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Abstract

Purpose: There is a need for biomarkers of drug efficacy for targeted therapies in triple-negative 

breast cancer (TNBC). As a step toward this, we identify multi-omic molecular determinants of 

anti-TNBC efficacy in cell lines for a panel of oncology drugs.

Methods: Using 23 TNBC cell lines, drug sensitivity scores (DSS3) were determined using a 

panel of investigational drugs and drugs approved for other indications. Molecular readouts were 

generated for each cell line using RNA sequencing, RNA targeted panels, DNA sequencing, and 

functional proteomics. DSS3 values were correlated with molecular readouts using an FDR-

corrected significance cutoff of p* < 0.05 and yielded molecular determinant panels that predict 

anti-TNBC efficacy.

Results: Six molecular determinant panels were obtained from 12 drugs we prioritized based on 

their efficacy. Determinant panels were largely devoid of DNA mutations of the targeted pathway. 

Molecular determinants were obtained by correlating DSS3 with molecular readouts. We found 

that co-inhibiting molecular correlate pathways leads to robust synergy across many cell lines.

Conclusions: These findings demonstrate an integrated method to identify biomarkers of drug 

efficacy in TNBC, where DNA predictions correlate poorly with drug response. Our work outlines 

a framework for the identification of novel molecular determinants and optimal companion drugs 

for combination therapy based on these correlates.
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Introduction:

Triple-negative breast cancer (TNBC) is a subtype of breast cancer defined by the absence of 

estrogen receptor (ER) and progesterone receptor (PR) expression and no overexpression of 

HER2/neu. TNBC is more likely to recur and metastasize, and have a higher grade than 

other subtypes of breast cancer [1, 2]. Moreover, it has few targeted approved treatments; 

thus surgery, radiation, and chemotherapy remain the mainstays of therapy for TNBC. This 

is largely due to TNBC being defined by what it lacks (ER, PR, Her2), while other forms of 

breast cancer are defined by the molecular features/targets they possess [3]. Thus far, many 

targeted therapies tested in traditionally-designed clinical trials largely without any 

biomarker based patient selection have not fared well in TNBC [3–5]. Even a well-

recognized marker such as homologous recombination deficiency, that has been advanced as 

promising for predicting response to checkpoint inhibitors, is under scrutiny in recent studies 

[6, 7]. Conversely, biomarker-guided selection for olaparib (using BRCA1 mutation or 

downregulation) and atezolizumab (using PD-L1 expression of immune cells) have led to 

FDA approvals of both drugs for TNBC, reflecting the observed improved patient outcomes 

[8–11]. A major reason proposed for the disappointing performance of targeted therapeutics 

in TNBC is the biological heterogeneity of the disease [12, 13]. Drugs approved on the basis 

of their biomarkers in TNBC, such as olaparib and atezolizumab, have shown promise in 

clinical trials for the small subset of patients matching the biomarker. There is however, a 

paucity of markers to predict the degree of clinical efficacy for drugs in breast cancer, 

beyond ER or HER2 status. Broad efforts to identify biomarkers could enable larger 

numbers of TNBC patients to positively respond to targeted or conventional therapies [14]. 

These therapeutic challenges highlight the pressing clinical need for dentifying robust 

biomarkers of drug efficacy in TNBC.

Using genetic information to inform drug discovery (and to “match” a drug to a patient) has 

been a significant focus since the sequencing of the human genome [15, 16]. While this has 

revolutionized how we treat specific tumors, such as EGFR mutant lung cancer [17], cancer-

agnostic basket trials have led to mixed results in selecting treatments for patients in the 

clinic [18–20]. It is now recognized that every occurrence of cancer is specific to each 

individual patient, even among patients who share certain mutations in notable cancer genes, 

such as TP53, RB1, BRCA1/2, PIK3CA, and others [21, 22]. While there is a push towards 

true precision medicine, where each patient’s tumor is evaluated and treated in a tumor-

specific manner [23, 24], a significant gap remains in how to best match therapeutic 

treatments to an individual tumor profile.

