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Abstract

American Southwest (ASW) megadroughts represent decadal-scale periods of dry conditions, the 

near-term risks of which arise from natural low-frequency hydroclimate variability and 

anthropogenic forcing. A large single-climate-model ensemble indicates anthropogenic forcing 

increases near-term ASW megadrought risk by a factor of 100, however, accurate risk assessment 

remains a challenge. At the global-scale we find that anthropogenic forcing may alter the 

variability driving megadroughts over 55% of land-areas, undermining accurate assessments of 

their risk. For the remaining areas, current ensembles are too small to characterize megadroughts’ 

driving variability. For example, constraining uncertainty in near-term ASW megadrought risk to 5 

percentage points with high confidence requires 287 simulations. Such ensemble sizes are beyond 

current computational and storage resources and these limitations suggest that constraining errors 

in near-term megadrought risk projections with high confidence-even in places where underlying 

variability is stationary-is not currently possible.

1. INTRODUCTION

Decadal-to-multidecadal periods of meteorological drought (hereinafter drought will be used 

to refer to meteorological drought), or megadroughts, are a robust feature of the Common 

Era paleoclimate record, particularly in the American Southwest (ASW-32°N-41°N; 

125°W-105°W; e.g. Cook et al. 2016). Quantifying the risk of a megadrought occurring in 

the future is critical: past megadroughts in the ASW, for instance, were sufficiently intense 

to decrease the Colorado basin’s runoff by 15% on multidecadal timescales (Meko et al. 

2007). If such a drought were to occur again, it would greatly affect water availability and 

present stresses for people and ecosystems. At the same time, megadroughts represent 
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natural hydroclimate change on the very timescales over which projections of future 

hydroclimate are made to inform decision-making (e.g. IPCC AR5-Stocker et al. 2014).

Hydroclimate conditions at the end of the 21st century are likely to be dominated by 

anthropogenic radiative forcing, with severe drying projected for the ASW (Cook et al. 

2014a; 2015). Over the near-term decades, however, hydroclimate change will involve a 

significant contribution from low-frequency internal variability, which likely played a role in 

driving real-world megadroughts (e.g. Coats et al., 2016, Ault et al., 2014, 2015, Woodhouse 

and Lukas, 2006, Ho et al., 2016). The varied ways in which anthropogenic forcing and 

internal variability could interact over the coming decades will determine near-term future 

hydroclimate (e.g. Mankin et al., 2015), and therefore, megadrought risk.

Accurately projecting near-term future megadrought risk necessitates estimating the 

frequency of megadrought occurrence from climate models forced with the most likely 

future trajectories of exogenous boundary conditions. Complicating this estimate over the 

near-term future, however, are two issues: First, is whether climate models can simulate 

megadroughts with the correct atmosphere-ocean dynamical drivers (e.g. Coats et al. 2013; 

2015; Ault et al. 2013; 2014). Second, megadroughts are necessarily rare events. Estimating 

future megadrought risk, therefore, requires a robust characterization of the future mean and 

variability in hydroclimate.

“Large” ensembles of a single climate model represent a new tool motivated, in part, by the 

goal of having an ensemble large enough to robustly sample internal variability in a 

nonstationary climate (Kay et al. 2015; Deser et al. 2012). In the context of estimating future 

megadrought risk, for instance, a large ensemble should allow for a robust characterization 

of both mean hydroclimate and the distribution around this mean in the future-with the 

caveat that such an ensemble can only characterize that model’s representation of the 

climate system. Importantly, producing a large ensemble requires considerable 

computational and storage resources, with each additional ensemble member in the National 

Center for Atmospheric Research (NCAR) Community Earth System Model (CESM) large 

ensemble project taking three weeks to run on their Yellowstone supercomputer (e.g., Kay et 

al. 2015). This considerable computational expense necessitates an understanding of the 

number of simulations required to robustly sample internal variability in different climate 

variables and on different timescales.

