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Abstract

Spatiotemporal air pollution models are increasingly being used to estimate health effects in 

epidemiological studies. Although such exposure prediction models typically result in improved 

spatial and temporal resolution of air pollution predictions, they remain subject to shared 

measurement error, a type of measurement error common in spatiotemporal exposure models 

which occurs when measurement error is not independent of exposures. A fundamental challenge 

of exposure measurement error in air pollution assessment is the strong correlation and sometimes 

identical (shared) error of exposure estimates across geographic space and time. When exposure 

estimates with shared measurement error are used to estimate health risk in epidemiological 

analyses, complex errors are potentially introduced, resulting in biased epidemiological 

conclusions. We demonstrate the influence of using a three-stage spatiotemporal exposure 

prediction model and introduce formal methods of shared, multiplicative measurement error 

(SMME) correction of epidemiological health risk estimates. Using our three-stage, ensemble 

learning based nitrogen oxides (NOx) exposure prediction model, we quantified SMME. We 

conducted an epidemiological analysis of wheeze risk in relation to NOx exposure among school-

aged children. To demonstrate the incremental influence of exposure modeling stage, we 

iteratively estimated the health risk using assigned exposure predictions from each stage of the 

NOx model. We then determined the impact of SMME on the variance of the health risk estimates 

under various scenarios. Depending on the stage of the spatiotemporal exposure model used, we 

found that wheeze odds ratio ranged from 1.16 to 1.28 for an interquartile range increase in NOx. 

With each additional stage of exposure modeling, the health effect estimate moved further away 
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from the null (OR=1). When corrected for observed SMME, the health effects confidence intervals 

slightly lengthened, but our epidemiological conclusions were not altered. When the variance 

estimate was corrected for the potential “worst case scenario” of SMME, the standard error further 

increased, having a meaningful influence on epidemiological conclusions. Our framework can be 

expanded and used to understand the implications of using exposure predictions subject to shared 

measurement error in future health investigations.

Keywords

Measurement error; variance correction; shared error

1. INTRODUCTION

Uncertainties common in air pollution exposure assessment result in various error structures 

that can be categorized as shared and/or unshared exposure measurement error, where 

unshared error assumes independence between errors and exposure (true or measured) while 

shared error does not [1]. Measurement error can also take the form of Berkson or Classical. 

Classical error is associated with random errors of measurement commonly related to 

instrument noise, while Berkson error results from assigning the local spatial and/or 

temporal area mean measurement to individuals (i.e., assigning highly aggregated exposure 

values) [1]. A fundamental challenge of exposure measurement error in air pollution 

assessment is the strong correlation and sometimes identical (shared) error of exposure 

estimates across geographic space and time. Berkson and Classical errors can be shared 

and/or unshared depending on the nature of the association between the error magnitude 

with measured (in a Berkson error model) or true (in a Classical error model) exposure. 

Although subject to exposure measurement error [2], environmental epidemiologists utilize 

spatiotemporal air pollution exposure predictions in health risk models to determine 

associations between air pollution and health outcomes. Because measurement error is 

common and unavoidable in spatiotemporal exposure predictions, health risk models are 

therefore subject to questions of precision and/or bias [3, 4]. Customary understanding of the 

implications of unshared error types on epidemiological inference recognize that Berkson 

error will impact estimate precision, while classical error will induce bias in the observed 

health estimates towards the null [4, 5]. When exposure estimates with shared measurement 

error are used to estimate risk in epidemiological analyses, complex errors are potentially 

introduced, resulting in biased epidemiological conclusions [6, 7], where magnitude of bias 

is influenced by the strength (size) of the epidemiological association [7, 8].

Only through knowing the variances of the errors can proper correction of biased 

epidemiological conclusions be made [9]. Shared measurement error results in biased 

variance estimates, and is of most concern when the shared error is multiplicative [10]. A 

multiplicative error structure, common in air pollution exposure estimates, can alter the 

shape of the exposure-response curve (over and/or under estimation) and occurs when the 

error is proportional to the true exposure [11]. In simulation work focusing on air pollution 

measurement error, Szpiro and Pacorick [6] demonstrate the use of the nonparametric 

bootstrap to account for shared measurement error and show bias in variance estimates. 
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Butland et al [12] demonstrate a consistent inflation of variance estimates due to shared 

measurement error. Although shared (Berkson) multiplicative error (with constant variance) 

is understood not to bias epidemiological risk estimates, correcting for shared error will 

provide refined confidence intervals and hence, better support epidemiological inference.

While several methods have been developed to address unshared exposure measurement 

error in epidemiological investigations [9, 13–18] ,existing methods, such as regression 

calibration, are not applicable in situations where the errors are shared across space and time 

[10, 19] and only few investigations focusing on shared exposure measurement error have 

been considered in the context of air pollution epidemiology [6, 7]. Often correlated errors 

are accounted for, but little work has demonstrated the independent influence of shared error. 

Each exposure model produces estimates with a complex combination of error types that 

warrant consideration when interpreting epidemiological risk estimates.

