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Abstract

Global-scale surface soil moisture products are currently available from multiple remote sensing 

platforms. Footprint-scale assessments of these products are generally restricted to limited number 

of densely-instrumented validation sites. However, by taking active and passive soil moisture 

products together with a third independent soil moisture estimates via land surface modeling, triple 

collocation (TC) can be applied to estimate the correlation metric of satellite soil moisture 

products (versus an unknown ground truth) over a quasi-global domain. Here, an assessment of 

Soil Moisture Active Passive (SMAP), Soil Moisture Ocean Salinity (SMOS) and Advanced 

SCATterometer (ASCAT) surface soil moisture retrievals via TC is presented. Considering the 

potential violation of TC error assumptions, the impact of active-passive and satellite-model error 

cross correlations on the TC-derived inter-comparison results is examined at in situ sites using 

quadruple collocation analysis. In addition, confidence intervals for the TC-estimated correlation 

metric are constructed from moving-block bootstrap sampling designed to preserve the temporal 

persistence of the original (unevenly-sampled) soil moisture time-series. This study is the first to 

apply TC to obtain a robust global-scale cross-assessment of SMAP, SMOS and ASCAT soil 

moisture retrieval accuracy in terms of anomaly temporal correlation. Our results confirm the 

overall advantage of SMAP (with a global average anomaly correlation of 0.76) over SMOS (0.66) 

and ASCAT (0.63) that has been established in several recent regional, ground-based studies. 

SMAP is also the best-performing product over the majority of applicable land pixels (52%), 

although SMOS and ASCAT each shows advantage in distinct geographic regions.

1. Introduction

As a key state variable in hydrological and meteorological modeling systems, the global 

observation of soil moisture has become a major priority. Currently, several remote sensing 

platforms provide continuous global surface (approximately 0–5 cm) retrievals: the National 

Aeronautics and Space Administration (NASA)’s Soil Moisture Active Passive (SMAP, 

2015-), the European Space Agency (ESA)’s Soil Moisture Ocean Salinity (SMOS, 2009-), 

the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT)’s 
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Advanced SCATterometers (ASCAT, 2007-), and the Japanese Aerospace Exploration 

Agency (JAXA)’s Advanced Microwave Scanning Radiometer 2 (AMSR2, 2012-). The 

accuracy of the satellite soil moisture retrievals is typically described via their root-mean-

squared-error (RMSE; e.g. Brocca et al. 2010; Jackson et al. 2010; Kerr et al. 2016) or de-

biased/unbiased RMSE (ubRMSE; e.g. Colliander et al. 2017) versus ground-based 

observations at a footprint-scale. However, difficulty in obtaining viable estimates of ground 

truth soil moisture at the satellite footprint scale has limited past validation activities to a 

small number of locations (e.g., SMAP’s core validation sites) and/or discrete time periods 

(e.g., field campaigns). The broader evaluation of satellite soil moisture products (across 

regional or continental scales) is typically based on comparisons with sparse ground soil 

moisture networks or modeled datasets (e.g., Paulik et al. 2014; González-Zamora et al. 
2015; Piles at al. 2014; Al-Yaari et al. 2014; Polcher et al. 2016; Kim et al. 2018). Naturally, 

such comparisons are unable to provide direct validation metrics relative to the ground truth, 

but rather metrics against a chosen reference dataset with unknown errors at the footprint-

scale of satellite retrievals. For example, correlation coefficient metrics obtained from 

comparing with point-scale ground observations have been shown to underestimate the 

correlation between retrievals and true soil moisture values (Chen et al. 2017).

Initially designed for obtaining the calibration constants against a reference dataset in 

satellite wind speed products, the triple collocation (TC) (Stoffelen 1998) technique provides 

a solution to such challenge. In particular, TC can be applied to the estimate error variances 

of a geophysical measurement system and has become an important tool for satellite soil 

moisture assessments (e.g., Zwieback et al. 2012; Dorigo et al. 2010; Miralles et al. 2010; 

Draper et al. 2013). However, standard TC applications are limited to only providing relative 

error metrics. It requires a reference dataset to be chosen from the three collocated data 

products, and the resulting error variances are subject to the multiplicative and additive 

biases of the reference dataset (Chen et al. 2017). Recently developed TC-based solution – 

the Extended Triple Collocation, or ETC (McColl 2014) – for the Pearson’s correlation 

coefficient metric, on the other hand, does not require a reference dataset and yields an 

absolute estimate of the temporal correlation between the product under evaluation and the 

unknown truth. Pearson’s correlation coefficient is a widely reported metric for satellite soil 

moisture and an appropriate metric for summarizing retrieval value in a data assimilation 

context (Reichle et al., 2008). In this analysis, we adopt the ETC solution and conduct an 

assessment and inter-comparison of the SMAP Level 3, SMOS Level 3 and ASCAT Level 2 

soil moisture products based on the correlation metric (R). Until recently, relatively few 

studies have been conducted to evaluate satellite soil moisture products at a continental scale 

(e.g. Draper et al. 2013; Leroux et al. 2013) using TC. To the best of our knowledge, this 

study is the first attempt to apply TC to obtain the footprint-scale correlation metric for 

SMAP observations at quasi-global scale, and compare it directly with soil moisture 

retrievals from SMOS and ASCAT.

Our basic strategy for applying TC is to employ soil moisture data triplets comprising a 

passive microwave product (SMAP or SMOS), an active remote sensing product (ASCAT), 

and a land surface model product. TC is based on a fundamental assumption that each of 

these products contain uncorrelated errors. However, recent works have identified non-

negligible error correlation in soil moisture products acquired from active and passive 
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microwave sources (Gruber et al. 2016b; Pierdicca et al. 2017). This suggests that it is 

necessary to examine the impact of violating this assumption on SMAP-ASCAT and SMOS-

ASCAT-based TC analyses. Therefore, we also apply the least-squares quadruple collocation 

solution (QC, Pierdicca et al. 2015) to estimate the error cross-correlations at over 200 

sparse ground observation sites to further evaluate the robustness of our global TC analysis 

strategy.