In an effort to identify molecular correlates to predict drug response in TNBC, we tested a 

library of 78 clinically approved and investigational new drugs (INDs) against a collection of 

23 highly diverse TNBC cell lines. We measured the dose-response activity for each drug in 
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each of 23 TNBC cell lines. Next, we determined the drug sensitivity score (DSS3), a drug 

response metric that incorporates both potency and efficacy, to facilitate quantitative 

correlations across drug types in each cell line [25]. We find that DNA mutational status 

alone generally does a poor job of predicting drug response in TNBC cell lines. However, 

using a combination of DNA sequencing, RNA sequencing, targeted RNA expression 

panels, and reverse-phase protein arrays (RPPA), we identify molecular features that 

correlate with DSS3 values. Further, co-inhibition that targets correlating molecular features 

identifies novel synergistic combinations.

Materials and Methods

Cell Culture

Cells used in this manuscript, including MUM51 Cell Line, BT20, BT549, CAL148, 

CAL51, DU4475, HCC1143, HCC1187, HCC1599, HCC1806, HCC1937, HCC2157, 

HCC38, HCC70, HS578t, MDA-MB-157, MDA-MB-231, MDA-MB-436, MDA-MB-453, 

MDA-MB-468, MFM223, SUM102, SUM149, SUM159, SUM185, SUM52, and VARI068 

Cell Line, were cultured according to Supplemental Table 1 following dispersion with 

0.05% Trypsin-EDTA (Invitrogen). All cell lines were appropriately validated or found to be 

unique by DNA short tandem repeat analysis (ATCC, Manassas, VA) within 6 months of 

use. All cell lines were tested and cleared from mycoplasma.

Chemicals and Reagents

Chemicals were purchased from Selleckchem (Houston, TX), Sigma-Aldrich (St. Louis, 

MO), and Med Chem Express (Monmouth Junction, NJ). Compounds were diluted in 

DMSO (Sigma-Aldrich, D2650), except for copanlisib which was diluted in 10% 

Trifluoroacetic acid in DMSO due to solubility constraints (Sigma-Aldrich, T6508).

Primary antibodies used include Phospho AKT T308 Rabbit mAb (4056L, Cell Signaling 

Technology (CST)), Phospho AKT S473 Rabbit mAb (4058S, CST), pan-AKT Rabbit mAb 

(4691S, CST), PI3 Kinase p85 Rabbit Ab (4292S, CST), and Monoclonal Anti-β-Actin

−Peroxidase (3854, Sigma-Aldrich). Secondary antibody used was anti-rabbit IgG-HRP 

(sc-2357, Santa Cruz Biotechnology).

Drug Screening

Cells were screened in 96-well (Corning, 353072 or Costar, REF3610) format in triplicate. 

Cells were plated on day 0 at 3,000 cells per well. On day 1, drugs were added at 1:1000, 

resulting in 0.1% final DMSO concentration per well. On day 4, viability was measured 

using cell proliferation reagent WST-1 (Sigma, 5015944001) followed by CellTiter-Glo 

(Promega, G9242) on a Synergy 4 plate reader (Bio Tek) or Envision plate reader (Perkin 

Elmer). For Chou-Talalay synergy calculations, cells were dosed at 1:500 DMSO (1:1000 of 

each drug) [26, 27]. IC50 values were determined for each drug and this IC50 value was used 

as the middle dose, with 3 doses 2-fold higher and 3 doses 2-fold lower, capturing points 

along the IC50 curve for synergy calculations.
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Drug Sensitivity Score Calculation

Drug dose response data were fit to the equation Y = Bottom + (Top-Bottom)/

(1+10^((Log10IC50-X)*HillSlope)) where X = Log10(concentration, M) and Y = % 

inhibition (vs. vehicle) using Graphpad Prism 7. Constraints used were Bottom = 0 and Top 

≤ 100. DSS3 values were calculated as described by Yadav et al. [25]. Dose response curve 

readouts used for DSS3 calculation are listed in Supporting Information. The IC50 values, 

hillslope, maximum inhibition, and drug ranges were entered into the DSS package for 

Rstudio and DSS3 values (ranging 0 to 100) were calculated.