Along these lines, recent work suggests that a statistically-derived ensemble based on the 

statistical moments of an unforced control simulation can produce the same range of future 

precipitation and temperature trends as a forced large single-model ensemble (Thompson et 

al. 2015). Such a conclusion, however, is predicated on a problematic assumption: It 

assumes that the statistics of internal variability in the future will be the same as in the 

present. Yet there is evidence that forcing can project onto internal modes of variability (e.g. 

Palmer 1993, Cai et al. 2014, 2015), violating this assumption. Projections from process-

based large single-model ensembles, on the other hand, are dynamically derived, allowing 

for nonstationary internal variability. These model-based projections also provide 

information on the atmosphere-ocean dynamics underlying climate features-which may 

change in the future even if the statistics of internal variability are unchanged. Finally, if we 
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regard the single-model ensemble mean as the model’s ‘forced response’ (e.g., Deser et al. 

2012; Thompson et al. 2015), then the estimate of the forced response itself is a function of 

the number of ensemble members included in its calculation. Large single-model ensembles 

thus provide a more robust estimate of a model’s forced response.

Given this context, projections from large single-model ensembles are clearly valuable and 

we leverage such an ensemble (Kay et al. 2015) in a perfect model framework, which uses 

variability in a long unforced model simulation as ground truth, to analyze the challenge of 

accurately estimating future megadrought risk. Specifically, we ask three related questions: 

(1) Where do the statistics of internal hydroclimate variability remain unchanged with 

forcing (i.e., where do the assumptions of a perfect model framework hold)? (2) For places 

where the perfect model framework’s assumptions hold, how many model ensemble 

members are necessary to accurately estimate future megadrought risk? And (3) What is the 

marginal value of each additional model ensemble member towards accurately estimating 

future megadrought risk? We answer these questions by analyzing future megadrought risk 

in the ASW, but also generalize our results globally for those locations where the perfect 

model framework applies (see Methods section 2.3). Given uncertainties in our physical 

understanding of real-world megadroughts, however, these questions can only inform our 

understanding of the size of contemporary model ensembles and highlight the difficulties of 

using these ensembles to project future megadrought risk.

2. METHODS

2.1 Climate model data

All model output is from the NCAR CESM Large Ensemble project (hereinafter LENS, Kay 

et al. 2015). We utilize 30 LENS ensemble members over the period 2006–2040 C.E., as 

well as the full 1100-year CESM control simulation (hereinafter the CESM control 

simulation). The former runs employ the RCP8.5 emissions scenario of the Coupled Model 

Intercomparison Project phase 5 (“CMIP5”, Taylor et al. 2012). Uncertainty in our physical 

understanding of real-world megadroughts precludes a validation of megadroughts within 

the model. Nevertheless, Figure S1 provides a validation of temperature and precipitation 

over the ASW. The climatology and variability of temperature and precipitation over the 

ASW, as well as teleconnections to the ASW are well produced by the NCAR CESM.

2.2 Megadrought estimation

The hydroclimate variable used herein is the Palmer Drought Severity Index (PDSI, Palmer 

1965), which was chosen to maintain consistency with both the paleoclimate record of 

hydroclimate over North America (Cook et al. 2007; Cook et al. 2014b) and previous studies 

(Cook et al. 2014a; 2015). PDSI is an offline estimate of soil moisture balance, and has been 

established as a robust estimator of soil moisture variability that compares well to other soil 

moisture metrics (e.g. the Standardized Precipitation Evapotranspiration Index (SPEI), 

Vicente Serrano et al. 2010; Cook et al. 2014a) and model soil moisture (Cook et al. 2014a; 

2015; Smerdon et al. 2015). PDSI is calculated from supply via precipitation and losses due 

to evapotranspiration (ET), with ET estimated by means of scaling potential 

evapotranspiration (PET) using a beta function. PET is estimated herein using the Food and 
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Agriculture Organization (FAO) of the United Nations (Allen et al. 1998) formulation of the 

Penman-Monteith (PM) function (Penman 1948; Xu and Singh 2002). Precipitation, surface 

pressure, surface temperature, vapor pressure and surface net radiation model fields are 

utilized. Wind speed and ground heat flux are set to constant values of 1 and 0, respectively, 

because PDSI calculated using PM PET is not highly sensitive to them (Cook et al. 2014a). 