This paper is organized as follows. Section 2 reviews the TC and quadruple collocation (QC) 

methodologies and data-processing procedures as well as the use of moving-block bootstrap 

resampling to obtain confidence intervals for TC-derived R. Section 3 describes the remote 

sensing, land surface modeling and ground observation datasets used in the analysis. Section 

4 presents the QC results at sparse network sites and discusses the sensitivity of the TC 

analysis to both non-zero error cross-correlation between active and passive satellite soil 

moisture products and our choice of a particular land surface model dataset. Results and 

discussions of global comparison of SMAP, SMOS and ASCAT soil moisture via TC are 

presented in Sections 5 and 6, respectively.

2. Methodologies

2.1 Extended Triple Collocation

In soil moisture validation and comparison studies, TC has typically been applied to estimate 

the random error variance of a particular soil moisture dataset. In contrast, the extended 

triple collocation (ETC) approach (McColl 2014) solves for the correlation between a 

dataset and the unknown truth. As in TC, it requires three collocated, independent 

measurement systems (X, Y, Z, in our case representing: a passive satellite retrieval, an 

active satellite retrieval and a model product, respectively) that describe the same 

geophysical variable (in this case-average surface soil moisture of the satellite grid cell, 

which is approximately 40 × 40 km2). ETC is based on the following assumptions: 1) all 

three datasets are linearly related to the true state (T); 2) zero error cross-correlation exists 

between X, Y and Z; and 3) zero correlation exists between errors and T and 4) the 

stationary of signal and error statistics (Gruber et al. 2016a; Draper et al. 2013; Zwieback et 
al. 2012). If these assumptions hold, the correlation between X and the T can be estimated as

RX = σXY σXZ
σX

2 σY Z
(1)

where σXY is the covariance of X and Y, and σX
2  is the variance of X. Analytical details for 

deriving (1) from the classic TC method (Stoffelen 1998) can be found in McColl (2014). To 

ensure consistency with the assumption listed above, seasonal signals are commonly 

removed from the raw time-series of each product prior to the application of TC (Gruber et 
al. 2016a; Dorigo et al. 2010; Su and Ryu, 2015). Here, anomaly time series are generated 

by removing the average value of a 30-day moving window centered upon the data point 

being treated (i.e. from day −14 to day +15). Given the potential temporally sparse nature of 

satellite retrievals, a minimum of 3 observations is required in each of the first and second 

halves of the 30-day window, in addition to the data point being treated itself. This particular 
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anomaly definition, versus the alternative definition of deviations from a long-term seasonal 

climatology, has less stringent requirements regarding the length of datasets, which is 

usually the limiting factor in the application of TC in satellite products. While the removal 

of low-frequency variability has been shown to improve the robustness of TC results (Chen 

et al. 2017), it renders our particular ETC approach insensitive to (potentially-important) 

error in low-frequency and/or seasonal soil moisture dynamics. The implications of this will 

be discussed below.

ETC-based estimates of correlation are considered viable when: 1) the collocated triple time 

series is comprised of at least 50 data points; 2) positive correlation is found between each of 

the three input anomaly time-series, and 3) ETC correlation outputs are real and positive for 

each of the three datasets. All other ETC correlation estimates are masked. The positive 

correlation requirement between input datasets (#2 above) is necessary to avoid ambiguity 

since ETC is unable to resolve the sign of the output R values (McColl 2014). This 

limitation results in the exclusion of pixels in certain regions where active and passive soil 

moisture retrievals are negatively correlated (see additional discussion in Section 5).

2.2 Estimation of error cross-correlation: Quadruple collocation

As noted above, a potential source of error for the TC analysis is the presence of error cross-

correlation (ECC) between the soil moisture datasets, especially between active and passive 

remote sensing products. Non-zero ECC violates the underlying TC assumptions and can 

lead to biased TC results. In past studies, ECC was typically assumed to be zero between all 

products (e.g., Leroux et al. 2013). However, recent works have revealed the presence of 

non-zero ECC between active and passive soil moisture retrievals (Gruber et al. 2016b; 

Pierdicca et al. 2017). Therefore, it is prudent to re-examine ECC levels in SMAP-ASCAT 

and SMOS-ASCAT soil moisture data pairs utilized here.

The TC algorithm can be extended to include a fourth dataset (i.e., quadruple collocation, or 

QC) and the error variances can be estimated with a least squares solution (Pierdicca et al. 
2015) with the same TC assumptions. Furthermore, the zero ECC assumption can be 

relaxed, and – on the condition that only one pair within of the four datasets have non-zero 

ECC – estimates of ECC can be obtained from the least-squares solution (Zwieback et al. 
2012; Gruber et al. 2016b).

Here we adopt the formulation in Gruber et al. (2016b) to estimate the error cross-

correlation between the active (ASCAT) and passive (SMAP, SMOS) soil moisture datasets 

and assess the impact of such cross-correlation on TC results. The QC analysis is conducted 

at sparse soil moisture network sites where ground observations can serve as the fourth soil 

moisture dataset. The QC formulation also provides estimates of the error variances of each 

dataset. In certain cases, such estimates will be more accurate than those obtained from TC 

since QC can account for the presence of non-zero ECC within a particular pair of 

collocated datasets (Yilmaz and Crow, 2014).

Given four soil moisture measurement systems X, Y, Z, W, representing a passive remote 

sensing, an active remote sensing, a model and point-scale ground observation, respectively, 

the least-squares solution for the QC problem is given by

Chen et al. Page 4

Remote Sens Environ. Author manuscript; available in PMC 2020 June 29.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



y =

σX
2

σY
2

σZ
2

σW
2

σXY
σXZσXW /σZW
σY ZσY W /σZW
σXZσZW /σXW
σY ZσZW /σY W
σXW σZW /σXZ
σY W σZW /σY Z
σXZσY W /σZW
σXW σY Z /σZW

A =

1 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0

x =

βX
2 σΘ

2

βY
2 σΘ

2

βZ
2 σΘ

2

βW
2 σΘ

2

βXβY σΘ
2

σεX
2

σεY
2

σεZ
2

σεW
2

σεXεY

(2)

where Θ is the true soil moisture signal, and β is the multiplicative bias of a given dataset as 

in X = αX + βXΘ + εX, and ε is the zero-mean random error. And the least squares solution 

for the parameters in x is given as

x = (ATA)−1ATy (3)

Note that this solution enables the TC approach described in section 2.1 to be slightly 

relaxed. In particular, non-zero ECC is now allowed in one data pair (here between X and Y, 

where X is SMAP or SMOS, and Y is ASCAT). ECC between any other data pairs are still 

required to be zero (i.e., σεXεY ≠ 0, and σεXεZ = σεXεW = σεY εZ = σεY εW = σεZεW = 0) . As 

in Gruber et al. (2016b), we consider these conditions generally satisfied in the active-

passive-LSM-in situ data quadruples in this study.