Molecular Characterization

200,000 cells were plated in 6 cm dishes and grown for 24 h. DNA, RNA, and protein were 

collected from each of the 23 cell lines using the Qiagen AllPrep mini kit (Qiagen, 80204) or 

RPPA lysis buffer. DNA samples were sequenced using the Roche Human Oncology Panel. 

RNA was sequenced using QuantSeq 3’ (Lexogen) on an Illumina NovaSeq at TIGEM 

(Naples, Italy) and using Nanostring targeted panels. Protein was sent to MD Anderson for 

RPPA analysis. For full details, see Supplemental Materials and Methods.

Correlations and Statistics

Molecular determinants were identified by calculating Pearson correlations between DSS3 

values and molecular readouts including DNA variants, log2 normalized RNA expression 

levels from RNA-seq, log2 Nanostring array counts, normalized log2 Nanostring signature 

scores, and normalized log2 RPPA protein expression levels. To reduce problems associated 

with multiple testing and to identify significant correlations across 23 TNBC cell lines, we 

reduced the number of tests needed by eliminating low-count or low variability genes. From 

the nanostring and RPPA data, the bottom 15% of total counts were excluded. From the 

DNA sequencing, variants with VAFs of 0.0 or 1.0 were eliminated from analysis. 

Additionally, a second table was constructed by generating a roll-up of mutations to the 

same gene. From RNA sequencing, the top 5,000 genes were selected based on the highest 

variance-mean ratio. Using R, Pearson correlations p-values were adjusted for multiple 

testing using the false discovery rate (FDR) procedure for each dataset. Significant 

molecular determinants were identified as those with an FDR-adjusted p*-value < 0.05. To 

visualize molecular correlates, signatures were ordered by DSS3 and hierarchically clustered 

before visualization with Morpheus (Broad Institute) [28]. Mann-Whitney and AUC-ROC 

testing was calculated using GraphPad Prism 7. Synergy of companion drugs with 

copanlisib was calculated using CompuSyn software (ComboSyn, Inc., Paramus, NJ) [26, 

27, 29].

Results:

Identifying drugs with anti-proliferative activity in TNBC cell lines

To identify molecular correlates of drug efficacy in TNBC, we developed a platform to 

correlate drug responses with molecular features. Seventy eight FDA approved or 

investigational new drugs (IND) drugs were screened against a molecularly and ethnically 

diverse collection of 23 TNBC cell lines, in dose-response format. Drugs were chosen based 
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on their efficacy in other solid tumors. From the 78 compounds, 61 compounds with 

discernable EC50 curves were identified (17 compounds were inactive across all cell lines 

tested). Drug sensitivity score 3 (DSS3) values were calculated for each the 61 drugs and 23 

cell lines in an effort to compare potency and efficacy across the TNBC cell lines 

(Supplemental Table 2) [25]. The spread of DSS3 values was visualized by plotting median 

DSS3 value vs. interquartile range (IQR) of DSS3 values (Figure 1). We reasoned that drugs 

displaying a high dispersion in their response across cell lines are more informative for 

deriving correlations. Drugs with an IQR greater than 15 and/or a median DSS3 over 20 

were prioritized for further analysis, as they exhibit sufficient range of activity and 

sensitivity and thus were amenable to the analyses; the resulting in top 12 compounds were 

advanced for molecular correlate identification [25].