Soil moisture capacities are set at the standard values of 25.4 mm and 127 mm for the top 

and bottom layers. PDSI is calculated using this formulation for all 30 LENS ensemble 

members and the 1100-year CESM control simulation (years 400–1499) with all PDSI 

values standardized against the full CESM control simulation. Hydroclimate timeseries are 

produced by taking an area-weighted average of the grid point PDSI over the ASW 

(32°N-41°N; 125°W-105°W) for the ASW results, and at the grid-point scale for the global 

results.

Megadroughts in the PDSI timeseries are defined using the multidecadal megadrought 

definition of Ault et al. (2014), in which the 35-year mean is at least 0.5 standard deviations 

below the mean (for the ASW this is −0.99 PDSI). While Ault et al. (2014) use precipitation 

in their analyses, our megadrought definition is qualitatively consistent, with the main 

difference being the inherent 12–18 month memory timescale of PDSI. Using this definition 

megadrought risk is then the percent of 35-year periods with mean PDSI of less than −0.5 

standard deviations, with the standard deviation defined over the full CESM control 

simulation. Hereinafter mean PDSI over a 35-year period will be referred to as a 35-year 

hydroclimate state.

2.3 Perfect model framework

A perfect model framework is used to answer questions (2) and (3) of the introduction. In 

particular, future megadrought risk is defined by calculating megadrought risk using all 35-

year hydroclimate states from the CESM control simulation shifted by the mean of the 30 

LENS ensemble members between 2006–2040 C.E. (an estimate of the CESM’s forced 

response to RCP8.5). This will be the “perfect” baseline by which we determine if future 

megadrought risk has been accurately projected. Importantly, this definition of future 

megadrought risk assumes that statistics of internal variability are unchanged in the future. 

To explicitly test this assumption we will use a two-sample Kolmogorov-Smirnov (K-S) test, 

a nonparametric test of the similarity of distributions. Specifically, the K-S test is used to 

compare the 35-year hydroclimate states from the CESM control simulation to the 35-year 

hydroclimate states (2006–2040 C.E.) from LENS. In a K-S test small p-values indicate that 

the null-hypothesis that the two samples come from populations with the same distribution 

can be rejected. Rejecting the null hypothesis implies that forced internal variability is 

different from unforced internal variability and the future megadrought risk as defined herein 

is likely incorrect. By consequence, for grid points or regions with p-values greater than 0.5, 

we do not attempt to answer questions (2) and (3) of the introduction. It is important to note 

that despite satisfying this criterion, the statistics of internal variability still may have 

changed at the analyzed grid points or regions. While it is not possible to project this source 

of error onto the analysis of megadrought risk, we caution that it could cause the answer to 

question (2) to be either too large or too small. A direct assessment of the impact of this 

issue over the ASW is included in Figure 3 and Section 3.3.
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2.4 Timeseries modeling

The timeseries modeling we pursue is a means to test how the accuracy of megadrought risk 

estimation varies with ensemble size. We statistically generate many realizations of 

hydroclimate with random time evolutions but preserving the spectral characteristics, mean, 

and magnitude of the LENS. These timeseries are surrogate hydroclimate realizations with 

the same characteristics as the LENS. These surrogates allow estimates of the number of 

LENS ensemble members needed to accurately estimate future megadrought risk (defined 

using the perfect model framework, as described above).

All timeseries modeling uses a power law rescaling of uncorrelated white noise following 

Ault et al. (2014) to match the LENS’ spectral and statistical characteristics. This involves: 

(1) calculating the discrete Fourier transform of a white noise timeseries that has been scaled 

to have the same variance as the LENS. (2) Rescaling the Fourier coefficients to be power-

law distributed (with a predefined value of β) before taking the real part of the inverse 

Fourier transform. In this case β is determined by estimating the spectra of PDSI from each 

LENS member using the multitaper method (Thomson 1982) and then estimating the linear 

least squares fit in log-frequency, low-power space.