2.3 Confidence interval from moving block bootstrapping

Using collocated surface soil moisture retrievals from passive (SMAP or SMOS) and active 

(ASCAT) sensors and a land surface modeling product, the correlation metric of the three 

satellite products (versus an unknown truth) can be estimated via TC at a quasi-global scale. 

However, considerable sampling errors are expected in TC results, especially when the 

length of the analysis is shortened to accommodate new satellite products (e.g., the two 

years of SMAP considered here). Therefore, it is critical to account for sampling 

uncertainties when making comparisons between the satellite products.

Here, such uncertainties are quantified via bootstrap re-sampling at each pixel to construct 

the confidence interval (CI) of TC estimates. As noted earlier, auto-correlation in time-series 

will reduce the effective sample size and thus underestimate the probability that the original 

bootstrap confidence interval contains the true statistical property (Zwiers, 1990; von Storch 

and Zwiers, 1999). Since soil moisture time series typically contain large amounts of 
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temporal autocorrelation, this effect should be considered when generating boot-strapped 

errors estimates for soil moisture TC results. Although mean 30-day signals have been 

removed from the original time-series, our analysis suggests the resulting anomaly time-

series still contains significant first-order autocorrelation (not shown). This impact also 

applies for correlation estimated by ETC techniques since the latter is essentially an 

expansion upon the Pearson’s correlation coefficient formula from two to three time series 

members (McColl, 2014). A solution is proposed in Mudelsee (2002, 2010) where a pair-

wise moving block bootstrap (MBB) re-sampling technique is applied to obtain a robust 

estimate of the confidence intervals for Pearson’s correlation coefficient in serially-

correlated time-series.

Here, we have adapted the MBB method introduced in Ólafsdóttir and Mudelsee (2014) for 

the bi-variate correlation problem to the triple collocation problem to construct the 

confidence interval of the ETC correlation results. In each iteration of the re-sampling 

procedure, MBB is applied to draw blocks of data triplets from the original time series 

samples to form samples that preserve the temporal persistence of the original data. Block 

length is determined from the equivalent autocorrelation coefficient of the three anomaly 

time-series (i.e., ETC inputs) which is calculated from individual persistence time, τ, of the 

three time-series. Persistence times are then estimated by minimizing the sum of squares:

S τX = ∑i = 2
n x(i) − exp −[t(i) − t(i − 1)]/τX ⋅ x(i − 1) 2

(4)

where n is the length of the time-series, x(i) is the ith data point (i.e. soil moisture anomaly) 

and t(i) is the linear time point (in unit of day) with uneven spacing, which is typical of 

satellite retrievals. Note that although the land surface model time-series are evenly spaced 

with sub-daily frequency, only the data points that temporally matched to the satellite 

retrievals are considered and thereby treated as an unevenly-spaced time series. The 

equivalent AR(1) autocorrelation coefficient is given by 

aX = exp −d/τX , where d = [t(n) − t(1)]/(n − 1) is the average time spacing. The 

autocorrelation coefficient is then bias-corrected to approximate the AR(1) process with an 

even time-spacing:

aX′ = aX ⋅ (n − 1) + 1 /(n − 4) . (5)

A joint, bias-corrected equivalent autocorrelation coefficient for the triple collocation 

analysis is given by

aXY Z′ = aX′ ⋅ aY′ ⋅ az′ 1/3 . (6)

The optimal block length is then estimated as

lopt = NINT 6 ⋅ aXY Z′ / 1 − aXY Z
′2 2/3 ⋅ n1/3 (7)
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where NINT denotes rounding to the nearest integer. Overlapping blocks of data triplets with 

the length of lopt are then extracted from the match-up anomaly time-series and then 

randomly drawn with replacement to be concatenated until the original data length is 

reached (see Figure 1 for an illustration of this procedure). Extra data points in the end of the 

newly-formed bootstrap sample are trimmed. The re-sampling procedure is repeated 1000 

times in each grid pixel. Estimated 95% confidence intervals for each correlation coefficient 

are defined as the range between 2.5th and 97.5th percentile of the bootstrapped sampling 

distribution.

3. Data

As discussed above, three satellite surface soil moisture products (acquired between March 

31, 2015 and March 31, 2017) are evaluated in this analysis: Level 3 SMAP passive 

radiometer retrievals (L3_SM_P, v4-R14010), Level 3 SMOS radiometer retrievals (v300), 

and Level 2 ASCAT scatterometer retrievals. All three retrieval time series contain retrievals 

obtained from both ascending and descending orbits. Details of each product are given 

below.

3.1 Soil Moisture Active Passive (SMAP)

Launched in January 2015, NASA’s SMAP satellite began continuous science data 

acquisition on March 31, 2015 with its L-band (1.41 GHz) radiometer (Entekhabi at al., 

2010). The SMAP L3 data is in the format of global gridded maps of daily composites of the 

SMAP Level 2 Passive Soil Moisture (L2_SM_P) ascending/descending swath data, and is 

posted on a global cylindrical 36 km Equal-Area Scalable Earth, version 2 (EASEv2) grid. 

The validated SMAP L2/3 soil moisture product is based on the V-polarization single-

channel (SCA-V) retrieval algorithm (Chan et al. 2016). Data screening is based on the soil 

moisture retrieval quality flag and only those flagged as “recommended for retrieval” are 

considered in this analysis. The retrieval quality flag is determined from a number of surface 

and retrieval conditions which can be found in Chan et al. (2016) and Chan and Dunbar 

(2015). Soil moisture retrievals from the ascending (6 PM LST) overpasses are now included 

in the SMAP Level 2/3 passive version 4 data products. Validation of the ascending (PM) 

retrievals indicate that it also meets the mission requirement of 0.04 m3/m3 unbiased root 

mean square error (ubRMSE), but with a small degradation compared to the descending 

(AM) retrievals (Jackson et al. 2016).

