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Abstract. In this work in progress, we demonstrate a new use-case for
the ENIGMA system. The ENIGMA system using the XGBoost imple-
mentation of gradient boosted decision trees has demonstrated high capa-
bility to learn to guide the E theorem prover’s inferences in real-time.
Here, we strip E to the bare bones: we replace the KBO term ordering
with an identity relation as the minimal possible ordering, disable literal
selection, and replace evolved strategies with a simple combination of the
clause weight and FIFO (first in first out) clause evaluation functions.
We experimentally demonstrate that ENIGMA can learn to guide E as
well as the smart, evolved strategies even without these standard auto-
mated theorem prover functionalities. To this end, we experiment with
XGBoost’s meta-parameters over a dozen loops.

1 Introduction: Making E Stupid and Then Smart Again

State-of-the-art saturation-based automated theorem provers (ATPs) for first-
order logic (FOL), such as E and Vampire [12], employ the given clause algo-
rithm [13], translating the input FOL problem T ∪{¬C} (background theory and
negated conjecture) into a refutationally equivalent set of clauses. The search for
a contradiction is performed maintaining sets of processed (P ) and unprocessed
(U) clauses (the proof state Π). The algorithm repeatedly selects a given clause
g from U , moves g to P , and extends U with all clauses inferred with g and P .
This process continues until a contradiction is found, U becomes empty, or a
resource limit is reached.

Historically, term ordering, together with literal selection, is used to guarantee
the completeness of the proof search [1] and to “tame the growth of the search
space and help steer proof search” [5]. Term ordering ensures that rewriting
happens in only one direction, toward smaller terms. Literal selection limits the
inferences done with each given clause g to the selected literals, which slows
down the growth of the search space and reduces redundant inferences.

E includes a strategy language of clause evaluation functions, made up of
weight and priority functions, to heuristically guide the proof search. In this
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work, I use two algorithmically invented [6,7] strategies, E1 and E21, that
use many sophisticated clause evaluation functions, the Knuth-Bendix ordering
(KBO6), literal selection, and other E heuristics.

The ENIGMA [4,8–10] system with the XGBoost [2] implementation of gra-
dient boosted decision trees has recently demonstrated high capability to learn
to guide the E [14] theorem prover’s inferences in real-time. ENIGMA uses the
XGBoost model as a clause evaluation function to recommend clauses for selec-
tion based on clause and conjecture features. In particular, after several prov-
ing and learning iterations, its performance on the 57880 problems from the
Mizar40 [11] benchmark improved by 70% (= 25397/14933) [10] over the strat-
egy E1 used for the initial proving phase.

In this work, E is stripped to the bare bones by disabling term ordering and
literal selection. KBO6 is replaced with an identity relation as the minimal possi-
ble ordering (called IDEN – an addition to E2). While this frees E to do inferences
in any order, E can no longer perform rewriting inferences. The strategy E1 is
replaced with the simple combination of the clause weight and FIFO (first in first
out) evaluation functions. E is thus practically reduced to a basic superposition
prover, without advanced heuristics, rewriting, or completeness guarantees. We
call this strategy E0:

--definitional-cnf=24 --prefer-initial-clauses -tIDEN

--restrict-literal-comparisons -WNoSelection

-H’(5*Clauseweight(ConstPrio,1,1,1),1*FIFOWeight(ConstPrio))’

E0 solves only 3872 of the Mizar40 problems in 5 s compared to 14526 for E1.
The first research question is the extent to which ENIGMA with this basic prover
can learn ATP guidance completely on its own. The second is to what extent
ENIGMA’s learning can be boosted with data from strong strategies and models.
That is, I explore how smart machine learning can become in this zero-strategy
setting. The more general related question is to what extent can machine learning
replace the sophisticated human-invented theorem-proving body of wisdom used
in today’s ATPs for restricting advanced proof calculi.

2 Experiments

We evaluate ENIGMA with the basic strategy, E0, in several scenarios and
over two datasets of different sizes. All experiments are run with 5 s per
problem3 4.

1 Strategies E1 and E2 are displayed in the appendix.
2 The E version used in this paper can be found at https://github.com/zariuq/

eprover/tree/identity-order, and the library for running ENIGMA with E can be
found at https://github.com/zariuq/enigmatic.

3 As a rule of thumb, E solves most problems within a few seconds or not for a very
long time.

4 All the experiments are run on the same hardware unless otherwise specified: Intel(R)
Xeon(R) Gold 6140 CPU @ 2.30GHz with 188GB RAM.

https://github.com/zariuq/eprover/tree/identity-order
https://github.com/zariuq/eprover/tree/identity-order
https://github.com/zariuq/enigmatic
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ENIGMA has so far been used in two ways: coop combines the learned model
with some standard E strategy equally (50:50) while solo only uses the learned
model for choosing the given clauses. The best results have been achieved by
MaLARea-style [16] looping: that is, an ENIGMA model is trained and run
with E (loop 0), then the resulting data are added to the initial training data
and a new ENIGMA model is trained (loop 1).