NOx (NO + NO2), a byproduct of fuel combustion and precursor gas involved in the 

secondary formation of ozone and particulate matter, and other air pollutants have been 

implicated in respiratory health [20–22], especially in children. NOx exposure has been 

causally linked to airway inflammation [23, 24] and shown to trigger asthma exacerbations 

such as cough or wheeze in children [25–27]. Asthma is a costly, inhibiting and complex 

multifactorial disease characterized by airway hyper responsiveness, bronchial constriction 

and symptoms such as cough, chest tightness, and wheeze. Wheezing in early life, primarily 

characterized by airway obstruction or narrowing in the lungs, is a common symptom of 

asthma that has been shown to be associated with asthma development later in life [28, 29]. 

Further, wheezing is an important symptom to investigate as studies have revealed that lung 

function is reduced among children with persistent wheeze [30]. Although wheeze is a 

symptom implicated in numerous obstructive pulmonary diseases, the most common 

diagnosis associated with wheeze in infants and children is asthma [31].

Previous work in the southern California Children’s Health Study (CHS), a longitudinal 

cohort designed to assess the influence of air pollution on child respiratory outcomes, has 

demonstrated associations of proxy measures of traffic related air pollution (TRAP) 

exposure, such as residential proximity to major roads [32] and more sophisticated NOx line 

source dispersion (CALINE-4) model estimates [33] with asthma risk . Similarly, CHS 

research has found negative associations between respiratory function and development with 

direct and indirect NOx exposures, including proximity to major roads, measurements from 

regional monitors, CALINE-4 estimates [34], and land use exposure model estimates [35]. 

Associations of NOx and respiratory health in the CHS are consistent with other studies in 

Los Angeles [36], California [37] and around the world [28, 38, 39]. To date, no 

investigations of respiratory health using our newly developed three stage spatiotemporal 

NOx model has been carried out in the CHS cohort.

In our previous work [40], we developed methods based on radiation dosimetry exposure 

measurement error by Stram and Kopecky [10] to identify, quantify, and characterize spatial 

and temporal shared and unshared, multiplicative and additive (SUMA) exposure 

measurement error [40] under a Berkson model in a novel three-stage ensemble learning 

spatiotemporal nitrogen oxides (NOx) model with constrained optimization [41]. This paper 
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will build on our previous work inspired by radiation epidemiology [10] to assess the 

independent impact of shared multiplicative error on the observed epidemiological 

associations between residential NOx exposure and pediatric wheeze events in the CHS[42]. 

We will evaluate the the variance of our health effect estimate across each stage of our 

spatiotemporal NOx model to evaluate the influence of exposure modeling improvements on 

health risk estimates.

2. METHODS

2.1 Population and Health Outcomes

This work utilized cohort E, the most recent wave of the CHS [42, 43] which began 

enrolling school aged children (5–6 years of age) in 2002/2003 and administered yearly 

questionnaires for 12 years to assess respiratory outcomes (among others). Wheeze 

information was reported by parents or guardians in questionnaires indicating if the child 

experienced wheeze symptoms within the last 12 months (“Has your child had wheezing or 
whistling in the chest in the last 12 months?”). Children in the CHS were recruited from 

within specific communities across southern California, selected to represent a range of air 

pollution exposures by design [42]. Using information from longitudinal address 

confirmation, residential history questionnaires and birth certificates, lifetime residential 

timelines were assembled (with prenatal periods starting in 1992) for each participant and 

biweekly NOx exposure was assigned to these times and locations based on our 

spatiotemporal model [41].

2.2 Exposure Assessment

Details on our high-resolution 1992–2013 Southern California NOx model are described in 

Li et al. (2017) [41]. Briefly, the model uses a flexible 3 stage framework that utilizes 

routine measurements collected over a long time period from regional monitoring stations to 

inform temporal basis functions with singular value decomposition to capture long term and 

seasonal temporal variations [44]. In addition to the routine measurements, this model used 

data from short-term spatially dense measurement campaigns, to account for local variability 

across the CHS study domain. Stage 1 is a mixed effect spatiotemporal model that uses 

temporal parameters, long term mean concentrations from regional monitoring stations, 

short term sampling concentration measurements, and local spatiotemporal predictors 

including traffic variables, population density, meteorological parameters, and spatial effects 

to model bi-weekly NOx concentrations. Spatial effects were specified both as random 

effects based on 500-meter aggregate distance Thiessen polygons and nonparametric 

additive terms. This first stage is comparable to a typical spatiotemporal exposure prediction 

model. Stage 2 uses ensemble learning to produce 120 individual mixed-effect models (also 

known as ensembles) that produce biweekly predictions by iteratively sampling 90% of the 

spatiotemporally-referenced predictors from stage 1 for training and a random subset of 

around 63% of the observations to test against the remaining ~ 37% of the data set in each 

ensemble. The estimates from the 120 trained models (ensembles) are then averaged using 

weights based on model performance to output location and time specific optimized 

biweekly NOx predictions (referred to as stage 2 predictions). Methods used in stage 2 

produce predictions that are less prone to investigator bias regarding covariates selection due 
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to the ensemble learning process which eliminates forced covariate inclusion and inflated 

variance of predictions, which are typical in other spatiotemporal models. To minimize the 

influence of missing spatiotemporal covariates and better estimate time series of NOx 

concentrations, stage 3 uses constrained optimization according to the temporal basis 

functions and known physical constraints (e.g. decreasing temporal trend of NOx over study 

years, higher cool season concentrations compared to warm season, concentration limits, 

and seasonal ranges) to adjust stage 2 NOx predictions. The constrained optimization output 

is averaged up to monthly NOx estimates at the residence of each CHS participant [41, 45] 

for use in the epidemiologic analyses (referred to as stage 3 predictions).