3.2 Soil Moisture Ocean Salinity (SMOS)

ESA’s SMOS satellite was launched in November 2009 and measures L-band microwave 

emission (1.400–1.427 GHz) with equatorial ascending/descending overpasses at 6 AM/PM 

local solar time and a 3-day revisit period at the equator (Kerr et al. 2001). The SMOS soil 

moisture retrieval algorithm can be found in Kerr et al. (2013). The SMOS Level 3 (v300) 

soil moisture product used here is generated on a 25-km EASEv2 grid (Brodzik and 

Knowles, 2002) available through the Centre Aval de Traitement des Données (CATDS) 

(http://www.catds.fr). In this study, the SMOS L3 soil moisture data was re-gridded to the 

SMAP 36 km-EASEv2 grid by bilinear interpolation. Data were screened primarily by the 

SMOS Data Quality indeX (DQX), which takes into account the error in the retrieval 
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parameters and the Level 1 brightness temperatures (Kerr, et al. 2013). DQX has been 

applied to screen SMOS soil moisture retrievals in several studies with thresholds varying 

between 0.045 and 0.07 (e.g. Polcher et al. 2016; Al-Yaari et al. 2014; Pierdicca et al. 2013). 

Here, pixels with DQX > 0.07 m3/m3 or covered by snow or ice were removed.. A stricter 

screening threshold of 0.04 m3/m3 for DQX is also applied to examine the impact on the 

overall performance SMOS relative to SMAP and ASCAT (see Section 5). The impact of 

varying this threshold on key results will be discussed below. However, unless otherwise 

noted, satellite comparison results shown below are based on the 0.07 m3/m3 DQX threshold 

to maximize the temporal and spatial coverage of the analysis.

3.3 Advanced Scatterometer

The Advanced Scatterometer (ASCAT) sensor onboard the Meteorological Operational-B 

(MetOp-B) satellite measures C-band (5.3 GHz) radar backscatter since September 2012, 

with 25–34 km spatial resolution and equatorial ascending/descending overpasses at 9:30 

PM/AM local solar time and a revisit frequency of 3 days. The ASCAT Level 2 (v5) soil 

moisture index product utilized here is based on the change-detection algorithm developed 

by Vienna University of Technology (TU Wien; see Wagner et al. 1999; Naeimi et al. 2009) 

obtained from EUMETSAT Earth Observation Portal (EOP). As conversion to volumetric 

soil moisture unit is not required in calculation of correlation coefficient, potential error due 

to inaccurate global porosity dataset is avoided here. Pixels were masked if the probability of 

snow, frozen ground and estimated retrieval error are greater than 50%. The ASCAT L2 soil 

moisture index data are available at 12.5-km grid resolution and were re-sampled onto the 

SMAP 36 km-EASEv2 grid through inverse-distance-weighting interpolation.

3.4 Land surface modeling products

Two operational global land surface modeling (LSM) soil moisture datasets are used in this 

analysis. The first is the operational analysis layer-1 (0–7 cm) volumetric soil moisture field 

from the European Centre for Medium Range Weather Forecasts (ECMWF) H-TESSEL 

(Hydrology-Tiled ECMWF Scheme for Surface Exchanges over Land) land-surface scheme 

(Balsamo et al. 2009). The operational soil moisture analysis product data is produced by 

ECMWF’s Land Data Assimilation System by the assimilation of 2-m air temperature and 

relative humidity observations (Drusch et al. 2009; de Rosnay et al. 2012). The ECMWF soil 

moisture analysis data is available at 00, 06, 12 and 18Z hours and in a N640 reduced 

Gaussian grid. Here, it was re-gridded to the nearest 36-km EASEv2 grid using a nearest 

neighbor approach.

The second LSM soil moisture product utilized here is the so-called SMAP Nature Run, 

version 3 (NRv3), available at 3-hourly interval and 9-km EASEv2 grid and were aggregated 

to 36-km EASEv2 grid by spatial averaging. The NRv3 data were generated with an early 

version of the SMAP Level 4 Surface and Root Zone Soil Moisture (L4_SM) algorithm by 

the NASA Goddard Space Flight Center (GSFC) Global Modeling and Assimilation Office 

(Reichle et al. 2016), which was applied in a model-only configuration using a single 

ensemble member, without perturbations, and without the assimilation of SMAP 

observations.

Chen et al. Page 8

Remote Sens Environ. Author manuscript; available in PMC 2020 June 29.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



The re-sampling methods for the satellite and LSM datasets were each chosen considering 

the features of both source and target grids (i.e. SMAP EASEv2 grid). For ECMWF, the 

average grid size is close to the target grid size and therefore nearest-neighbor type simple 

grid transformation is appropriate given that it avoids potential interpolation artifacts. For 

NRv3 the source grid is perfectly nested within the target grid so simple averaging is ideal. 

The choice of re-sampling method for SMOS and ASCAT has been made with close 

attention to limiting factors and after discussion with data providers. A bilinear interpolation 

was found to produce fewest artifacts for SMOS with its 25-km EASEv2 grid. ASCAT’s 

grid resolution is higher (12.5 km) and the original data was provided in time-ordered 

format; an inverse-distance-weighting interpolation was found to be most accurate.

3.5 Sparse network ground observations

In order to verify aspects of our ETC analysis (see Section 4), two years (3/3½015 – 

3/3½017) of ground soil moisture measurements were obtained from various sparse 

networks (Table 1) and applied in a QC analysis (see Section 4 below). These networks 

typically provide one point-scale measurement per satellite footprint at approximately 5-cm 

depth, except for the COsmic-ray Soil Moisture Observing System (COSMOS) and PBO 

H2O/GPS networks. The cosmic-ray neutron detectors (Zreda et al., 2008; 2012) in the 

COSMOS network measure soil moisture have a footprint radius varying between ~130 to 

240 meters and a dynamic penetration depth of between ~15 to 83 centimeters (Kӧhli et al. 
2015). The PBO H2O/GPS network utilizes Global Positioning System (GPS) receivers that 

record temporal changes in the signal-to-noise characteristic of GPS reflectometry data to 

estimate changes in soil moisture with a sensing depth of 2.5 cm or less (Chew et al. 2014) 

and a sensing area of approximately 120 m2 per satellite track (Larson and Nievinski, 2013). 