3. RESULTS and DISCUSSION

3.1 Perfect model framework and future megadrought in the ASW

The CESM’s pre-industrial climate (from the CESM control simulation) indicates no 

megadrought risk in the ASW (Methods section 2.2). Megadroughts are rare events, and thus 

might not be expected to occur in an 1100-year simulation. However, the lack of 

megadroughts may also be related to a wet bias over the ASW in the CESM model (Figure 

S1). Nevertheless, the 35-year hydroclimate states from the CESM control simulation are 

normally distributed, passing a Mann-Whitney test of normality at the 5% level. The area 

under the normal fit to these 35-year hydroclimate states less than −0.5 standard deviations 

of PDSI, i.e., the percentage of 35-year hydroclimate states that are expected to be 

megadroughts given an infinite sampling of the model’s internal variability, gives 0.2%. 

Although the analyses herein represent a perfect model framework (Methods section 2.3), it 

is interesting to note that megadrought risk in the North American Drought Atlas (Cook et 

al. 2014b), a tree-ring based reconstruction of hydroclimate variability over the Common 

Era, is 1.0% in the ASW.

Fig. 1a shows the ten-bin histogram of mean hydroclimate over the period 2006–2040 C.E. 

from LENS. Superposed on this histogram is the normal fit to the data (red) as well as the 

normal fit to the 35-year hydroclimate states from the CESM control simulation (Figure S2) 

shifted by the ensemble mean of the 30 LENS ensemble members between 2006–2040 C.E. 

(blue). This latter distribution is the expected distribution of 35-year hydroclimate states in 

the future given the model’s internal variability superposed on the shift in mean 

hydroclimate produced by the RCP8.5 forcing scenario. Importantly, this is the expected 

future distribution of 35-year hydroclimate states if forcing does not project onto the internal 

modes of variability to make certain 35-year hydroclimate states more or less likely and thus 

represents the perfect model framework against which the LENS is compared. Using this 
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perfect model framework suggests that anthropogenic forcing increases future megadrought 

risk in CESM from 0% to 23%. Interestingly, this large change in megadrought risk results 

almost entirely from a shift in the atmospheric demand for moisture (Figure S3), with very 

little impact of a change in the mean of precipitation. The two distributions in Fig. 1a are 

similar; nevertheless, small differences can lead to large errors in the estimate of future 

megadrought risk. In the LENS, for example, future megadrought risk is 20%. The absolute 

value of the difference between the perfect model framework and the LENS megadrought 

risk estimates is the error in future megadrought risk. Using this definition, the error in the 

LENS’s future megadrought risk estimate is 3 percentage points (pp).

There are three possible sources of this error: (1) the LENS may not be large enough (i.e. not 

enough ensemble members) to accurately estimate the distribution around the mean of 35-

year hydroclimate states; (2) the differences in the distributions themselves can be the result 

of randomness; and/or most notably, (3) the forcing in LENS may have changed the 

distribution around the mean of 35-year hydroclimate states. The relationship between error 

and these three possible sources will be explored in the next section.

3.2 Sources of error in megadrought risk estimates

To test if forcing has projected onto internal modes of variability to change the distribution 

around the mean of 35-year hydroclimate states we will use the K-S test outlined in Methods 

section 2.3. The p-value in this case is 0.94, suggesting that the distribution around the mean 

of 35-year hydroclimate states is likely unchanged in the ASW in the future.

Given the lack of evidence for future changes to the statistics of internal variability in the 

ASW, the 35-year hydroclimate states from the CESM control simulation shifted by the 

ensemble mean of LENS between 2006–2040 C.E. (as in Fig. 1a) can be used to define 

future megadrought risk (Methods section 2.3). Congruent with this perfect model 

framework, we then ask how many LENS ensemble members are necessary to accurately 

estimate future megadrought risk. To do this we use ensembles of surrogate climate 

realizations, or timeseries (Methods section 2.4), to assess error in the estimation of future 

megadrought risk as a function of number of ensemble members from 20 to 300 (Fig. 1b). 

