10.5120/20882-3637.

O. U. B and R. Tarnawski, Machine Learning, Optimization, and Big Data, vol. 10710.
Cham: Springer International Publishing, 2018.

Panicker, V. V., Reddy, M. V., & Sridharan, R. (2018). Development of an ant colony
optimisation-based heuristic for a location-routing problem in a two-stage supply
chain. International Journal of Value Chain Management, 9(1), 38. https://doi.org/10.
1504/1JVCM.2018.091109.

Prakasam, A., & Savarimuthu, N. (2016). Metaheuristic algorithms and probabilistic be-
haviour: A comprehensive analysis of ant colony optimization and its variants.
Artificial Intelligence Review, 45(1), 97-130. https://doi.org/10.1007/s10462-015-
9441-y.

Randall, M., & Lewis, A. (2002). A parallel implementation of ant colony optimization.
Journal of Parallel and Distributed Computing, 62(9), 1421-1432. https://doi.org/10.
1006/jpdc.2002.1854.

Rohit Chandra, R., Dagum, Leo, & Kohr, David (2000). Parallel programming in OpenMP.
Elsevier.

Sato, M., Tsutsui, S., Fujimoto, N., Sato, Y., & Namiki, M. (2014). First results of per-
formance comparisons on many-core processors in solving QAP with ACO, pp.
1477-1478, doi: 10.1145/2598394.2602274.

Schyns, M. (2015). An ant colony system for responsive dynamic vehicle routing.
European Journal of Operational Research, 245(3), 704-718. https://doi.org/10.1016/
j-€jor.2015.04.009.

Seshadri, C. S, H. S., & Lokesha, V. (2015). An effective parallelism topology in ant colony
optimization algorithm for medical image edge detection with critical path metho-
dology (PACO-CPM). International Journal Recent Contribution from Engineering
Science IT, vol. 3, no. 4, pp. 12, doi: 10.3991/ijes.v3i4.5139.

Skinderowicz, R. (2016). The GPU-based parallel Ant Colony System. Journal of Parallel
and Distributed Computing, 98, 48-60. https://doi.org/10.1016/j.jpdc.2016.04.014.

Skinderowicz, R. (May 2020). Implementing a GPU-based parallel MAX-MIN ant system.
Futur. Gener. Comput. Syst. 106, 277-295. https://doi.org/10.1016/j.future.2020.01.
011.

Sodani, J. J. R. (2016). Intel xeon phi processor high performance programming: Knights
landing edition, Edition 2. Morgan Kaufmann.

Tan, Y., & Ding, K. (2016). A survey on GPU-based implementation of swarm intelligence
algorithms. IEEE Transactions on Cybernetics, 46(9), 2028-2041. https://doi.org/10.
1109/TCYB.2015.2460261.

Thiruvady, D., Ernst, A. T., & Singh, G. (2016). Parallel ant colony optimization for re-
source constrained job scheduling. Annals of Operations Research, 242(2), 355-372.
https://doi.org/10.1007/s10479-014-1577-7.

Tirado, F., Barrientos, R. J., Gonzalez, P., & Mora, M. (2017). Efficient exploitation of the
xeon phi architecture for the ant colony optimization (ACO) metaheuristic. Journal of
Supercomputing, 73(11), 5053-5070. https://doi.org/10.1007/511227-017-2124-5.

Tirado, F., Urrutia, A., & Barrientos, R. J. (2015). Using a coprocessor to solve the ant
colony optimization algorithm. In 2015 34th international conference of the chilean
computer science society (SCCC), vol. 2016-Febru, pp. 1-6, doi: 10.1109/SCCC.2015.
7416584.

Tufteland, T., @desneltvedt, G., & Goodwin, M. (2016). Optimizing PolyACO training
with GPU-based parallelization. In International series in operations research and
management science, vol. 272, pp. 233-240.

Uchida, A., Ito, Y., & Nakano, K. (2014). Accelerating ant colony optimisation for the
travelling salesman problem on the GPU. International Journal of Parallel, Emergent
and Distributed Systems, vol. 29, no. 4. Taylor & Francis, pp. 401-420, doi: 10.1080/
17445760.2013.842568.