Multiple tracks are combined to produce a daily average soil moisture value with the 

aggregate sensing area of approximately 1000 m2. Except for the GPS network, hourly soil 

moisture measurements are generally available for all networks. Figure 2 shows the location 

of the ground observation sites used in this study. Note that some of the stations were 

missing in certain subsequent figures due to the limited availability of collocated satellite 

observations.

4. Validation of global TC approach

Prior to the global application of TC, we will validate aspects of the approach using ground-

based observations acquired at the sparse networks shown in Figure 2. For example, it is 

often assumed that satellite retrievals obtained from active and passive sensors are free from 

error cross-correlation (ECC). As a result, the data triplets applied here consist of an active 

product (ASCAT), a passive product (SMOS or SMAP) and a land surface model product 

(ECMWF or NRv3). However, given the active-passive ECC discovered in a recent studies, 

it is necessary to investigate the ECC between the proposed SMAP-ASCAT and SMOS-

ASCAT combinations in TC and its potential impacts on the TC-based satellite comparisons.

This investigation is made possible by adding point-scale (pts) soil moisture observations 

obtained at sparse networks sites (Fig. 2) into the data triplets, to obtain the data quartets 

[pts, SMAP, ASCAT, ECMWF] and [pts, SMOS, ASCAT, ECMWF]. Applying the least-
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square solution for quadruple collocation in (3) to these quartets, and assuming that non-zero 

ECC exists only between the active and passive soil moisture retrievals, allows us to 

calculate the SMAP-ASCAT and SMOS-ASCAT ECC’s across the ground sites. As shown 

in Fig. 3 these two distributions are quite similar. That is, most sampled ECC’s are positive 

with a median of 0.19 [-] (SMAP-ASCAT) and 0.15 [-] (SMOS-ASCAT) and an 

interquartile range between 0 and ~0.35 [-].

Once estimated, the impact of using of such non-zero ECC on TC results can be assessed. To 

this end, ASCAT R values obtained from both SMAP-and SMOS-based QC or TC analyses 

are averaged across all sparse sites. Since QC-generated R value takes into account the 

possibility of non-zero SMAP-ASCAT and SMOS-ASCAT ECC’s, it is taken as a reference 

to evaluate the TC results. On average, TC-estimated R exhibited a slight positive bias 

compared with corresponding QC results, with average bias values of 0.06 and 0.05 [-] for 

SMAP and SMOS, respectively. Average bias for ASCAT R is 0.07 (obtained by SMAP-

based TC) and 0.12 (SMOS-based TC). However, since this bias is comparable and positive 

for all three products, the transition from QC to TC is expected to have small net global 

impact on product-to-product differences. See below for additional discussion.

In the TC and QC analyses above we also assume no error cross-correlation between the 

model and satellite products, which may not be true in all cases. For example, the SMOS 

soil moisture retrieval algorithm uses the ECMWF forecast temperature fields as dynamic 

auxiliary data input to obtain the effective soil temperature (Kerr et al. 2013), leading to 

potential ECC between the two soil moisture products. Likewise, the NASA GEOS-5 soil 

temperatures used in the SMAP L2_SM_P soil moisture retrieval algorithm are derived 

using the same GEOS-5 forward processing system that also provides the surface 

meteorological forcing (except precipitation) for generating NRv3. Therefore, potential ECC 

between SMAP and NRv3 is also of concern. An earlier study suggests small amounts of 

anti-correlation may exist between SMAP and NRv3 soil moisture errors that could cause 

slight underestimation of SMAP R when both datasets are used in a TC analysis (Chen et al. 
2017). To fully address the impact of this issue on our current study, the impact of ECC on 

the relative evaluation of the three satellite products is examined here via both QC and TC.

Figure 4 summarizes these results. In particular, the first and second rows of Figure 4 plot 

the difference in correlation values (ΔR) between the satellite pairs obtained from TC using 

both ECMWF (a-c) and NRv3 (d-f) at the sparse sites. The third row (g-i) shows the 

ECMWF-based QC results of ΔR. Strong similarity in the shape of the histogram, and the 

values of mean ΔR (see dashed vertical lines) suggest that the net mean impact of potential 

ECC between model and passive soil moisture products is small. Furthermore, while non-

zero active-passive ECC impacts absolute TC-based R slightly, it has very little net impact 

on relative R differences observed between SMAP, SMOS and ASCAT (compare the first 

and second rows against the third row in Fig. 4).

In addition to assessing the impact of ECC on the relative global bias of TC-based R 
distributions (as in Fig. 3), it is useful to assess its impact on the spatial pattern of R 
differences observed between satellites (ΔR). Since sparse network observations are not 
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spatially dense enough to yield continuous imagery (even after interpolation), we are 

restricted to the use of scatter plots when examining spatial consistency.

The spatial robustness of ΔR is examined via scatterplots comparing results obtained when 

utilizing different source of LSM soil moisture (Fig. 5) and QC versus TC analysis (Fig. 6). 

While significant sampling noise is evident, the general one-to-one correspondence 

suggested in Figures 5 and 6 suggest that spatially patterns present in ΔR are relatively 

robust to the use of competing LSM soil moisture products and the presence of ECC 

(accounted for in QC results but neglected in TC). While good agreement in the SMAP-

SMOS ΔR and SMAP-ASCAT ΔR is observed in both cases (Fig. 5, 6), larger scatter is 

present in SMOS-ASCAT ΔR (Fig. 5c and 6c). This is likely due to the tendency for SMOS 

and ASCAT soil moisture products to exhibit relatively lower R, and thus relatively higher 

sampling uncertainty effects for ΔR differences, than SMAP-based results (see additional 

discussion in Section 5).

Therefore, across the sparse site locations in Fig. 2, relative inter-comparisons between 

various satellite-based soil moisture products are generally insensitive to both our choice of 

the collocation method (QC vs. TC) and a particular land model (ECMWF vs. NRv3).

5 Global triple collocation

QC results at ground measurement sites in Section 4 indicate that neither ECC between 

SMAP/SMOS and ASCAT nor ECC between the land surface model and SMAP or SMOS 

has a discernible impact on the inter-comparison of R results for SMAP, SMOS and ASCAT. 

Hence our strategy for a quasi-global application of TC using either a [SMOS-ASCAT-

ECMWF] or [SMAP-ASCAT-ECMWF] triplet is believed to be robust. Figure 7a plots 

estimated R against true footprint surface soil moisture for SMAP, SMOS and ASCAT 

obtained from a TC[SMAPASCAT-ECMWF] (Fig.7 a, c) and TC[SMOS-ASCAT-ECMWF] 

(Fig. 7e) analysis. In particular, note that ASCAT results in Figure 7c are based on a 

TC[SMAP-ASCAT-ECMWF] analysis. Similarity of the ASCAT R results between the 

SMAP-based and SMOS-based TC analyses is shown in Fig. 8. Figures 7b, 7d and 7c show 

the total width of the corresponding 95% confidence interval generated from a 1,000-

member moving-block bootstrap re-sampling (see Section 2.3). The global distributions of 

TC-based R results are also summarized in Fig. 8.

Among the three satellite products, SMAP demonstrates the best overall performance, 

achieving excellent (> 0.8 [-]) R over the mid-latitudes of North America and Europe, as 

well as in southeastern Africa, India and the eastern half of Australia. Relatively good 

correlations (> 0.5 [-]) are found mostly elsewhere, except for parts of northern China/

Mongolia and high-latitude areas of Russia where retrievals are temporally scarce due to the 

extended cold season.

Also retrieving from a passive radiometer, SMOS demonstrates a similar R pattern as SMAP, 

but the area of high correlation shrinks considerably in North America, Europe and Africa. 

SMOS also has less coverage than SMAP in the high latitudes of northern hemisphere and 
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Asia, where correlations are relatively poor. On the other hand, SMOS has better spatial 

coverage and exhibits good correlations across Australia.

ASCAT presents moderate (~0.5 – 0.8 [-]) correlations in most available land pixels, and 

achieves higher values only in limited regions. However, higher ASCAT R are found in 

Northeastern China, where both SMAP and SMOS are out-performed by ASCAT. The 95% 

confidence interval (CI) (Fig. 7b, d, f) indicate relatively narrow (mostly < 0.2 [-]) ranges 

from Monte-Carlo simulation (i.e., small uncertainty in North America, Europe and 

Australia for SMAP, ASCAT and SMOS). Larger uncertainties are found in the high 

latitudes, tropical Africa and India, where retrieval is hindered by frequently frozen ground 

or high biomass. Uncertainties for SMOS are overall greater than SMAP and ASCAT over 

Argentina, but are smaller in South Africa.

The distribution of TC-estimated correlation values obtained globally illustrates the overall 

superiority of SMAP (median of ~0.8 [-]) to SMOS and ASCAT (median of ~0.7 [-]) (Fig. 

8a). SMAP also presents the narrowest spread with most of its R values above 0.40 [-]. 

SMOS shows the largest spread and relatively greater number of lower values compared to 

SMAP and ASCAT. Note the ASCAT R values obtained from SMAP-and SMOS-based TC 

analyses are highly consistent in terms of both statistical distributions (Fig. 8a) and point-by-

point comparisons (Fig. 8b). This consistency lends further support on the overall robustness 

of our TC approach. In particular, it suggests that the impact of non-zero ECC is nearly 

identical for ASCAT R results derived from the [SMAP-ASCAT-ECMWF] and [SMOS-

ASCAT-ECMWF] triplets, and it is appropriate to simply average ASCAT R estimated from 

each triplet for comparison against SMAP and SMOS. This approach is applied later when 

the three remote sensing products are compared at the same time. Global-averaged R 
obtained for SMAP, SMOS and ASCAT (averaged from SMAP-and SMOS-based TC) 

retrievals over common pixels are 0.76, 0.66 and 0.63, respectively.

As noted in Section 4, it is likely that R values in Figures 8 and 9 are uniformly biased high 

(on the order of 0.05 to 0.10 [-]) due to low amounts of ECC in SMAP-ASCAT and SMOS-

ASCAT pairs. However, relative R comparisons between products are expected to be more 

robust. Qualitative comparisons between the satellite products are presented in Fig. 9, in 

which only pixels with 95% significance of comparison are shown. Superiority at 95% 

significance is achieved when one product has higher R value in more than 95% of the 

bootstrap re-samples. Each bootstrap replicate is treated as an independent sample and the 

ith sample TC result for SMAP is compared with the ith sample result for SMOS. In this 

way, approximately two-thirds of the pixel-wise R differences are identified as being 

significant (see Table 2).

The two L-band passive soil moisture products are compared in Fig. 9a. SMOS out-performs 

SMAP in areas of the Western United States, Southern Argentina, Central Asia and Eastern 

Australia, but ‘SMAP better’ pixels dominate the rest of the globe. Globally, the SMAP 

correlation is significantly higher than SMOS in 47% of the land pixels where comparisons 

are available, while SMOS is significantly higher in 14% of the pixels (Table 2). In areas of 

generally strong RFI pollution (e.g., Europe), the aggressive RFI mitigation efforts applied 
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to SMAP retrievals (Mohammed et al. 2016; Johnson et al. 2016; Piepmeier et al. 2017) may 

explain their superior performance versus SMOS.

The relative performance of SMAP versus SMOS could conceivably be impacted by 

(somewhat arbitrary) decisions regarding data flagging and threshold for estimated quality 

measure. Here, the sensitivity of TC results to the SMOS data screening rules is examined 

by experimenting with a stricter DQX threshold (0.04 m3/m3). Currently a less-stringent 

SMOS DQX threshold (≤ 0.07 m3/m3) is applied in order to include more retrievals and 

increase the sample size for TC. As suggested in Table 2, more than 5000 pixels (or 14.4%) 

were removed by applying a DQX = 0.04 m3/m3 threshold in the TC[SMOS-ASCAT-

ECMWF] analysis. Results show that the default threshold (DQX = 0.07 m3/m3) leads to a 

slight increase in the ‘SMAP better’ pixel classification relative to the DQX = 0.04 m3/m3 

case (which favors SMAP in ~7% of all the commonly available pixels); however, it does 

not reduce the frequency of ‘SMOS better’ pixels as much (only ~2% pixels affected). In 

addition, only 0.3% of the common pixels change from a ‘SMOS better’ to a ‘SMAP better’ 

category when the DQX threshold is relaxed from 0.04 m3/ m3 to 0.07 m3/ m3. Therefore, 

our default DQX threshold results in only a small negative impact on SMOS performance 

relative to SMAP.

C-band active scatterometer retrievals from ASCAT are out-performed by SMAP in most 

areas except for Northeastern China, Southern Argentina and Southwestern Australia, where 

ASCAT retrievals demonstrate higher R (Fig. 9b). ASCAT R is significantly higher than 

SMAP R in only 14% of the pixels where TC results are available, while SMAP is 

significantly better than ASCAT at more than 50% of the available global land pixels. Note 

that both SMOS and ASCAT data used here were subject to processing errors due to grid 

transformation (to the SMAP native grid), which may cause slight under-performance and 

benefit SMAP in these comparisons. However, the slight global superiority of SMAP 

relative to SMOS is consistent with SMAP validation results at core validation sites (Chan et 
al. 2016).

The SMOS-ASCAT comparison shows a relatively even number of pixels being superior. 

SMOS correlation is significantly higher in most of United States, Central Asia and eastern 

Australia, whereas ASCAT is better in most of Northeastern China, Western Europe (areas 

SMOS suffers severely from RFI contamination), Argentina, and Western Australia. 

Considering both products being extensively validated and relatively mature, the comparison 

in Fig. 9c suggests that distinctive strength in each product has been firmly established in 

specific regions. The spatial pattern of these comparisons is largely consistent with Al-Yaari 

et al. (2014), which compared SMOSL3 and ASCAT with the Modern-Era Retrospective 

analysis for Research and Applications (MERRA-Land) surface soil moisture, except in 

Western Australia and Argentina where SMOS is found to correlate better with MERRA-

Land than ASCAT.

A map showing the best-performing satellite product is presented in Fig. 10. Note that 

regions with dense vegetation are largely masked due to a lack of successful retrievals. 

Likewise, in arid regions such as the Sahara Desert and Great Basin Desert, earlier studies 

have revealed poor or even negative correlation between active and passive products (de Jeu 
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et al. 2008; Pierdicca et al. 2013; Burgin et al. 2017). This limits the area over which TC can 

be performed due to the masking of pixels where negative mutual correlation exists among 

the input datasets (see Section 2.1). As indicated above, ASCAT R values obtained from 

SMAP-and SMOS-based TC analyses are averaged for comparison. Overall, SMAP and 

SMOS are superior to ASCAT in most areas of North America, Europe, Southern Asia and 

Eastern Australia. The significant overlap of geographic regions where both passive 

satellites excel is generally consistent with the high level of correlation between SMAP and 

SMOS found earlier by Burgin et al. (2017). ASCAT generally performs better than SMAP 

and SMOS across high-latitude areas of Eastern Asia, parts of South America (mainly 

Argentina) and Southwestern Australia. As in Fig. 9, SMOS has higher R than SMAP in the 

Western United States, Central Asia and most inland pixels of Eastern Australia. Overall, 

SMAP ranks highest in 52% of the pixels with viable TC results (see Section 2.1) whereas 

SMOS and ASCAT each does in 24% of these pixels.

6. Summary

In this analysis, a global assessment and comparison of SMAP (L2 passive), SMOS (L3) and 

ASCAT (L2) surface soil moisture products is performed based on the correlation metric (R) 

obtained via triple collocation (TC). In order to produce robust TC results, R is estimated 

following removal of low-frequency variability in the soil moisture time series and therefore 

reflects the R of soil moisture anomalies relative to a 30-day moving temporal average. 

Given that low-frequency error sources have been previously identified in certain remotely-

sensed soil moisture products (Wagner et al., 2014), this focus on solely high-frequency 

noise represents a limitation in our approach. Nevertheless, sensitivity experiments suggest 

that our global TC results are relatively insensitive to changing the size of the moving 

window from 30 to 60 days (not shown).

In addition, when comparing satellite products, it is critical to account for the sampling 

uncertainties due to sparse temporal availabilities or suboptimal retrieval conditions. To this 

end, a moving-block bootstrap re-sampling approach, with emphasis on preserving the 

temporal properties of the original soil moisture time series, was applied at each grid pixel to 

construct the confidence interval for TC estimates. The re-sampled distribution of 

correlation estimates is then used to obtain the significance of TC-based R differences 

between SMAP, SMOS and ASCAT soil moisture retrieval products.

Concern about the violation of TC assumption due to error cross-correlations between 

active-passive observations and between satellite and model products is addressed via a 

quadruple collocation (QC) analysis conducted within available sparse network sites (Fig. 

2). Slight positive error cross-correlation is found to exist between ASCAT and both SMAP 

and SMOS which suggests that TC-estimated R for the three satellite-based products may be 

positively biased. However, since this bias is small and approximately equal for all three 

products, the relative evaluation against each other changes only slightly from QC to TC. 

Results also indicate limited impact associated with potential satellite-model error cross-

correlations. Recent findings by Pierdicca et al. (2017) using a novel extended QC algorithm 

and 15 months of satellite and model data reveals weak SMAP-SMOS ECC that is lower 

than the SMAP-ASCAT ECC found. Such findings suggest the further potential of using 
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SMAP and SMOS together in TC in future analyses. Finally, the sensitivity of SMOS TC 

results to the specification of the DQX threshold is shown to be low.

To the best of our knowledge, this study is the first to present a global-scale triple 

collocation analysis that compares the footprint-scale correlation metric of SMAP with 

SMOS and ASCAT soil moisture products. Results suggest that, out of these three products, 

SMAP has the highest global average R (0.76, SMOS: 0.66, ASCAT: 0.63) and is the 

superior product for the majority (52%) of global land pixels with a viable TC result. This 

finding is consistent with several recent validation studies (e.g. Kumar et al. 2017; Montzka 

et al. 2017; Pierdicca et al. 2017; Kim et al. 2018). For example, using information theory-

based metrics, SMAP has also been found to provide higher information content than other 

microwave satellite soil moisture products (Kumar et al. 2017). Likewise, in a validation 

study applying both standard validation methods and triple collocation at footprint-scale soil 

moisture measurements from the Cosmic Ray Neutron Probes (CRNP, including some of the 

COSMOS stations used here) across five continents, SMAP outperformed other satellite 

products including AMSR2, SMOS and ASCAT (Montzka et al. 2017). Nevertheless, each 

of the three satellite retrieval products (SMAP, SMOS and ASCAT) were found to be 

superior (to the other two) in specific global land regions. Therefore, the global inter-

comparison maps in Figures 9 and 10 provide useful information for regional-scale 

applications such as the choice of dataset for assimilation into rainfall-runoff models.