We calculate error as the absolute value of the difference in future megadrought risk 

estimated from each surrogate timeseries ensemble as compared to the future megadrought 

risk from the perfect model framework. The sets of surrogates will be produced 1000 times, 

however, and the percentile ranges of error will be recorded (Fig. 1b).

For example, to constrain error in future megadrought risk for the ASW to 5 pp with median 

confidence requires 30 ensemble members. The error in future megadrought risk for the 

actual LENS is smaller than this despite the ensembles being the same size. This indicates 

that, by chance, the LENS is more successful at estimating future megadrought risk than 

would be expected given its size. In order to constrain error to 5 pp with a high-degree of 

confidence (95th percentile), would require 287 ensemble members. Such a target is 

unrealistic given the current state of computational and data storage resources. Additionally, 

the marginal value of an additional ensemble member to reducing error at every percentile 

range falls to nearly zero around 150 ensemble members, suggesting that for the purposes of 
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accurately estimating future megadrought risk in the ASW, an ensemble larger than this 

would not be worth the computational expense.

3.2 Forced changes in variability?

As for the ASW, we test whether the statistics of internal variability are unchanged in the 

future using the same analysis as above (Methods section 2.3) but at each grid point globally. 

In many regions the distribution around the mean of 35-year hydroclimate states changes in 

the future, as indicated by the areas with small p-values in Fig. 2a and, more generally there 

is a large degree of spatial heterogeneity in this value. For reference, the null hypothesis that 

the distributions are the same can be rejected for 12% and 6% of grid points at the 90th and 

95th confidence limits, respectively.

While a full treatment of the reasons underlying changes to the statistics of internal 

variability in the future is outside the scope of this paper, there are regions with robust 

changes that are worth discussing. For instance, while the distribution around the mean of 

35-year hydroclimate states does not appear to change in the future when averaging over the 

ASW, the California coast and the southern ASW has small p-values in Fig. 2a. For the 

former region this is consistent with expected changes in water season hydroclimate 

(Simpson et al. 2015). The latter region is the portion of the ASW that has summer 

hydroclimate variability driven by the North American Monsoon, and more generally, many 

monsoon regions appear to have changing statistics of internal variability in the future. This 

includes those regions encompassed by the East and West African monsoons, the Indian 

monsoon and the Malaysian-Australian monsoon. These changes are consistent with model-

projected increases in monsoon strength (with increased atmospheric moisture content 

compensating for weakening circulation) and the length of the monsoon season, particularly 

associated with a delay in monsoon retreat (IPCC AR5, Chapter 14-Stocker et al. 2014). 

Another area with a robust change in the statistics of internal variability in the future is the 

subtropics at or near the northern descending branch of the Hadley Cell (e.g. ~30°N in Fig. 

2a). While this is potentially consistent with model-projected weakening and poleward 

expansion of the Hadley cell (e.g. Lu et al. 2007), it could be related to the use of PDSI, 

which may struggle to represent drought variability over the subtropical deserts.

3.3 Constraining uncertainty in future megadrought risk

If the distribution around the mean of 35-year hydroclimate states changes in the future then 

we cannot use a perfect model framework to assess error in future megadrought risk. We 

therefore focus on grid points with p-values of more than 0.5 in Fig. 2a (45% of grid points 

globally), as such values indicate a lower likelihood of the statistics of internal variability 

changing in the future. To further simplify interpretation we will also require that the 

analyzed grid points have an increase in megadrought risk in the future (relative to the 

CESM control simulation), and a future megadrought risk that is less than 100%. For these 

grid points, Fig. 2b shows the estimate of future megadrought risk from the LENS and Fig. 

2c and 2d compares this to future megadrought risk from the perfect model framework.

Fig. 3a indicates the impact of the size of the ensemble on error by showing the number of 

ensemble members necessary to constrain error to 5 pp in the median (using the same 

Coats and Mankin Page 7

Geophys Res Lett. Author manuscript; available in PMC 2020 June 29.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



methodology as in Fig. 1b). While there is a large degree of spatial heterogeneity in this 

value, there appears to be a straightforward relationship between number of ensemble 

members and future megadrought risk (Fig. 3b). For future megadrought risks greater than 

50%, the number of ensemble members necessary to constrain error to 5 pp in the median 

decreases as future megadrought risk increases, the opposite is true of values less than 50%. 