2.3 Quantifying SUMA error components

In our previous work we demonstrate the utility of obtaining the 120 ensembles from the 

second stage of the NOx prediction modeling (prior to calculating the weighted average) and 

apply a radiation dosimetry statistical framework originally developed by Stram and 

Kopecky [10] to quantify SUMA exposure measurement error. This method assumes that the 

120 ensembles are not independent and come from the distribution of true exposure given 

the known exposure determinants for each location in time. As our spatiotemporal model is 

a point based model, the assumption that the 120 ensembles come from the distribution of 

true exposure implies that any important missing covariate from the exposure model and the 

degree of smoothing within the model is random and the final spatiotemporal model is 

agreed upon by experts who developed the model and conditional upon the information that 

is available to the experts who developed the model. Our model [41], relies on expert 

judgment and our resultant exposure surfaces can be regarded as the best subjective 

judgement of these implications that is consistent with the opinion of the experts about the 

uncertainties of NOx surface modeling.

The SUMA model for shared and unshared Berkson error is written as follows for each 

time-space specific point of interest, i:

Xi = ϵSMϵMiZi +   ϵSA + ϵAi (1)

where Xi is the true exposure for estimate of interest, Zi is the estimated exposure (a 

weighted mean of the ensembles). ϵSM and ϵMi are the shared and unshared multiplicative 

errors with mean equal to 1 and variances σSM
2  and σM

2  respectively, and ϵSA and ϵAi are the 

shared and unshared additive errors, with mean equal to 0 and variances σSA
2  and σA

2

respectively. Stram and Kopecky’s [10] methods to estimate the following variance terms 

σSM
2 , σM

2 , σSA
2  , and σA

2  from air pollution exposure estimates are detailed in our previous 

work [40]. We focus on the variance of the shared multiplicative error component σSM
2

because this variance term is what primarily affects the behavior of variance estimates and 

confidence intervals for the risk estimate in a standard regression analysis[8]. Briefly, to 

calculate σSM
2  , for every pair of NOx predictions, referred to as i and j, the covariance term 

using realized values Xi and Xj over the 120 ensembles is called Cij. We performed simple 

ordinary least squares (OLS) regression of Cij on the product of the mean of the realized 
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values Xi and Xj (stage 2 exposure predictions as explained earlier), called ZiZj (product 

mean), to fit the model

Cij   =   a0 +   a1ZiZj   +   εij (2)

where Stram and Kopecky note that the slope term (a1) corresponds to σSM
2 , which is the 

estimate of σSM
2 .

2.4 Influence of Shared Multiplicative Error on Variance of Epidemiological Health Risk 
Estimates

If the SUMA model holds true (eq. 1, see also eq. 10 in Stram and Kopecky [10] for 

derivations), then the true variance of a slope estimate b  from a regression of disease, D, on 

observed exposure, W, will be approximately equal to the usual (naïve) estimate SE(b)2 of 

the variance of b  , ignoring the effect of shared multiplicative measurement error (SMME) 

captured by the term b2σSM
2 .

Var b =   SE b 2   +   b2   σSM
2 (3)

Using eq. 3, the variance of b  can be adjusted to account for σSM
2 , resulting in more accurate 

confidence intervals. Eq. 3 implicitly assumes any adjustment variables included in the 

model of the regression of D on W are not associated with exposure error.

2.5 A Demonstration of the Influence of SMME in a Cross-Sectional Epidemiological 
Analysis

A mixed effect logistic regression model was used to predict pediatric wheeze risk in 

relation to NOx exposure in the one year prior to study enrollment [46]. Because children in 

the CHS were recruited from within specific communities by design [42], the model 

includes a random effect for community to account for correlation among individuals living 

in the same study community. The following covariates were obtained at baseline and 

considered for inclusion as fixed effects to adjust for potential confounding (nominally 

defined by a change of approximately 10% or more in the effect estimate of NOx on wheeze 

risk and further confirmed with directed acyclic graphs): CHS community, sex, gestational 

age, age, body mass index, maternal education, maternal race, maternal/paternal allergy 

history, sibling crowding, tobacco smoke exposure, gas stove use, maternal marital status, 

season of conception, day care attendance, and asthma diagnosis. Because of the high 

missing proportion of self-reported income, geocoded residential address was used to 

determine median household income as an additional measure of socioeconomic status at the 

census block group level from the American Community Survey 2005 [47].

The logistic mixed effects model was repeatedly fit using the output from the various stages 

of the spatiotemporal NOx model [41] averaged for the 12 months prior to questionnaire 

completion. As described earlier, the 120 individual outputs from stage 2 ensembles, a single 

averaged output of the 120 stage 2 NOx outputs (Mean of stage 2), and a single constrained 
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optimization NOx output from stage 3 were used as the main exposure in each iteration of 

fitting the logistic mixed effects model repeatedly. By using the 120 stage 2 NOx outputs 

separately in the health models, we aim to demonstrate the possible range of variability in 

health effect estimates that could have been observed had we built a single stage model with 

a fixed set of inputs (approximated by assuming any one of the 120 ensembles could have 

been the final, single-stage exposure model).