In closing, it should be noted that all products considered here are subject to frequent 

reprocessing and algorithm improvements. For example, a new global daily SMOS SM 

product --the SMOS-INRA-CESBIO (SMOS-IC) product was recently released and shown 

to yield generally higher correlations versus ground observation versus the v300 SMOS 

Level 3 soil moisture product considered here (Fernandez-Moran et al., 2017). Comparable 

enhanced SMAP soil moisture products are likely to arise in the foreseeable future. 

Therefore, the cross evaluation efforts described here are, in reality, an on-going effort 

requiring updating as improved products are released.
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Figure 1. 
Schematic diagram of moving block bootstrap sampling on collocated, temporally uneven 

triple-soil-moisture-product time series with an lopt of 7. Overlapping data blocks from the 

original time series (top) are drawn randomly with replacement and then concatenated to 

generate a new bootstrap resample (bottom).
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Figure 2. 
Location of ground observation sites (N=271) from sparse networks.
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Figure 3. 
Distribution of ECC between SMAP-ASCAT and SMOS-ASCAT pairs estimated via the 

application of QC at sparse sites listed in Fig. 2. The upper and lower bounds of the boxes 

indicate 25th and 75th percentiles respectively and the red line in the box indicates the 

median. Whiskers extending from the 25th and 75th percentiles to represent 1.5 times the 

interquartile range.

Chen et al. Page 22

Remote Sens Environ. Author manuscript; available in PMC 2020 June 29.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



Figure 4. 
Comparison of differences in SMAP, SMOS and ASCAT correlation coefficients (ΔR) 

obtained from TC (a-f) and QC (g-i) at ground locations shown in Fig. 2. In the vertical 

axes, “psv” refers to passive satellite products, (SMAP or SMOS), “pt” refers to point-scale 

ground observations. The vertical dashed lines indicate the mean ΔR for each histogram. 

Number of stations used in each subplot is shown as “N”.
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Figure 5. 
Comparison of ΔR (same as in Fig. 4) obtained from NRv3-and ECMWF-based TC 

analyses. Subplots a), b) and c) include common data points in Fig. 4a and 4d, Fig. 4b and 

4e, and Fig. 4c and f, respectively.
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Figure 6. 
Comparison of ΔR (same as in Fig. 4) obtained from TC and QC analyses. Subplots a), b) 

and c) include common data points in Fig. 4a and 4g, Fig. 4b and 4h, and Fig. 4c and i, 

respectively.
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Figure 7. 
Quasi-global image of TC-based R [-] (single run, without bootstrap re-sampling) for 

SMAP, ASCAT and SMOS (left column: subplots a, c, e) and total width of the 95% 

confidence interval (‘CI’, right column: subplots b, d, f) derived from a 1,000-member 

bootstrap sampling. Subplots a) – d) are based on a [SMAP-ASCAT-ECMWF] triplet. 

Subplots e) -f) are based on a [SMOS-ASCAT-ECMWF] triplet.
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Figure 8. 
a) Distribution of correlation coefficients (from single triple collocations runs) in common 

grid pixels (N=16,332) where both sets of TC analyses [SMAP/ASCAT/ECMWF and 

SMOS/ASCAT/ECMWF] are available (see Fig. 2 caption for boxplot descriptions); b) 

comparison of ASCAT R obtained via SMAP-and SMOS-based TC analyses.
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Figure 9. 
Comparison of TC-estimated correlation coefficients between the satellite retrieval products. 

Color shade indicates the product that obtains higher R in more than 95% of the bootstrap 

re-sampling runs in a given grid cell. All areas of non-significant differences are masked. 

Plotted results are based on the following triplets: a) [SMAP-ASCAT-ECMWF] (for SMAP) 

vs. [SMOS-ASCAT-ECMWF] (for SMOS); b) [SMAP-ASCAT-ECMWF] (for SMAP and 

ASCAT); and c) [SMOS-ASCAT-ECMWF] (for SMOS and ASCAT).
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Figure 10. 
The satellite product (SMAP, SMOS or ASCAT) with the highest TC-based correlation 

coefficient (R, bootstrap mean).
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Table 1.

Sparse networks providing ground measurements of soil moisture.

Network Instrument Region Number of 
stations

Reference

Soil Climate Analysis Network
(SCAN)

Hydra Probe USA 71 Shaefer et al. 2007

U.S. Climate Reference 
Network (USCRN)

Hydra Probe II USA 44 Bell et al. 2013

Oklahoma Mesonet Campbell Scientific 229-L Oklahoma, USA 84 Illston et al. 2008; Scott et al. 
2013

COsmic-ray Soil Moisture 
Observing System (COSMOS)

cosmic-ray soil moisture probe USA, Europe, 
Africa, Australia

23 Zreda et al., 2008, 2012

PBO H2O (GPS) Global Positioning System 
(GPS) receivers

Western USA 28 Larson et al. 2008

SMOSMANIA ThetaProbe ML2X France 8 Calvet et al. 2007

Pampas ThetaProbe ML2X Argentina 8

Mongolia Grasslands Time Domain Reflectometry
(TDR) probes

Mongolia 5 Kaihotsu et al. 2009
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Table 2.

Pair-wise comparisons between TC-estimated correlation coefficients for various satellite products. The 

significance of differences is assessed using a 95% confidence threshold and the bootstrapping approach 

described in Section 2.3. Percentages are out of all global land pixels with viable TC estimates (see Section 

2.1).

SMAP higher SMOS higher No. pixels

sig. non-sig. sig. non-sig.

SMAP vs. SMOS* 47% 21% 14% 17% 28294

SMAP vs. SMOS** 40% 23% 17% 20% 24614

SMAP higher ASCAT higher

SMAP vs. ASCAT 53% 19% 14% 14% 39181

SMOS higher ASCAT higher

SMOS* vs. ASCAT 35% 18% 29% 18% 36520

SMOS** vs. ASCAT 41% 19% 23% 17% 31264

*
DQX ≤ 0.07 m3/m3;

**
DQX ≤ 0.04 m3/m3
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