The reason for this relationship is intuitive: it takes more ensemble members to constrain 

error if attempting to discern differences in probabilities in the center of mass of the 

statistical distribution.

Importantly, because future megadrought risk is a function of both the distribution around 

the mean and the change in the mean, this implies that the magnitude of the radiatively 

forced change in the mean is itself a strong control on the number of ensemble members 

necessary to accurately estimate future megadrought risk (Fig 3c).

In Fig. 3b the same analysis is also completed by randomly subsampling the CESM control 

simulation instead of using surrogate timeseries based on the LENS (the range for the 

randomly sampled CESM control simulation is the shaded region in Fig. 3b). Randomly 

subsampling the CESM control simulation provides an estimate of how many ensemble 

members are necessary to reproduce the distribution of 35-year hydroclimate states that is 

used to define future megadrought risk (in the perfect model framework). By consequence, 

any differences between the shaded region and points in Fig. 3b likely indicates that there 

are changes to the statistics of internal variability in the future at the analyzed grid points 

(despite the relatively large p-values in Fig. 2a). In some cases, these changes increase the 

number of ensemble members necessary to accurately estimate future megadrought risk by 

nearly two times, in part, because the distribution used to define future megadrought risk is 

not the true future distribution of 35-year hydroclimate states.

4. CONCLUSIONS

The LENS suggests that even over the near-term decades (2006–2040 C.E.) anthropogenic 

forcing increases megadrought risk in the ASW by 20 pp or at least 100 times relative to pre-

industrial conditions in a CESM control simulation. Over this same time period, 

anthropogenic forcing can increase megadrought risk in some regions by 100 pp (0.5% of 

grid points-not shown). Although estimated from a single climate model, these stark changes 

in megadrought risk over the near-term decades suggest a need to better understand the 

capability of state-of-the-art climate models to estimate future megadrought risk. Along 

these lines, there are a number of results herein that are generalizable to this question. For 

starters, the statistics of internal variability within the CESM model changes in some regions 

and not in others-with monsoon regions and the subtropics at or near the descending branch 

of the Hadley Cell in the Northern Hemisphere being notable examples of the former. The 

ASW, however, is a region where the statistics of internal variability appear not to change in 

the future and we can use this behavior to determine the marginal value of each ensemble 

member to accurately estimating future megadrought risk.

We find there is little value beyond 150 ensemble members, suggesting that running 

additional ensemble members is not worth the computational expense when estimating 

Coats and Mankin Page 8

Geophys Res Lett. Author manuscript; available in PMC 2020 June 29.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



future megadrought risk in the ASW. Nevertheless, running 150 ensemble members is 

already beyond the scope of current computational and storage resources and these 

limitations suggest that targets such as constraining error in megadrought risk projections in 

the ASW to 5 pp with high confidence is not possible. In a global sense, there is spatial 

heterogeneity in the number of ensemble members necessary to accurately estimate future 

megadrought risk. This heterogeneity is largely explained by differences in the magnitude of 

the radiatively forced shift in mean hydroclimate, thereby providing a strong control on the 

number of ensemble members necessary to accurately estimate future megadrought risk.

It is important to note that the experiment set up herein is a simple (and likely a baseline) 

estimate for the number of ensemble members necessary to accurately estimate future 

megadrought risk. We have only asked how many ensemble members are necessary to 

constrain the future distribution of 35-year hydroclimate states as defined by the models’ 

own internal variability superposed on its’ own forced response.