The observed health effect estimates were standardized for an interquartile range increase in 

NOx and subsequently adjusted for SMME, via applied correction information methods of 

calculating the “corrected” variance, Eq. 3 [10], to incrementally understand the influence of 

the multiple exposure model output stages and the influence of SMME on the estimate and 

variance of the epidemiological health risk estimate of the odds of recent wheeze per 

interquartile range increase in annual average ambient NOx exposure. This variance 

correction method ultimately can assess the impact of SMME on the standard errors of the 

parameters of interest. The corrected variance of the effect estimate is calculated using Eq. 3. 

Once a new corrected variance is calculated, new confidence intervals can be calculated to 

reflect the true precision of the health effect estimates independently accounting for SMME 

[10]. Furthermore, because SMME correction was developed for linear models and the 

logistic wheeze model is not strictly linear, we investigated the accuracy of a Taylor series 

approximation of the logistic model over the observed range of NOx predictions (and 

extrapolated ranges to display the shape of the curve) found in our study in a sensitivity 

analysis.

3. RESULTS

Of the 5,106 children included in the most recent cohort (E) of the CHS, 761 cases of 

wheeze were reported by parents at study entry (57% with doctor diagnosed asthma). 

Characteristics of the cases and non-cases are shown in Table 1. The majority of CHS 

participants are of Hispanic (white or black) ethnicity (57.6%), living with one or two other 

children in the same home (63%), approximately 6 years old at study entry, with a mean 

BMI of 16 kg/m2. NOx exposure (stage 2 and stage 3) estimates were not statistically 

different between wheeze cases and non-cases. We observed significant differences in race/

ethnicity, gestational age, sex, BMI, maternal education, number of siblings living in the 

same home, and paternal allergy history by wheeze status. A higher proportion of premature 

(15.4%), male (58.9%) children reported wheezing. We observed a greater proportion of 

children with reported history of wheeze living with no other children in the home (16.2%) 

and having parents with reported allergy history (52.8%).

Distributions of annual average NOx assigned to CHS participants in the epidemiological 

analysis were very similar between stage 2 and 3, with a Pearson correlation of 0.994. Stage 

2 NOx predictions had a higher maximum with slightly higher standard deviation. The 

difference between annual stage 2 and 3 NOx exposure ranged between −10.42 and 10.96 

ppb. Upon mapping these differences, we observed the largest differences between stage 2 

and 3 NOx exposure estimates at geographic locations in the communities of Anaheim and 

Upland, two communities with generally higher traffic relative to the other CHS 
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communities (Figure 1). We also found evidence of spatial clustering (Moran’s Index p-

value <0.0001) in these locations with greatest difference between stage 2 and 3 NOx.

The SMME estimate σSM
2  was 0.00029 across all CHS prediction locations and time 

(1992–2013), as determined from our previous work [40]. We also identified significant 

spatial variation of SMME across the CHS region with certain prediction locations 

exhibiting SMME values seven times higher than the average SMME in our earlier analysis. 

Similarly, because our epidemiological analysis is based on baseline data of CHS 

participants, we conducted an SMME analysis by baseline community of the CHS and for 

this particular time period (2002–2003). We found that the SMME estimate was 0.00023, 

and that the highest SMME occurred in the community of Long Beach, CA (Table 3).

Odds Ratios (ORs) and 95% Confidence Intervals (CIs) for recent wheeze and exposure to 

an interquartile range (IQR) increase (24 ppb) of NOx in the previous 12 months using the 

output from each of 120 ensembles, stage 2 NOx model output and stage 3 NOx model 

output are shown in Figure 2 (Table 4), and the health risk estimate is corrected for SMME 

where applicable. Independent tests of the OR for an IQR increase in NOx exposure using 

any of the 120 ensembles ranged from 1.17–1.29. Ten percent of the lower confidence limits 

did not cross the null value of OR =1, p<0.05. The variances of the OR ranged from 

0.000020 to 0.000026. The average OR across the 120 ensembles was 1.23 (standard 

deviation = 0.028). Using the stage 2 NOx output, the OR was 1.24 (95% CI: 0.976, 1.569). 

By applying the correction information methods for SMME, the standard error increased 

from 0.004964 to 0.004966 and the corrected 95% CI remained the same (0.976, 1.569). 

Because in our previous work we found significant spatial variations of SMME [40], with 

NOx predictions in the city of Long Beach showing the highest SMME values, we wanted to 

evaluate a “worst case scenario” by applying the Long Beach specific SMME correction to 

the variance of the CHS-wide health effect estimate. Despite the SMME in Long Beach 

being approximately 29 times greater than that of the entire cohort, the new stage 2 based 

confidence interval (corrected for Long Beach specific SMME) minimally lengthened to 

(0.974, 1.573).

SUMA error components could not be calculated using stage 3 NOx exposure prediction 

model outputs (a single monthly prediction following constrained optimization) and 

therefore, the SMME correction of variance from stage 2 NOx was applied to the stage 3 

based health estimate. Using stage 3 output from the NOx exposure model, the OR for an 

IQR increase in NOx was marginally associated with recent wheeze episodes (OR: 1.28; 

95% CI: 1.001, 1.640). We did observe lengthening of the confidence interval across the null 

when applying the Long Beach SMME correction (95% CI: 0.998, 1.642). Compared to the 

stage 2 effect estimate, the stage 3 effect estimate moved away from the null, and the 

variance increased. The AIC and BIC were comparable between the model using stage 2 and 

3 NOx predictions (AIC: 3568; BIC: 3766).

In our sensitivity analysis to assess linearity, we found that the Taylor series approximation 

of the logistic model was linear for the range of the annual NOx values in our data (Figure 

3), supporting our approach to apply these correction information methods in this context 

given that these methods are developed based on linear models.
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4. DISCUSSION

We have shown that the Stram and Kopecky [10] framework, originally developed for 

radiation dosimetry, can be applied to ensemble based air pollution epidemiological 

evaluations to formally assess the influence of SMME on the variance of observed health 

effect estimates. By applying SMME correction in our epidemiological analysis using 

wheeze as a health outcome, we found that specifically for this outcome and exposure 

combination, SMME was not a major concern in our epidemiological models using stage 2 

NOx as it did not influence the variance of the effect estimate in a meaningful way (altering 

statistical significant of the effect estimate), but we did see that epidemiological conclusions 

were altered as the confidence intervals crossed the null, when adjusting the stronger health 

effect estimates derived using stage 3 NOx estimates for the “worst case scenario” (Long 

Beach specific) SMME.

We conducted a cross-sectional epidemiological analysis to estimate the association between 

NOx exposure and the risk of wheeze in the previous year to assess the impact of the SMME 

on the observed health effect conclusions. Further, by repeatedly fitting the same 

epidemiological model using different estimates of NOx exposure from each stage of the Li 

et al. (2017) model [41], we also quantified the additional influence of the ensemble learning 

and constrained optimization stage in the exposure model on epidemiological conclusions. 

Our findings highlight the benefit of using a 3-stage spatiotemporal model with ensembles 

and constrained optimization for NOx prediction, as we observed stronger health effects with 

each additional stage of our Li et al. (2017) [41] NOx exposure model, largely because of the 

addition of constrained optimization.

We highlight the influence of exposure model specification on health effect estimates by 

fitting the health model to each exposure prediction ensemble (n=120). Although there is 

some variation in the effect estimate between exposure ensembles (between −6% and 5% 

variability from the final stage 2 estimate), overall the resulting estimate consistently 

demonstrates positive associations between NOx and wheeze. This analysis is limited as we 

do not have the gold standard health effect estimate to formally assess bias, but we assume 

the true health effect is most similar our final stage 3 NOx based on our confidence in this 

model and the consensus of previous literature. More notable is the meaningful changes in 

precision across the health estimates between exposure ensembles, as only 10% of the 

confidence intervals did not cross the null. In this setting, we see that accuracy and 

consistency (guided by covariate inclusion) of in spatiotemporal exposure models had a 

meaningful influence on the precision of (exposure estimates, see Figure S1, and Table 4) 

epidemiological conclusions. By averaging across ensembles (stage 2), the error of exposure 

prediction should be theoretically reduced resulting in decreased variance and bias. We 

found that the measure of association moved away from the null using the stage 2 output and 

further shifted away from the null using the stage 3 output. The stage 3 output adjusted 

exposure predictions represent real-life physical constraints. This results in more realistic 

exposure predictions further reduce variability of exposures. Although the measure of 

association shifted away from the null, we did see an increase in the standard error, 

indicating that although we reduced variance in the exposure predictions, there may be 

increased variance in the epidemiological measures of association obtained using exposure 
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predictions with applied constraints. We found significant spatial autocorrelation of the 

difference between stage 2 and 3 NOx estimates, indicating that the constrained optimization 

was more important in specific geographic areas. We note that the largest difference between 

the stage 2 and 3 annual average NOx estimates was observed among some predictions 

within high NOx communities, but this was not seen in all high NOx communities.

Through this work, we gain useful information regarding the additional uncertainty of 

epidemiological inferences resultant from shared exposure error. Although we found that 

shared additive error was larger in magnitude than SMME in our earlier work [40], we 

focused our adjustment of epidemiological effects on SMME as other work has indicated 

minimal influence of shared additive error on epidemiological results in a Berkson model 

[48]. Shared error differs from traditional measurement error as the errors are not 

independent, which is common in air pollution exposure models since the dynamic and fine 

scale variability of true air pollution can’t fully be captured in models that rely on spatial and 

temporally aggregated covariates. There has been work showing that exposure bias is 

actually greatest from shared error within predictions compared to bias due to shared error 

between predictions [49]. Our work only focuses on the shared error between predictions 

and future studies that can classify shared within and between exposure measurement error 

will be integral in identifying factors contributing to shared measurement error.

The utility of this work in the epidemiological setting is to adjust confidence intervals to 

account for SMME. SMME artificially shortens confidence intervals ([10, 12, 50]) and 

therefore adjustment will lengthen confidence intervals so that environmental epidemiologist 

can provide inferences with increased precision. The assessment of SMME in exposure 

estimates alone is not meaningful to epidemiologists without comparison to the 

epidemiological effect estimate (b) and the naïve variance (SE(b)2). Further, SMME is 

negligible if b2   σSM
2  is small relative to the variance of the epidemiological estimate, 

SE(b)2 (see eq.3).