Drug response predictions based on mutation status alone broadly fail in TNBC cell lines

Basket clinical trials use DNA mutational state of specific genes to attempt to match patient 

tumor profiles to prospective treatments in advanced solid tumors, including TNBC [30]. To 

better understand how well basket-trial criteria predict drug response in our TNBC cell line 

collection, we grouped DSS3 values on the basis of their mutation status for drugs: 

copanlisib (PI3K inhibitor), dasatinib (Src/Abl inhibitor), trametinib (MEK1/2 inhibitor), 

and TAK228 (mTOR inhibitor) (Figure 2). PI3K mutation status predicts copanlisib 

sensitive cells with an average DSS of 54.6 and insensitive average of 16.9 (Figure 2A). This 

prediction was significant via a Mann-Whitney test with a p < 0.01 and an area under the 

receiver operating characteristic curve (AUC-ROC) value of 0.89 (AUC = 0.5 denotes a poor 

classifier and AUC = 1 indicates a perfect classifier) [31]. PTEN mutations and PTEN or 

PI3K mutations yield similar predictions for copanlisib with AUC values of 0.84 and 0.92, 

respectively. In basket-trials (NCT02465060), mutations in DDR2 are used to predict 

dasatinib sensitivity [32]; however, in our TNBC cell line collection there is almost no 

statistical difference between sensitive and insensitive groups via a Mann-Whitney test using 

this criterion, with a poor AUC value of 0.46 (Figure 2B). Similarly, predictions for 

trametinib (BRAF, GNA11, and NF1 [33]) and TAK228 (TSC and mTOR [34, 35]) on the 

basis of mutation status (NCT02465060) fail to correctly predict differences in groups, with 

AUC values ranging from 0.11–0.59 (Figures 2C & 2D).

Identifying molecular correlates for drug efficacy in TNBC cell lines using a multi-omic 
approach

In an effort to improve on the current poor TNBC efficacy predictions based on DNA 

mutations alone, we elected to take an integrated multi-omics approach to identify novel 

molecular correlates of drug efficacy in TNBC cell lines. Twenty-three TNBC cell lines 

were molecularly characterized using RPPA, DNA sequencing, RNA sequencing, and 

targeted RNA profiling arrays. DSS3 was linearly correlated with each set of molecular 

features for the 12 prioritized drugs. The correlations resulted in molecular correlates of 

drug efficacy with FDR-adjusted p < 0.05 for 6 of the 12 prioritized drugs (Figure 3 and 

Supplemental Figure 1). Six prioritized drugs (bortezomib, romidepsin, AZD-1775, 

paclitaxel, eribulin, and mubritinib) had no molecular correlates that met our selection 

criteria. Copanlisib DSS3 values were found to correlate with the PI3K pathway, as pathway 

members were identified via DNA mutation (PIK3CA), RNA expression (PIK3CD), and 
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functional proteomics (AKT, GSKA, Tuberin) (Figure 3A). In addition to the PI3K pathway, 

we found that the RNA expression levels of other genes, as well as breast cancer subtype 

signatures, correlated with copanlisib efficacy meeting our selection criteria and FDR 

threshold. Dasatinib DSS3 values correlated with a novel panel of RNA gene hits, as well as 

three breast cancer subtype signatures (Figure 3B). Trametinib DSS3 values gave 

correlations with both DNA mutations and RNA expression levels (Figure 3C). Previous 

reports have demonstrated that ETS2 is a downstream transcription factor of the MAPK 

pathway [36]. CCND2 levels have been shown to correspond to MAPK signaling in other 

forms of cancer [37]. Additionally, TIAM1 is a parallel downstream Ras pathway member 

that has previously been reported to correspond to trametinib sensitivity [38]. TAK228 DSS3 

values correlated with RNA markers as well as the Luminal A breast cancer subtype (Figure 

3D). TAK228 and Aurora inhibitors have previously been shown to synergize in TNBC [39]. 

Temsirolimus DSS3 values correlate with expression levels of TNFSF8 and SMAD4 

(Supplemental Figure 1A). Finally, we found that docetaxel DSS3 values correlate with a 

SMAD7 missense mutation (Supplemental Table 3), with non-responsive cell lines 

harboring SMAD7 mutations (Supplemental Figure 1B).

Identifying synergistic combinations of targeted therapies using molecular correlates

We next wanted to determine whether we could leverage our molecular correlates of drug 

efficacy to identify synergistic drug combinations. Here, we focused on copanlisib due to its 

excellent anti-TNBC activity and robust selection of correlates available to discern 

companion drugs. We chose to target two molecular correlates of copanlisib drug response 

(EPHA2 and CENPE), in which their RNA expression levels are elevated in copanlisib-

resistant cell lines and decreased in copanlisib-sensitive cell lines (Figure 3A). Importantly, 

there are inhibitors available to target both EPHA2 and CENPE. We inhibited CENPE using 

the selective inhibitor, GSK923295, and inhibited EPHA2 using the selective inhibitor, 

ALW-II-41–27, and also the non-selective kinase inhibitor, dasatinib [40, 41]. We found 

there was significant synergy for each of the three combinations (GSK923295 + copanlisib, 

ALW-II-41–27 + copanlisib, and dasatinib + copanlisib) using Chou-Talalay analysis (Table 

1). Briefly, Chou-Talalay analysis quantifies synergy at multiple therapeutically relevant 

effect levels (e.g., EC50, EC75) where the Chou-Talalay combination index (CI) defines 

synergy, additivity, or antagonism (0 < CI < 1 is synergism, CI = 1 is additivity, CI > 1 is 

antagonism). CENPE chemical inhibition was found to have a synergistic effect with 

copanlisib in 5 of 7 cell lines tested at an effective dose (ED) of 50% (0.5), and 6 of 7 lines 

at an ED of 75% (0.75). EPHA2 chemical inhibition had a synergistic effect with copanlisib 

in all 7 cell lines tested at an ED of 50 and 75%.

Copanlisib anti-TNBC efficacy is not dependent on downstream AKT signaling

To examine the target engagement of copanlisib in TNBC cell lines, we collected cell lysates 

from three TNBC cell lines with a broad range of DSS3 values (MDA-MB-453 = 68.8; 

MDA-MB-436 = 8.9; and Cal51 = 62.0) treated with increasing concentrations of copanlisib. 

Western Blot analysis demonstrates that although there is a 20-fold difference in viability 

IC50 across these three cell lines, PI3K signaling is reduced over a similar concentration 

range, as measured by downstream AKT activation (Figure 4A). Indeed, the least growth-

sensitive cell line (MDA-MB-436, DSS3 = 8.9) has PI3K-AKT pathway inhibition at 2 nM 
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copanlisib (Figure 4B,E,F). Meanwhile, PI3K-mutated MDA-MB-453 is growth-sensitive to 

copanlisib (DSS3 = 68.8) and has a similar PI3K-AKT pathway IC50 to the insensitive cell 

line MDA-MB-436. PI3K-mutated Cal51 (DSS3 = 62.0) exhibited pathway inhibition at 8 

nM and cell viability IC50 at 31 nM (Figure 4C-F). Taken together, these results demonstrate 

that TNBC cell lines have a spectrum of sensitivity to PI3K pathway inhibition that is not 

explained by signaling of the PI3K-AKT pathway alone.

Discussion:

Here, our work is focused on TNBC, while large pan-cancer resources, including the 

Genomics of Drug Sensitivity in Cancer (GDSC), have provided databases of cell line 

characterization and drug sensitivity data [42]. GDSC includes 22 TNBC cell lines, a similar 

number to the 23 cell lines in our study. In addition to a focused collection of TNBC-

directed drugs that were examined in our study, we also utilized matched samples (identical 

material) for molecular characterization and drug sensitivity studies. It has recently been 

reported that individual cell lines undergo molecular diversification in culture, resulting in 

passage-specific changes at both the genetic and drug response level [43]. We utilize 

comprehensive molecular characterization of a diverse TNBC cell line collection and 

correlate drug responses to molecular readouts. From these data, we assemble panels of 

molecular correlates of therapeutic efficacy for the most promising anti-TNBC drugs. 

Current standards for prediction of drug response rely almost entirely on mutational changes 

within tumor cell DNA. Indeed, DNA-based biomarkers are prevalent in today’s large 

personalized medicine trials, including NCI-MATCH, TAPUR, and LOTUS [30, 44]. 

Though these trials are considered an important step toward true precision medicine, a 

significant shortcoming in these trials is that mutations alone are not generally robustly 

predictive of therapeutic response, even often in the case of therapies that directly target a 

mutated pathway. We found this discordance when comparing basket-trial enrollment 

criteria to drug response in TNBC cell lines (Figure 2). While mutations in PIK3CA 

generate stratification of cell line response to copanlisib, mutation-based predictions alone 

for dasatinib, trametinib, and TAK228 fail in TNBC cell lines. In fact, the mutation based 

criteria for trametinib and TAK228 predict the inverse of the experimental drug response, 

where selection on the basis of basket-trial criteria incorrectly predicts high drug efficacy for 

a resistant group of cell lines. These results highlight the need for more robust biomarkers of 

drug efficacy.

Biomarkers of drug efficacy for cell lines have been successfully developed for other 

subtypes of cancer but are lacking for TNBC [45–47]. In an effort to identify highly robust 

molecular correlates of drug efficacy, we screened a collection of 23 TNBC cell lines. Our 

collection of TNBC cell lines was designed to maximally represent the molecular and ethnic 

diversity of the disease. While we found 23 cell lines to provide robust molecular correlates 

for drug response, additional TNBC cell lines would increase our predictive power and ease 

future application of molecular correlations to the clinic. We thus encourage the continual 

development of additional cell line models of TNBC and other cancers. Our goal was to 

correlate drug efficacy with a variety of molecular markers (DNA mutation, RNA 

expression, and functional proteomics). Correlates for copanlisib were heavily focused 

around the PI3K pathway (Figure 3A). However, it is striking that most of the derived 
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molecular correlates for other targeted therapies did not directly include the drug-targeted 

pathway. For example, the drug efficacy of TAK228, an TORC1/2 inhibitor, is not correlated 

with genes or proteins from the mTOR pathway (Figure 3D). Instead, TAK228 correlates 

strongly with AURKA, consistent with previously published results that demonstrated that 

the combination of TAK228 and Aurora inhibition is highly efficacious in TNBC [39]. 

Functional proteomic studies (RPPA) yielded significant correlations only for copanlisib, 

while global RNA expression and targeted RNA expression panels yielded significant 

molecular correlates for five of twelve drugs tested. Four of the newly identified panels 

contain correlations from DNA sequencing, though copanlisib is the only drug wherein the 

mutation in PIK3CA is within the drug-targeted pathway. Three of the six molecular 

correlate panels were also aligned with breast cancer subtyping scores (determined by 

nanoString PAM50 analysis [48]). While we did run a nanostring miRNA array containing 

nearly 800 well-studied miRNAs, we found no correlations that met our FDR-asjusted 

significance threshold for any of the prioritized compounds.

Copanlisib, a PI3K inhibitor, was one of the most promising compounds that we identified 

in TNBC cell lines. Notably, the PI3K pathway has long been of great interest for the 

treatment of TNBC, in both pre-clinical models and clinical trials [49–51]. TNBC presents 

with PIK3CA mutations in 20–30% of cases and low PTEN expression in 48% of cases [44, 

52]. Together, these findings result in perturbation of PI3K signaling in a significant number 

of TNBC patients. The frequent dysregulation of the PI3K signaling pathway in TNBC is 

indicative of its importance in the pathogenesis of the disease. While PI3K pathway 

inhibitors have shown some limited success in clinical trials, and especially so in subgroups 

of patients with aberrant mTOR/PI3K/PTEN signaling [53, 54], the altered signaling in 

these cancers is not entirely explained by mutations. For example, the LOTUS trial identified 

that 48% of TNBC patients presented with decreased PTEN expression; however, only 29% 

of patients with low PTEN expression had corresponding PTEN genetic mutations [44]. This 

highlights a major challenge when selecting patients for clinical trials: mutations are not 

uniquely and robustly predictive of response to various therapies that directly or indirectly 

target the mutations or their downstream pathways [55]. Together, our findings emphasize 

the importance of considering other molecular profiling methodologies, such as gene and 

protein expression levels, in the design of clinical trials, if robust biomarker signatures can 

be deduced for the individual compounds.

Single agent targeted therapies are known to be prone to resistance [56–58]. Combining 

multiple efficacious targeted agents has emerged as a strategy to prevent or delay resistance 

(and to deal with resistance that has already emerged) [59–62]. It remains however a 

significant challenge to identify which drug(s) to combine with a specific targeted therapy. 

Most studies aimed at identifying companion drugs are performed using laborious and 

costly, seemingly “brute force”-like efforts, that explore all combinations without any basis 

for prioritization. We hypothesized that our molecular correlates could be used to identify 

optimal compounds to partner with a targeted agent. Notably, previous published work has 

described TAK228 and Aurora inhibitors as synergistic when administered in combination 

[39]. We found that AURKA was a correlate for TAK228, which lends support to using 

molecular correlates to identify drugs combinations. Thus, we hypothesized that we could 

identify novel synergistic combinations on the basis of our molecular correlate panels. As 
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proof of principle for this approach, we selected copanlisib as the primary agent, due to its 

excellent anti-TNBC efficacy. On the basis of copanlisib’s molecular correlate profile, 

EPHA2 and CENPE were prioritized correlates due to their high expression in less-

responsive cell lines. We measured significant anti-TNBC efficacy between copanlisib and 

EPHA2/CENPE inhibitors. Both combinations of inhibitors resulted in synergistic responses 

when administered at therapeutically relevant levels in six out of seven cell lines tested 

(Table 1). The cell line that did not respond to the combination (MDA-MB-436) is likely due 

to very high initial sensitivity to both of the companion drugs, resulting in difficulty to 

interpret curves and imperfect synergy analysis. Cell lines were chosen to be representative 

of the original data set, with a wide range of initial DSS3 values for copanlisib, as well as 

varied starting expression levels of both EPHA2 and CENPE (Supplemental Table 2). These 

results demonstrate that our molecular correlates cannot only be used to predict drug 

response, but because of their robustness, prove valuable in the rational identification of 

companion drugs and thus, also provide a method for prioritizing the testing of drug 

combinations.

Our molecular correlates are notable because they did not generally include the direct 

pathway impacted by compound treatment. To better understand the relationship of 

downstream signaling to cellular viability, we measured downstream AKT signaling, 

following copanlisib treatment. We then compared inhibition of the PI3K-AKT pathway to 

the reduced viability from copanlisib treatment (Figure 4). We measured two copanlisib-

sensitive cell lines (MDA-MB-453 and Cal51) and one growth-insensitive cell line (MDA-

MB-436). Though MDA-MB-453 and MDA-MB-436 have a 100-fold difference in cell 

viability EC50, the suppression of downstream AKT signaling with copanlisib treatment is 

nearly identical. Cal51 has a 5-fold differential in both cell viability EC50 and downstream 

signaling relative to MDA-MB-453. Thus, we observed that viability EC50 values between 

cell lines is not dependent on or correlated with differences in signaling suppression. 

Mutation of PI3K thus predicts copanlisib sensitivity not because of elevated signaling, but 

likely because of a cellular addiction to PI3K signaling or to signaling through other 

compensatory pathways.

In summary, our findings propose a potential solution for the pressing clinical need for 

robust biomarkers of drug efficacy in TNBC. Existing biomarkers for anti-TNBC drugs are 

scarce and generally rely on DNA alterations that poorly predict cellular response. Herein, 

we identified six molecular correlate panels for relevant clinical compounds using TNBC 

cell lines. Our work suggests that these drugs could be effective clinically when paired with 

the correct molecular correlate panels to guide patient selection. Modern instrumentation, 

such as the nanoString nCounter, which enable simultaneous analysis of DNA, RNA, and 

protein in rapid manner (2–3 days), could thus be used clinically to obtain a multi-omics 

panel for each putative patient. This work outlines a framework for the identification of 

biomarkers and has further utility in the identification of synergistic target pathways based 

on these correlate readouts. While expansion to the clinic would require extensive validation 

in ex vivo patient models, we believe that a multi-omic approach utilizing DNA, RNA, and 

protein has the potential to yield more robust biomarkers than examining DNA mutations 

alone. Together our work provides key insights into the interplay between drug sensitivity 

and molecular signaling in TNBC.
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Figure 1. Selection of molecular correlate candidate drugs.
Twenty-three TNBC cell lines were treated with a panel of drugs yielding EC50 curves. The 

EC50s were used to derive DSS3 values. The IQR and Median DSS3 was plotted. 