Valdez, F., Moreno, F., & Melin, P. (2020). A comparison of ACO, GA and SA for solving
the TSP problem, pp. 181-189.

Veluscek, M., Kalganova, T., Broomhead, P., & Grichnik, A. (May 2015). Composite goal
methods for transportation network optimization. Expert Systems with Applications,
42(8), 3852-3867. https://doi.org/10.1016/j.eswa.2014.12.017.

Vieira, P. F., Vieira, S. M., Gomes, M. 1., Barbosa-Pévoa, A. P., & Sousa, J. M. C. (2015).

14

Computers & Industrial Engineering 147 (2020) 106610

Designing closed-loop supply chains with nonlinear dimensioning factors using ant
colony optimization. Soft Computing, 19(8), 2245-2264. https://doi.org/10.1007/
s00500-014-1405-7.

Wagh, A., & Nemade, V. (Jun. 2017). Query optimization using modified ant colony al-
gorithm. International Journal of Computers and Applications, 167(2), 29-33. https://
doi.org/10.5120/ijca2017914185.

Wang, K.-J., & Lee, C.-H. (2015). A revised ant algorithm for solving location—-allocation
problem with risky demand in a multi-echelon supply chain network. Applied Soft
Computing, 32, 311-321. https://doi.org/10.1016/j.as0c.2015.03.046.

Wang, P., Li, H., & Zhang, B. (2015). A GPU-based parallel ant colony algorithm for
scientific workflow scheduling. Int. J. Grid Distrib. Comput. 8(4), 37-46. https://doi.
org/10.14257/ijgdc.2015.8.4.04.

Wang, J., Osagie, E., Thulasiraman, P., & Thulasiram, R. K. (2009). HOPNET: A hybrid ant
colony optimization routing algorithm for mobile ad hoc network. Ad Hoc Networks,
7(4), 690-705. https://doi.org/10.1016/j.adhoc.2008.06.001.

Weidong, G., Jingiao, F., Yazhou, W., Hongjun, Z., & Jidong, H. (2015). Parallel perfor-
mance of an ant colony optimization algorithm for TSP. 2015 8th international con-
ference on intelligent computation technology and automation (ICICTA) (pp. 625-629). .
https://doi.org/10.1109/ICICTA.2015.159.

Wong, L., & Moin, N. H. (2017). Ant colony optimization for split delivery inventory
routing problem. Malaysian Journal of Computing Science, 30(4), 333-348. https://
doi.org/10.22452/mjcs.vol30no4.5.

Yang, Q., Fang, L., & Duan, X. (2016). RMACO :A randomly matched parallel ant colony
optimization. World Wide Web, 19(6), 1009-1022. https://doi.org/10.1007/s11280-
015-0369-6.

Yeh, W.-C., & Chuang, M.-C. (2011). Using multi-objective genetic algorithm for partner
selection in green supply chain problems. Expert Systems with Applications, 38(4),
4244-4253. https://doi.org/10.1016/j.eswa.2010.09.091.

Yelmewad, P., Kumar, A., & Talawar, B. (2019). MMAS on GPU for large TSP instances.
2019 10th international conference on computing, communication and networking tech-
nologies (ICCCNT) (pp. 1-6). . https://doi.org/10.1109/ICCCNT45670.2019.
8944770.

Zhang, Z., Zhang, N., & Feng, Z. (2014). Multi-satellite control resource scheduling based
on ant colony optimization. Expert Systems with Applications, 41(6), 2816-2823.
https://doi.org/10.1016/j.eswa.2013.10.014.

Zhang, S., Zhang, W., Gajpal, Y., & Appadoo, S. S. (2019). Ant colony algorithm for
routing alternate fuel vehicles in multi-depot vehicle routing problem. Springer
Singapore, 251-260.

Zhou, Y., He, F., Hou, N., & Qiu, Y. (2018). Parallel ant colony optimization on multi-core
SIMD CPUs. Future Generation Computing Systems, 79, 473-487. https://doi.org/10.
1016/j.future.2017.09.073.

Zhou, Y., He, F., & Qiu, Y. (Jun. 2017). Dynamic strategy based parallel ant colony op-
timization on GPUs for TSPs. Sci. China Inf. Sci. 60(6), 068102. https://doi.org/10.
1007/s11432-015-0594-2.

Zhou, W., He, F., & Zhang, Z. (2017). A GPU-based parallel MAX-MIN Ant System algo-
rithm with grouped roulette wheel selection. 2017 IEEE 21st international conference
on computer supported cooperative work in design (CSCWD) (pp. 360-365). . https://
doi.org/10.1109/CSCWD.2017.8066721.

Ivars Dzalbs is a second year PhD student at Brunel University London. His area of ex-
pertise is intelligent systems and artificial intelligence. Furthermore, Ivars holds
Bachelors degree in Electronic and Computer engineering.

Dr Tatiana Kalganova (BUL: PI:TK) BSc (Hons), PhD, is a Reader in Intelligent Systems
and ECE Postgraduate Research Director in ECE at Brunel. She has over 20 years of ex-
perience in design and implementation of applied Intelligent Systems. Her research into
Ant Colony Optimization (ACO) and graph mathematics have been deployed into
Caterpillar’s GEMSTONE supply chain optimization process leading to multiple internal
and external international awards, including the 2016 Caterpillar Chairman’s Award for
Process/Business Innovation, the 2016 Global Excellence in Analytics Award by the
International Institute of Analytics, and 2017 Finalist for the INFORMS Innovation in
Analytics prize.

https://doi.org/10.1504/IJVCM.2018.091109
https://doi.org/10.1504/IJVCM.2018.091109
https://doi.org/10.1007/s10462-015-9441-y
https://doi.org/10.1007/s10462-015-9441-y
https://doi.org/10.1006/jpdc.2002.1854
https://doi.org/10.1006/jpdc.2002.1854
http://refhub.elsevier.com/S0360-8352(20)30344-2/h0205
http://refhub.elsevier.com/S0360-8352(20)30344-2/h0205
https://doi.org/10.1016/j.ejor.2015.04.009
https://doi.org/10.1016/j.ejor.2015.04.009
https://doi.org/10.1016/j.jpdc.2016.04.014
https://doi.org/10.1016/j.future.2020.01.011
https://doi.org/10.1016/j.future.2020.01.011
https://doi.org/10.1109/TCYB.2015.2460261
https://doi.org/10.1109/TCYB.2015.2460261
https://doi.org/10.1007/s10479-014-1577-7
https://doi.org/10.1007/s11227-017-2124-5
https://doi.org/10.1016/j.eswa.2014.12.017
https://doi.org/10.1007/s00500-014-1405-7
https://doi.org/10.1007/s00500-014-1405-7
https://doi.org/10.5120/ijca2017914185
https://doi.org/10.5120/ijca2017914185
https://doi.org/10.1016/j.asoc.2015.03.046
https://doi.org/10.14257/ijgdc.2015.8.4.04
https://doi.org/10.14257/ijgdc.2015.8.4.04
https://doi.org/10.1016/j.adhoc.2008.06.001
https://doi.org/10.1109/ICICTA.2015.159
https://doi.org/10.22452/mjcs.vol30no4.5
https://doi.org/10.22452/mjcs.vol30no4.5
https://doi.org/10.1007/s11280-015-0369-6
https://doi.org/10.1007/s11280-015-0369-6
https://doi.org/10.1016/j.eswa.2010.09.091
https://doi.org/10.1109/ICCCNT45670.2019.8944770
https://doi.org/10.1109/ICCCNT45670.2019.8944770
https://doi.org/10.1016/j.eswa.2013.10.014
http://refhub.elsevier.com/S0360-8352(20)30344-2/h0335
http://refhub.elsevier.com/S0360-8352(20)30344-2/h0335
http://refhub.elsevier.com/S0360-8352(20)30344-2/h0335
https://doi.org/10.1016/j.future.2017.09.073
https://doi.org/10.1016/j.future.2017.09.073
https://doi.org/10.1007/s11432-015-0594-2
https://doi.org/10.1007/s11432-015-0594-2
https://doi.org/10.1109/CSCWD.2017.8066721
https://doi.org/10.1109/CSCWD.2017.8066721