The observed variable influence of SMME across health models is related to the magnitude 

of the beta effect estimate. The stage 2 effect estimate was small and only marginally 

significant, therefore, the influence of SMME on the variance of the estimate was small and 

did not create a meaningful bias in the variance estimate. However, for the stage 3 effect 

estimate, SMME was more influential due to the magnitude of the association. The influence 

of SMME is determined by the nature of the association of exposure estimates W on 

outcome D. Methods used from this investigation may be carried over to other health 

outcomes to assess the influence of SMME on epidemiological inferences, but our 

conclusions regarding the effect of SMME from this exposure model cannot be generalized 

to other investigations assessing other health outcomes Other sophisticated methods have 

been developed to assess shared Berkson-like error using bootstrap methodology (parameter 

and non-parametric)[50]; however, these methods require modeling exposure and health risk 

together in a two-stage model. Often epidemiologists utilize already developed 

spatiotemporal models with the same or similar spatial and temporal domain corresponding 

to their research sampling frame. In these situations, our methods become a feasible option 

for SMME assessment. It is important to note the scope of this work is only to assess the 
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influence of SMME on confidence intervals, other types of measurement error could still 

have additional and important effects on the health effect estimates.

In the provided wheeze epidemiological analysis, the SMME variance was very small 

compared to the health effect estimate and therefore did not have meaningful impact on 

conclusions. But in settings where the SMME is more similar to the magnitude of the 

epidemiological effect estimate, confidence intervals will meaningfully lengthen (as we have 

seen using the Long Beach specific SMME). To demonstrate this point, using equation 3, we 

have determined the influence of increasing value of SMME on the p-value of the 

epidemiological estimate using a Wald-like test. This was carried out on both the stage 2 and 

stage 3 effect estimates and we were able to identify the SMME value where significant 

findings should be questioned (see Supplement Figure S2).

We also note that this epidemiological analysis was cross-sectional, utilizing exposure 

measures of the annual average prior to the baseline entry year of this CHS cohort. This time 

corresponds to years 2002–2003, which correspond to exposure prediction time period 

where we observed relatively lower shared multiplicative error [40] (compared to earlier 

years in the first paper). If this analysis focused on early life exposure of CHS participants, 

the magnitude of SMME would be larger and could be more influential on epidemiological 

conclusions between NOx and wheeze risk, depending on the observed association. These 

types of insights can be gained from conducting a similar, formal measurement error 

evaluation in future health analyses. By quantifying the shared variances, we gain useful 

information regarding the additional uncertainty of epidemiological inferences resultant 

from shared measurement error, common to spatiotemporal exposure models. Overall, it is 

both the magnitude of SMME in the complex spatiotemporal model and the magnitude of 

the epidemiological association which will determine the influence of SMME on 

epidemiological conclusions.

This work focuses only on the formal SMME adjustment of variance estimates without 

regard to the influence on the effect estimates. Traditional understanding of Berkson error 

focuses on precision while accuracy is not of critical concern (unless variance is non-

constant). Previous works that focuses on Berkson/Berkson-like error in exposure, found 

that bias can be introduced in epidemiological estimates [51], but this bias is overall very 

small [7]. It should be noted that there has been new work in simulations that has shown that 

when Berkson/Berkson-like error (low ratio of variance of modeled to true exposure) is very 

large, a nontrivial bias away from the null was observed [12] . We did informally assess bias 

in our effect estimate across stages of the exposure prediction model. Although we do not 

know the true association, the literature supports a consistent association between NO2 and 

NOx exposure and asthma symptoms including wheeze [52]. Further work formally 

assessing bias in the effect estimate across the stages of the exposure model are needed.

Stram and Kopecky’s [10] methods of SMME correction are based on linear models. We 

used logistic regression health models; therefore, the appropriateness of application was of 

concern. To our knowledge, analytic methods to correct for SMME in non-linear models do 

not yet exist. To determine appropriateness, we compared the model to the Taylor Series 

approximation of logistic model and found a nearly perfect linear fit for the range of our 
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data. The fit is no longer linear when annual NOx levels increase to 200 ppb or greater, a 

value beyond the range of our exposure assignments (Figure 3). We also found nearly 

identical calculated probabilities of association when running this model as a linear and 

logistic model. This SMME correction method could be used in any epidemiological study 

design which utilizes exposure measures with multiple realizations such as ensemble-based 

exposures with a linear association and where errors are assumed to be normal. Although we 

have demonstrated, by using a Taylor Series approximation of the linear, this method can 

also be applied to non-linear models, a formal investigation should be conducted to confirm 

that these methods could be used in a non-linear situation.

Our work is limited in scope as it is based on a Berkson error model without consideration 

of the impacts of classical/classical-type error. Although we use exposure estimates derived 

from a sophisticated model that is designed to capture fine scale spatial and temporal 

variability, our model same as all models remains subject to shared Berkson error due to 

spatial misalignment and other factors [53]. Further, it has been shown that classical error 

becomes Berkson-like error in spatiotemporal models due to smoothing [53].We are also not 

considering the measurement error introduced by our assumption that outdoor residential 

NOx exposure accurately represents true personal exposures which we know are impacted 

by time-activity and mobility patterns of individuals. However, we did account for 

residential mobility in the form of moves or changes in residential address. Lastly, we do not 

assess health effects or error in a multipollutant framework, a growing interest in the field of 

environmental epidemiology.

We adjusted for common confounders used when regressing risk of childhood wheeze on 

residential NOx exposure. As we do not account for the variables of adjustment used in our 

epidemiological model, the SMME adjustment method used in this exercise ( Eq. 3) assumes 

that any adjustment variables used in the epidemiological model are not associated with 

exposure error. We believe this assumption is reasonable to a certain extent since our study 

takes place among an urban population. As a design variable, we adjusted for CHS 

community of recruitment, a variable we believe may be associated with error. But this 

variable was included in the epidemiological model only because it is a study design 

variable and when we carried out this exercise without it, we found almost identical results. 

We caution future use of this method to expand Eq. 3 to account for variables of adjustment 

in the epidemiolocal model.

Overall, we used quantified SUMA error from our previously published spatiotemporal 

exposure model [41] to formally evaluate the impact of SMME on health effect estimates 

using an example epidemiological analysis. In conclusion, we showed that sophisticated 

spatiotemporal models that are employing machine learning techniques are preferable for 

use as they yield overall better exposure estimates through improvements in bias and 

precision. Even with the use of such improved exposure models, we found that non-trivial 

effects of measurement error on epidemiological conclusions are still present. 

Epidemiologist, exposure scientist, data scientist, and statisticians must work together, rather 

than in parallel to fully understand implications of using these refined exposure models 

within the epidemiological context [12].
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Figure 1: 
Geographic Distribution of the Absolute Value of the Difference Between Stage 2 and Stage 

3 Annual Average NOx (ppb). Santa Barbara and Alpine is not shown in the map as the 

geographic distribution of these absolute differences was unremarkable and the values were 

very small.
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Figure 2: 
Odds Ratio (OR, corrected for SMME where applicable) and 95% Confidence Interval (CI) 

of Recent Wheeze for an Interquartile Range Increase in Residential NOx Exposure as 

Estimated by the Different Stages (1–3) of the Li et al. (2017) [41] Spatiotemporal Model. 

Mixed-effect models were used to determine ORs and 95% CI for recent wheeze using 

exposure predictions from the individual 120 ensembles (yellow). The mean OR was 

calculated (red) to represent the average health effect estimate of stage 1 of the 

spatiotemporal model. Health models using stage 2 (green) and stage 3 (purple) NOx 

estimates were included for comparison. Health effect estimates from stage 2 corrected for 

SMME are shown in blue. All models were adjusted for maternal race, premature birth, 

child sex, baseline community, child age, child body mass index, maternal education, 

crowding in home, maternal and paternal allergy history.
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Figure 3: Comparison of the Logistic Wheeze Expit Function and the Taylor Series Linear 
Approximation.
Expit Function (Blue) and it’s Taylor Series Linear Approximation (Green) for NOx levels 

ranging from 0 to 1,000 ppb. Observed annual average NOx values in southern California 

Children’s Health Study (CHS) indicated on plot with “+”. Observed and extrapolated NOx 

values (x-axis) and wheeze status (y-axis) displayed. Focus should be given to the observed 

range of NOx.
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Table 1:

Descriptive Statistics of Exposures and Sociodemographics in the southern California Children’s Health Study 

(CHS) Participants at Baseline

Full CHS Cohort (n=5,106) Wheeze Cases (n=761)

Mean (SD) or N (%) Mean (SD) or N (%) p-value
1

Exposure

Annual Average Stage2 Predicted NOx (ppb)
a 37.52 (15.31) 37.87 (14.53) 0.495

Annual Average Stage 3 Predicted NOx (ppb)
b 37.03 (14.86) 37.48 (14.05) 0.364

Race/Ethnicity <0.0001

White Non-Hispanic 1,627 (31.5) 263 (34.6)

Hispanic 2,867 (57.6) 375 (49.4)

Black (African American) 176(3.0) 44 (5.8)

Asian/Hawaiian/Pacific Islander 157 (3.1) 20 (2.6)

Other 255 (4.6) 57 (7.5)

Missing 24 (0.5) 2 (0.2)

Premature Birth
c <0.0001

Yes 547 (10.7) 116(15.4)

No 4,467 (87.4) 633(83.1)

Missing 92 (1.8) 12 (1.6)

Child Sex <0.0001

Male 2,615 (51.2) 448 (58.9)

Female 2,489 (48.7) 312 (41.0)

Body Mass Index (kg/m2) 16.65 (2.69) 16.99 (3.07) 0.004

Missing 417 (8.1) 81 (10.6)

Age of Child (months) 72.41 (7.92) 72.06 (8.09) 0.206

Maternal Education

Less than 12th grade 1,084 (21.2) 112 (14.7) <0.0001

Completed High School 955 (18.7) 135 (17.7)

Some college or technical school 1857 (36.3) 359 (47.2)

Completed 4 years of College 550 (10.7) 71 (9.3)

Some graduate training 446 (8.7) 64 (8.4)

Missing 214 (4.2) 20 (2.6)

Number of Other Children Living in Same Home
d <0.001

0 656 (12.8) 123 (16.2)

1–2 3,218 (63.0) 484 (63.6)

3+ 1,076 (21.0) 137 (18.0)

Missing 156 (3.0) 17 (2.2)

Maternal or Paternal Allergy History
e <0.001
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Full CHS Cohort (n=5,106) Wheeze Cases (n=761)

Mean (SD) or N (%) Mean (SD) or N (%) p-value
1

Yes 1,927 (37.8) 402 (52.8)

No 3,179 (60.1) 339 (44.5)