Compounds with an IQR above 15 or median above 20 were prioritized, resulting in 12 

drugs prioritized as molecular correlate targets. Correlations with molecular profiling 

yielded 6 sets of candidate molecular correlates (red).
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Figure 2. DNA mutations alone poorly predict drug response in TNBC.
Observing mutation status alone from basket trial criteria, retrospective predictions of drug 

response are poor in TNBC cell lines. Average and spread of DSS3 compared in 23 TNBC 

cell lines. AUC values calculated for each paired comparison. A. Mutation-based predictions 

for copanlisib sensitivity rely on PIK3CA and PTEN mutations. B. Mutation-based 

predictions for dasatinib sensitivity rely on DDR2 mutations. C. Mutation-based predictions 

for trametinib sensitivity rely on BRAF, GNA11, and NF1 mutations. D. Mutation-based 

predictions for TAK228 rely on TSC1/2 and mTOR.
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Figure 3. Molecular correlates in TNBC cell lines.
Examples of compounds with significant correlates: A. copanlisib, B. dasatinib, C. 

trametinib, and D. TAK228. All molecular marker readouts have a FDR-adjusted p*-value < 

0.05. Top bars depict DSS3, with dark green representing the most sensitive lines and white 

representing the least sensitive. Orange labeled readouts are derived from DNA variants. 

Blue labeled readouts derived from functional proteomics. Black labeled readouts are 

derived from targeted RNA expression levels. Grey italicized labeled readouts are derived 

from global RNA expression levels. Pink labeled readouts are derived from breast cancer 

subtyping scores.

Merrill et al. Page 16

Breast Cancer Res Treat. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Downstream changes in PI3K signaling do not explain differences in DSS3 value.
Signaling measured following 2 h treatment with copanlisib at 5x increasing doses. Cell 

lines measured were A. MDA-MB-453, B. MDA-MB-436, C. Cal51. Key for D.-F. located 

in panel E. D. Cell viability curves for 72 h copanlisib treatment shows differential IC50 and 

cell death in the 3 cell lines. AKT activation is plotted for E. AKT pT308 and F. AKT 

pS473, calculated by densitometry for pAKT/Total AKT from A.-C.
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Table 1.
Combination indices of Copanlisib with EPHA2 (ALW-41–27 and dasatinib) or CEPNE 
(GSK923295) chemical knockdown using the Chou-Talalay method.

Effective dose for 50% or 75% inhibition shown as ED50 and ED75, respectively. Blue indicates synergy, 

orange indicates antagonism. NA denoted when an EC50 curve could not be generated for the companion drug 

alone. Cells are ordered with Copanlisib-sensitive cell lines at the top and Copanlisib-insensitive cell lines at 

the bottom.

ALW-II-41-27 (EPHA2) Dasatinib (EPHA2) GSK923295 (CENPE)

Cell Line: ED50 ED75 ED50 ED75 ED50 ED75

SUM102 0.78 0.58 0.22 0.24 0.73 0.69

MDA-MB-453 0.42 0.31 NA NA 0.64 0.67

BT20 0.61 0.32 0.33 0.45 1.2 0.86

SUM185 0.63 0.37 NA NA 0.97 0.80

Hs578T 0.39 0.33 0.21 0.19 0.34 0.61

HCC1937 0.63 0.28 0.30 0.31 0.37 0.22

MDA-MB-436 19 0.35 0.40 0.39 62 1.5
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