In this work, ENIGMA trains with both solo and coop data. I present results
from solo runs because they represent the most minimal setting.

2.1 Small Data (2000 Problems)

The E evaluations and XGBoost training can take a long time on the full Mizar40
dataset, so 2000 randomly sampled problems are used to test meta-parameters
on. Each XGBoost model consists of T decision trees of depth D, the most
important training meta-parameters in addition to the learning rate (η = 0.2).
In previous work with ENIGMA, T and D were fixed for all loops of learning.
Here we try to vary the values of T and D during 16 loops. Let SD,T denote the
experiment with specific T and D. Of the many protocols tested, the following
are included in the plot of solved problems (above): Fives (S5,100), Nines (S9,100),
Thirteens (S13,200), Sixteens (S16,100).

We also experiment with adaptively setting the meta-parameters as the num-
ber of training examples increases according to the following protocols:

– Inc (S[3,33],100) increases D by 2 from 3 to 33 and keeps T = 100 fixed.
– 32 inc (S32,[50,250]) fixes D = 32 and gradually increases T from 50 to 250.
– Inc2 (S[3,33],∗) gradually decreases T from 150 to 50, varying the value

intuitively5.

5 Precise details of intuitively set parameters can be seen in the appendix.
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– Inc3 (S[3,33],[50,250]) aims to be more systematic and steps T from 50 to 250.
– Dec3 (S[3,33],[250,50]) decreases T from 250 to 50.

At the 16th loop Inc’s performance is best, solving 299 problems, doubling
the performance of E0 (152). However Inc2 and Inc3 solve 298 problems and
32 inc solves 291 problems. The conclusion is that simple protocols work well so
long as T or D is incremented adaptively rather than fixed.

2.2 Big Data (57880 Problems)

These experiments are done on the large benchmark of 57880 Mizar40 [11] prob-
lems from the MPTP dataset [15]. E1 and E2 are two strong E strategies that
solve 14526 and 12788 problems.

– Experiment 1 is done with D = 9 and T = 200 and uses our previously
trained model that allowed us to solve 25562 problems when cooperating
with E1 in our previous experiments [10]. This strong model, which hashes
the features into 32768 (215) buckets [3, Sect. 3.4], is used with E0 now.

– Experiment 2’s parameters were intuitively toggled during the looping as in
Inc3, and a feature size of 216 is used. Exp. 2 uses training data from E1 and
E2 for additional guidance up to the 4th loop (and then stops including them
in the training data based on the assumption they may confuse learning).

– Experiment 3 sets T and D according to protocol Inc3. Exp. 3 only learns
from E run with E0 and trains on the GPU, which requires the feature size
to be reduced to 256.

– Experiment 4 mimics Exp. 3 but uses E1 and E2 data for training (up to
the 4th loop).

– Experiment 5 further tests boosting with data from an E0 ENIGMA
model that proved 9759 problems and an E1 that proved 21542 problems.
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Tree depth is intuitively varied among 32, 512, and 1000, the number of trees
is varied among 2, 100, 200, and 32. The feature vector size starts at 214 and
is decreased to allow the data to fit on the RAM, down to 32 (= 25).

As seen in the figure, the strong model does not help much in guiding E
without ordering or selection in Exp. 1. Exp. 2 learns gradually and catches up
with Exp. 1, but seems to plateau around 10,000. Surprisingly the pure Exp. 3
learns fast with the small feature size, but plateaus and drops in performance
(perhaps due to overfitting). Exp. 4 indicates that guidance is useful and sur-
passes E2 with 13805 in round 13. Exp. 5 solves 15990 problems, showing that
ENIGMA can take E0 beyond the smart strategies with appropriate parameters
and boosting. This is a great improvement over the 3872 problems solved by E0.

3 Conclusion

ENIGMA can learn to guide the E prover effectively even without smart strate-
gies and term orderings. The models confer a 256% increase over the naive E0
after 13 rounds of the proving/learning loop, and even trained without guidance
data, a 121% increase.

The experiments indicate that machine learning can be used to fully control
an ATP’s guidance, learning to replace orderings, heuristic strategies, and deal
with the increase in generated clauses without literal selection. However the
combination of ENIGMA and standard ATP heuristics still significantly out-
performs ENIGMA alone.

Given the large symmetry-breaking impact of these methods in classical ATP,
future work includes, e.g., training the guidance in such a way that redundant
(symmetric) inferences are not done by the trained model once it has commit-
ted to a certain path. This probably means equipping the learning with more
history and knowledge of the proof state in the saturation-style setting. ENIG-
MAWatch [4] may aid with symmetry breaking by focusing the proof search
on particular proof paths. Additional work is needed to isolate the factors in
Exp. 5’s performance, and determine the most effective boosting methods in
addition to increasing D and T with training loops. Ablation studies should be
done to discover the impact of term ordering and literal selection individually
on E and ENIGMA’s performance. Perhaps term ordering alone is sufficient to
train good ENIGMA models.

Running ENIGMA without term ordering and other restrictions is important
because it may allow us to combine training data from different strategies, and
it may allow ENIGMA to find novel proofs.

Acknowledgments. The research topic was proposed by Jan Jakubuv and Josef
Urban, and further discussed with them, Martin Suda, and Thomas Tan. I also thank
the AITP’20 anonymous referees for their comments on the first extended abstract of
this work.
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A Strategies

Strategy E1 is:

--definitional-cnf=24 --split-aggressive --simul-paramod

--forward-context-sr --destructive-er-aggressive --destructive-er

--prefer-initial-clauses -tKBO -winvfreqrank -c1 -Ginvfreq -F1

--delete-bad-limit=150000000 -WSelectMaxLComplexAvoidPosPred

-H’(1*ConjectureTermPrefixWeight(DeferSOS,1,3,0.1,5,0,0.1,1,4),

1*ConjectureTermPrefixWeight(DeferSOS,1,3,0.5,100,0,0.2,0.2,4),

1*Refinedweight(PreferWatchlist,4,300,4,4,0.7),

1*RelevanceLevelWeight2(PreferProcessed,0,1,2,1,1,1,200,200,2.5,9999.9,9999.9),

1*StaggeredWeight(DeferSOS,1),

1*SymbolTypeweight(DeferSOS,18,7,-2,5,9999.9,2,1.5),

2*Clauseweight(PreferWatchlist,20,9999,4),

2*ConjectureSymbolWeight(DeferSOS,9999,20,50,-1,50,3,3,0.5),

2*StaggeredWeight(DeferSOS,2))’

Strategy E2 is:

--definitional-cnf=24 --split-aggressive --split-reuse-defs

--simul-paramod --forward-context-sr --destructive-er-aggressive

--destructive-er --prefer-initial-clauses -tKBO -winvfreqrank

-c1 -Ginvfreq -F1 --delete-bad-limit=150000000

-WSelectMaxLComplexAvoidPosPred -H’(

3*ConjectureRelativeSymbolWeight(PreferUnitGroundGoals,0.1,100,100,50,100,0.3,1.5,1.5),

4*FIFOWeight(PreferNonGoals),

5*RelevanceLevelWeight2(ConstPrio,1,0,2,1,50,-2,-2,100,0.2,3,4))’

B Additional Protocol Details

In this section I include the details for intuitively toggled protocols.
Protocol Inc2 is as follows:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Depth 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Trees 150 150 150 100 100 100 75 50 75 100 150 75 100 150 75 100

The protocol for Exp. 2 is as follows:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

D 4 5 6 7 8 9 10 11 12 13 14 15 16 16 32 9 16 32 64 24 25 32

T 50 150 160 170 180 190 200 200 200 200 210 220 225 225 225 300 300 225 150 250 250 250

The protocol for Exp. 5 requires some explanation. The motivation is to see how
far E0 can be taken, even if the methods are too CPU-intensive for a thorough
grid search.
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Exp. 2 and Exp. 4 demonstrate the utility of boosting. Thus to create better
boosting data I trained ENIGMA for 10 loops with strategies E1 through E12
and used this as boosting data for the first 4 of 10 loops of training. In addition
to training E0, and in the spirit of ablation studies, I also trained ENIGMA
models for E0 with KBO ordering (and no literal selection) and for E0 with
KBO ordering and restricted literal comparisons. The motivation is that these
versions may serve as a bridge between standard E and the basic E0.

Then I used these results to boost an ENIGMA model in loop 0, and trained
based on this for 10 loops, proving 9759 problems.

Finally this data and the data from a loop 3 ENIGMA model trained with
E1 is used to boost E0 with the following meta-parameters:

0 1 2 3 4 5 6 7 8 9 10 11

Depth 512 512 32 1000 32 1000 32 1000 32 1000 1000 100

Trees 2 2 100 100 200 100 200 32 300 32 32 32

Feature size 16384 8192 4096 28 4096 28 4096 32 2048 64 32 128
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