Missing 108 (2.1) 20 (2.6)

1
Pearson Chi-square test (categorical variables) and F-test (continuous variables) examining the differences between wheeze cases and non-wheeze 

cases within CHS, cohort E.

a
Stage 2 Spatiotemporal NOx modeled using ensemble learning methods; 12 month average.

b
Stage 3 Spatiotemporal NOx modeled the same as stage 2 with additional constrained optimization applied to predictions;12 month average.

c
Parent or guardian report if study participant was born premature.

d
Parent or guardian report number of individuals less than 18 years of age living in the same home as the study participant.

e
Maternal or paternal allergy history present if biologic mother and/or father report doctor diagnosed allergy or hay fever.
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Table 2:

Distribution of Average Annual NOx Exposure (ppb) by Stage of the Ensemble Learning Spatiotemporal 

Model Output

Model Output Stage Minimum Mean Standard Deviation Median Maximum

Stage 2 6.44 37.52 15.31 37.84 113.41

Stage 3 7.15 37.03 14.86 37.69 108.12

Difference (Stage 2-Stage3) −10.42 0.50 1.6 0.43 10.96
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Table 3:

Shared Multiplicative Measurement Error (SMME) Estimates by Children’s Health Study (CHS) community 

(2002–2008).

n (biweekly-
location-
person 
specific)

Covariance 
Range (minimum, 
maximum)

Covariance 
Average 
(Standard 
Deviation)

Product Mean 
Range (minimum, 
maximum)

Product Mean 
Average 
(Standard 
Deviation)

SMME p-value

All Communities 144,588 −60.8, 339.0 0.3 (1.7) 37, 29,266 1,524 (1,423) 0.00023 <0.0001

Alpine 9,705 −10.0, 96.7 1.5 (1.9) 84, 8,925 1,020 (690) 0.00134 <0.0001

Anaheim 10,679 −109.3, 364.4 2.2 (4.3) 202, 31,886 3,373 (2,435) 0.00080 <0.0001

Glendora 12,892 −11.1, 73.5 0.7 (1.3) 136, 28,954 1,632 (1,171) 0.00043 <0.0001

Lake Elsinore 9,143 −2.9, 26.0 0.2 (0.5) 33, 3,948 375 (258) 0.00065 <0.0001

Lake Gregory 9,781 −1.6, 10.8 0.3 (0.4) 35, 3,127 272 (172) 0.00128 <0.0001

Long Beach 10,093 −60.9, 387.9 4.1 (14.2) 186, 27,127 3,252 (2,523) 0.00669 <0.0001

Mira Loma 13,748 −11.6, 43.0 0.9 (1.3) 93, 26,732 2,068 (1,317) 0.00054 <0.0001

Riverside 11,881 −48.3, 110.5 0.6 (1.2) 117, 27,439 1,869 (1,411) 0.00039 <0.0001

San Bernardino 9,639 −24.6, 158.2 1.9 (2.3) 186, 17,336 2,263 (1,409) 0.00092 <0.0001

San Dimas 11,201 −43.7, 71.8 1.1 (1.8) 19, 27,363 2,720 (2,075) 0.00046 <0.0001

Santa Barbara 12,696 −23.3, 170.0 0.5 (1.5) 16, 1,4784 784 (660) 0.00083 <0.0001

Santa Maria 11,399 −4.0, 33.9 2.4 (2.1) 57, 7,038 616 (367) 0.00420 <0.0001

Upland 11,731 −14.5, 80.6 0.9 (1.5) 104, 25,244 1,937 (1,508) 0.00046 <0.0001
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Table 4:

Odds Ratio (OR) and 95% Confidence Interval (CI, original and corrected for SMME where applicable) from 

the Epidemiological Analysis of the Risk of Recent Wheeze in Relation to an Interquartile
a
 Increase in 

Residential NOx as Estimated by the Different Stages of the Li et al. (2017)[41] Spatiotemporal Model

Odds Ratio
a,b 

(OR)

95 % Confidence 

Interval
a,b

Standard 

Error 
b

p-value BIC AIC

Range of ORs and their standard errors from the 120 
individual ensembles

1.167–1.291 0.0045–0.0051

Mean of 120 RRs from ensembles 1.234

OR based on stage 2 NOx 1.235 (0.9763, 1.5696) 0.004964 0.078 3766 3568

OR based on stage 2 NOx corrected for SMME
c 1.235 (0.9762, 1.5697) 0.004966

OR based on stage 2 NOx corrected for Long Beach 

Specific SMME
c

1.235 (0.9739, 1.5734) 0.005015

OR based on stage 3 NOx 1.283 (1.0014, 1.6396) 0.005126 0.0471 3766 3568

OR based on stage 3 NOx corrected for SMME
c 1.283 (1.0013, 1.6365) 0.005136

OR based on stage 3 NOx corrected for Long Beach 

Specific SMME
c

1.283 (0.9982, 1.6415) 0.005200

a
Results displayed for an interquartile range increase; Interquartile range for stage 2 and 3 NOx is 24.2 and 24.5 respectively, n=4,380

b
Models adjusted for maternal race, premature birth, child sex, baseline community, child age, child body mass index, maternal education, 

crowding in home, maternal and paternal allergy history.

c
Shared Multiplicative Exposure Measurement Error (SMME) correction adjusts the variance of the health estimate using eq. 3.
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