In the real world, the distribution of 35-year hydroclimate states is not known nor is the 

possibility of forcing projecting onto internal modes of variability well defined. Models are 

likewise biased, with these biases being correlated across models, and in the real world 

models are attempting to reproduce a distribution of 35-year hydroclimate states that may be 

inconsistent with their own dynamics-including, and perhaps most importantly, their 

sensitivity to forcing-which is itself uncertain in the future. By consequence, using the 

CMIP5 multi-model ensemble to estimate future megadrought risk represents a much more 

difficult endeavor than the perfect model framework used herein. Additionally, the question 

of how many ensemble members are necessary to sample internal variability will differ 

depending on the climate feature of interest-the results herein only apply to estimating future 

megadrought risk. Nevertheless, the framework introduced herein is generalizable to other 

climate features and further work will be important to better understand how many ensemble 

members are necessary to robustly sample internal variabilit
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Figure 1: 
(Panel A) Ten-bin histogram of mean PDSI over the ASW (32°N-41°N; 125°W-105°W) 

between 2006–2040 C.E. from the 30 LENS ensemble members with a normal distribution 

fit (red curve). The blue curve in Panel B is the normal distribution fit to all 35-year periods 

from the 1100-year CESM control simulation (35-year hydroclimate states) shifted by the 

ensemble mean of the LENS between 2006–2040 C.E. (the distribution was originally 

centered on 0). The distributions are not significantly different based on a two-sample 

nonparametric K-S test. (Panel B) Future megadrought risk is defined using all 35-year 

hydroclimate states from the CESM control simulation shifted by the mean of the LENS 

between 2006–2040 C.E. (the perfect model framework-blue curve in Panel A). Error (y-

axis) is the difference between this future megadrought risk and the future megadrought risk 

estimated from an ensemble of 35-year surrogate timeseries based on LENS (Methods). The 

surrogate timeseries ensembles are varied in size from 20 to 300 members (# Ensemble 

Members) and each sized ensemble is produced 1000 times. The black circles are the 

median values of error for the 1000 ensembles of each size, with the black line being a third 

order polynomial fit to the median values. The gray shaded regions represent the range of 

error. For instance, the upper bound of the darkest gray shaded region is the third order 

polynomial fit to the 95th percentile of error for each sized ensemble.
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Figure 2: 
(Panel A) At each grid point we calculate the p-value from a two-sample K-S test between 

the 35-year hydroclimate states from the CESM control simulation and the 30 35-year 

hydroclimate states (2006–2040 C.E.) from the LENS. (Panel B) The error (pp) in future 

megadrought risk from the LENS relative to the perfect model framework and (Panel C) 

estimate of future megadrought risk (2006–2040 C.E.) from the LENS. (Panel B and C) 

Values are only shown at grid points with a p-value greater than 0.5 (Panel A), an increase in 

future megadrought risk (2006–2040 C.E.), and a future megadrought risk (2006–2040 C.E.) 

that is less than 100%:
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Figure 3: 
(Panel A) The number of ensemble members necessary to achieve 5 pp error in the median 

using the same analysis as Fig. 1b. (Panel B) The values in Panel A (x-axis) plotted against 

future megadrought risk from the perfect model framework (y-axis). The grey shaded region 

is the range for the same plot but randomly subsampling the CESM control simulation to 

calculate number of ensemble members instead of using surrogate timeseries based on the 

LENS. (Panel C) The values in Panel A (x-axis) plotted against the ensemble mean PDSI of 

the 30 LENS ensemble members between 2006–2040 C.E. (an estimate of the forced 

response to RCP8.5-y-axis). (Panel A, B and C) Values are only shown for grid points with a 

p-value greater than 0.5 in Fig. 2a, an increase in future megadrought risk (2006–2040 C.E.), 

and a future megadrought risk (2006–2040 C.E.) that is less than 100%.

Coats and Mankin Page 14

Geophys Res Lett. Author manuscript; available in PMC 2020 June 29.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript


	Abstract
	INTRODUCTION
	METHODS
	Climate model data
	Megadrought estimation
	Perfect model framework
	Timeseries modeling

	RESULTS and DISCUSSION
	Perfect model framework and future megadrought in the ASW
	Sources of error in megadrought risk estimates
	Forced changes in variability?
	Constraining uncertainty in future megadrought risk

	CONCLUSIONS
	References
	Figure 1:
	Figure 2:
	Figure 3:

