®

Check for
updates

Deep Generation of Coq Lemma Names
Using Elaborated Terms

1(5) Karl Palmskog?, Junyi Jessy Li', and Milos Gligoric!

Pengyu Nie
! The University of Texas at Austin, Austin, TX, USA
{pynie,gligoric}@utexas.edu, jessyQaustin.utexas.edu
2 KTH Royal Institute of Technology, Stockholm, Sweden
palmskog@kth.se

Abstract. Coding conventions for naming, spacing, and other essen-
tially stylistic properties are necessary for developers to effectively under-
stand, review, and modify source code in large software projects. Consis-
tent conventions in verification projects based on proof assistants, such
as Coq, increase in importance as projects grow in size and scope. While
conventions can be documented and enforced manually at high cost,
emerging approaches automatically learn and suggest idiomatic names
in Java-like languages by applying statistical language models on large
code corpora. However, due to its powerful language extension facilities
and fusion of type checking and computation, Coq is a challenging target
for automated learning techniques. We present novel generation models
for learning and suggesting lemma names for Coq projects. Our models,
based on multi-input neural networks, are the first to leverage syntac-
tic and semantic information from Coq’s lexer (tokens in lemma state-
ments), parser (syntax trees), and kernel (elaborated terms) for naming;
the key insight is that learning from elaborated terms can substantially
boost model performance. We implemented our models in a toolchain,
dubbed ROOSTERIZE, and applied it on a large corpus of code derived
from the Mathematical Components family of projects, known for its
stringent coding conventions. Our results show that ROOSTERIZE sub-
stantially outperforms baselines for suggesting lemma names, highlight-
ing the importance of using multi-input models and elaborated terms.

Keywords: Proof assistants - Coq + Lemma names - Neural networks

1 Introduction

Programming language source code with deficient coding conventions, such as
misleading function and variable names and irregular spacing, is difficult for
developers to effectively understand, review, and modify [8,52,67]. Code with
haphazard adherence to conventions may also be more bug-prone [17]. The prob-
lem is exacerbated in large projects with many developers, where different source
code files and components may have inconsistent and clashing conventions.

© Springer Nature Switzerland AG 2020
N. Peltier and V. Sofronie-Stokkermans (Eds.): IJCAR 2020, LNAI 12167, pp. 97-118, 2020.
https://doi.org/10.1007/978-3-030-51054-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51054-1_6&domain=pdf
https://doi.org/10.1007/978-3-030-51054-1_6

98 P. Nie et al.

Many open source software projects manually document coding conventions
that contributors are expected to follow, and maintainers willingly accept fixes of
violations to such conventions [2]. Enforcement of conventions can be performed
by static analysis tools [30,59]. However, such tools require developers to write
precise checks for conventions, which are tedious to define and often incomplete.
To address this problem, researchers have proposed techniques for automatically
learning coding conventions for Java-like languages from code corpora by apply-
ing statistical language models [4]. These models are applicable because code in
these languages has high naturalness [35], i.e., statistical regularities and repet-
itiveness. Learned conventions can then be used to, e.g., suggest names in code.

Proof assistants, such as Coq [15], are increasingly used to formalize results
in advanced mathematics [28,29] and develop large trustworthy software sys-
tems, e.g., compilers, operating systems, file systems, and distributed sys-
tems [18,44,73]. Such projects typically involve contributions of many partic-
ipants over several years, and require considerable effort to maintain over time.
Coding conventions are essential for evolution of large verification projects, and
are thus highly emphasized in the Coq libraries HoTT [37] and Iris [39], in
Lean’s Mathlib [9], and in particular in the influential Mathematical Components
(MathComp) family of Coq projects [19]. Extensive changes to adhere to con-
ventions, e.g., on naming, are regularly requested by MathComp maintainers for
proposed external contributions [50], and its conventions have been adopted, to
varying degrees, by a growing number of independent Coq projects [1,13,24,66].

We believe these properties make Coq code related to MathComp an attrac-
tive target for automated learning and suggesting of coding conventions, in par-
ticular, for suggesting lemma names [7]. However, serious challenges are posed
by, on the one hand, Coq’s powerful language extension facilities and fusion of
type checking and computation [12], and on the other hand, the idiosyncratic
conventions used by Coq practitioners compared to software engineers. Hence,
although suggesting lemma names is similar in spirit to suggesting method names
in Java-like languages [74], the former task is more challenging in that lemma
names are typically much shorter than method names and tend to include heavily
abbreviated terminology from logic and advanced mathematics; a single char-
acter can carry significant information about a lemma’s meaning. For example,
the MathComp lemma names card_support_normedTI (“cardinality of support
groups of a normed trivial intersection group”) and extprod mulghA (“associa-
tivity of multiplication operations in external product groups”) concisely convey
information on lemma statement structure and meaning through both abbrevi-
ations and suffixes, as when the suffix A indicates an associative property.

In this paper, we present novel generation models for learning and suggest-
ing lemma names for Coq verification projects that address these challenges.
Specifically, based on our knowledge of Coq and its implementation, we devel-
oped multi-input encoder-decoder neural networks for generating names that
use information directly from Coq’s internal data structures related to lexing,
parsing, and type checking. In the context of naming, our models are the first

Deep Generation of Coq Lemma Names Using Elaborated Terms 99

to leverage the lemma lemma statement as well as the corresponding syntax tree
and elaborated term (which we call kernel tree) processed by Coq’s kernel [53].

We implemented our models in a toolchain, dubbed ROOSTERIZE, which we
used to learn from a high-quality Coq corpus derived from the MathComp family.
We then measured the performance of ROOSTERIZE using automatic metrics,
finding that it significantly outperforms baselines. Using our best model, we
also suggested lemma names for the PCM library [56,66], which were manually
reviewed by the project maintainer with encouraging results.

To allow ROOSTERIZE to use information directly from Coq’s lexer, parser,
and kernel, we extended the SerAPI library [26] to serialize Coq tokens, syntax
trees, and kernel trees into a machine-readable format. This allowed us to achieve
robustness against user-defined notations and other extensions to Coq syntax.
Thanks to our integration with SerAPI and its use of metaprogramming, we
expect our toolchain to only require modest maintenance as Coq evolves.

We make the following key contributions in this work:

e Models: We propose novel generation models based on multi-input neural
networks to learn and suggest lemma names for Coq verification projects.
A key property of our models is that they combine data from several Coq
phases, including lexing, parsing, and term elaboration.

e Corpus: Advised by MathComp developers, we constructed a corpus of high-
quality Coq code for learning coding conventions, totaling over 164k LOC
taken from four core projects. We believe that our corpus can enable develop-
ment of many novel techniques for Coq based on statistical language models.

e Toolchain: We implemented a toolchain, dubbed ROOSTERIZE, which sug-
gests lemma names for a given Coq project. We envision ROOSTERIZE being
useful during the review process of proposed contributions to a Coq project.

e Evaluation: We performed several experiments with ROOSTERIZE to evalu-
ate our models using our corpus. Our results show that ROOSTERIZE performs
significantly better than several strong baselines, as measured by standard
automatic metrics [60]. The results also reveal that our novel multi-input mod-
els, as well as the incorporation of kernel trees, are important for suggestion
quality. Finally, we performed a manual quality analysis by suggesting lemma
names for a medium sized Coq project [56], evaluated by its maintainer, who
found many of the suggestions useful for improving naming consistency.

The appendix of the extended version of the paper [57] describes more exper-
iments, including an automatic evaluation on additional Coq projects. We
provide artifacts related to our toolchain and corpus at: https://github.com/
EngineeringSoftware/roosterize.

2 Background

This section gives brief background related to Coq and the Mathematical Com-
ponents (MathComp) family of projects, as well as the SerAPI library.

https://github.com/EngineeringSoftware/roosterize
https://github.com/EngineeringSoftware/roosterize

100 P. Nie et al.

Lemma mg_eq_proof L1 L2 (N1 : mgClassifier L1) : L1 =i L2 -> nerode L2 N1.
Proof. move => HO u v. split => [/nerodeP H1 w|H1].

- by rewrite -'HO.

- apply/nerodeP => w. by rewrite !HO.
Qed.

U W N =

Fig. 1. Coq lemma on the theory of regular languages, including proof script.

Coq and Gallina: Coq is a proof assistant based on dependent types, imple-
mented in the OCaml language [15,20]. For our purposes, we view Coq as a
programming language and type-checking toolchain. Specifically, Coq files are
sequences of sentences, with each sentence ending with a period. Sentences are
essentially either (a) commands for printing and other output, (b) definitions
of functions, lemmas, and datatypes in the Gallina language [21], or (c) expres-
sions in the Ltac tactic language [22]. We will refer to definitions of lemmas as
in (b) as lemma sentences. Coq internally represents a lemma sentence both as
a sequence of tokens (lexing phase) and as a syntax tree (parsing phase).

In the typical workflow for a Coq-based verification project, users write
datatypes and functions and then interactively prove lemmas about them by exe-
cuting different tactic expressions that may, e.g., discharge or split the current
proof goal. Both statements to be proved and proofs are represented internally
as terms produced during an elaboration phase [53]; we refer to elaborated terms
as kernel trees. Hence, as tactics are successfully executed, they gradually build
a kernel tree. The Qed command sends the kernel tree for a tentative proof to
Coq’s kernel for final certification. We call a collection of Ltac tactic sentences
that build a kernel tree a proof script.

Figure1 shows a Coq lemma and its proof script, taken verbatim from a
development on the theory of regular languages [24]. Line 1 contains a lemma
sentence with the lemma name mg_eq_proof, followed by a lemma statement (on
the same line) involving the arbitrary languages L1 and L2, i.e., typed variables
that are implicitly universally quantified. When Coq processes line 5, the kernel
certifies that the kernel tree generated by the proof script (lines 2 to 4) has the
type (is a proof) of the kernel tree for the lemma statement on line 1.

MathComp and Lemma Naming: The MathComp family of Coq projects,
including in particular the MathComp library of general mathematical defini-
tions and results [49], grew out of Gonthier’s proof of the four-color theorem [28§],
with substantial developments in the context of the landmark proof of the odd
order theorem in abstract algebra [29]. The MathComp library is now used in
many projects outside of the MathComp family, such as in the project containing
the lemma in Fig. 1 [23]. MathComp has documented naming conventions for two
kinds of entities: (1) variables and (2) functions and lemmas [19]. Variable names
tend to be short and simple, while function and lemma names can be long and
consist of several name components, typically separated by an underscore, but
sometimes using CamelCase. Examples of definition and lemma names in Fig. 1
include mg_eq_proof, mgClassifier, nerode, and nerodeP. Note that lemma

Deep Generation of Coq Lemma Names Using Elaborated Terms 101

Lemma mg_eq_proof L1 L2 (N1 : mgClassifier L1) : L1 =i L2 -> nerode L2 Ni. sentence
(Sentence ((IDENT Lemma) (IDENT mg_eq_proof) (IDENT L1) (IDENT L2) tokens

(KEYWORD" (") (IDENT N1) (KEYWORD :) (IDENT mgClassifier)
(IDENT L1) (KEYWORD")") (KEYWORD :) (IDENT L1) (KEYWORD =i) (IDENT L2)
(KEYWORD ->) (IDENT nerode) (IDENT L2) (IDENT N1) (KEYWORD .)))

(VernacExpr () (VernacStartTheoremProof Lemma (Id mg_eq_proof) syntax tree
(((CLocalAssum(Name (Id L1)) (CHole () IntroAnonymous()))
(CLocalAssum(Name (Id L2)) (CHole () IntroAnonymous()))
(CLocalAssum(Name (Id N1))
(CApp (CRef (Ser_Qualid(DirPath()) (Id mgClassifier))) (CRef (Ser_Qualid(DirPath()) (Id L1))))))
(CNotation(InConstrEntrySomeLevel"_ -> _")
(CNotation(InConstrEntrySomeLevel"_ =i _")
(CRef (Ser_Qualid(DirPath()) (Id L1))) (CRef (Ser_Qualid(DirPath()) (Id L2))))
(CApp (CRef (Ser_Qualid(DirPath()) (Id nerode)))
(CRef (Ser_Qualid (DirPath()) (Id L2))) (CRef (Ser_Qualid(DirPath()) (Id N1))))))))

(Prod (Name (Id char)) ... (Prod (Name (Id L1)) ... [kernel tree]
(Prod (Name (Id L2)) ... (Prod (Name (Id N1))
(Prod Anonymous (App (Ref (DirPath ((Id ssrbool) (Id ssr) (Id Coq))) (Id eqmem))
(Var (Id L1)) ... (Var (Id L2)))
(App (Ref (DirPath ((Id myhill nerode) (Id Reglang))) (Id nerode))
(Var (Id L2)) ... (Var (Id N1))))))))

Fig. 2. Coq lemma sentence at the top, with sexps for, from just below to bottom:
tokens, syntax tree, and kernel tree; the lemma statement in each is highlighted.

names sometimes have suffizes to indicate their meaning, such as P in nerodeP
which says that the lemma is a characteristic property. Coq functions tend to be
named based on corresponding function definition bodies rather than just types
(of the parameters and return value), analogously to methods in Java [47]. In
contrast, MathComp lemma names tend to be based solely on the lemma state-
ment. Hence, a more suitable name for the lemma in Fig. 1 is mg_eq_nerode.

Ser API and Coq Serialization: SerAPI is an OCaml library and toolchain for
machine interaction with Coq [26], which provides serialization and deserializa-
tion of Coq internal data structures to and from S-expressions (sexps) [51]. Ser-
APT is implemented using OCaml’s PPX metaprogramming facilities [58], which
enable modifying OCaml program syntax trees at compilation time. Figure 2
shows the lemma sentence on line 1 in Fig. 1, and below it, the corresponding
(simplified) sexps for its tokens, syntax tree, and kernel tree, with the lemma
statement highlighted in each representation. Note that the syntax tree omits the
types of some quantified variables, e.g., for the types of L1 and L2, as indicated
by the CHole constructor. Note also that during elaboration of the syntax tree
into the kernel tree by Coq, an implicit variable char is added (all-quantified
via Prod), and the extensional equality operator =i is translated to its glob-
ally unique kernel name, Coq.ssr.ssrbool.eq_mem. Hence, a kernel tree can be
much larger and contain more information than the corresponding syntax tree.

102 P. Nie et al.

mg ? <E(T)S>
Decoder (hg cd[] —[]—>sss—>[]
<BOS> mg nerode
Fully
Connected
Layer
(hy, 1) (hz} <)
Encoders MaJ2...2[] [J2(J2---20] |Préd
tt t ot t t | Name X\ Pprdd
L1 : (Prod) Id Char Nafme =+«
Lemma Statement Kernel Tree

Fig. 3. Core architecture of our multi-input encoder-decoder models.

3 Models

In this section, we describe our multi-input generation models for suggesting Coq
lemma names. Our models consider lemma name generation with an encoder-
decoder mindset, i.e., we use neural architectures specifically designed for trans-
duction tasks [68]. This family of architectures is commonly used for sequence
generation, e.g., in machine translation [11] and code summarization [43], where
it has been found to be much more effective than traditional probabilistic and
retrieval-based approaches.

3.1 Core Architecture

Our encoders are Recurrent Neural Networks (RNNs) that learn a deep semantic
representation of a given lemma statement from its tokens, syntax tree, and
kernel tree. The decoder—another RNN—generates the descriptive lemma name
as a sequence. The model is trained end-to-end, maximizing the probability of the
generated lemma name given the input. In contrast to prior work in language-
code tasks that uses a single encoder [27], we design multi-input models that
leverage both syntactic and semantic information from Coq’s lexer, parser, and
kernel. A high-level visualization of our architecture is shown in Fig. 3.

Encoding: Our multi-input encoders combine different kinds of syntactic and
semantic information in the encoding phase. We use a different encoder for each
input, which are: lemma statement, syntax tree, and kernel tree.

Coq data structure instances can be large, with syntax trees having an aver-
age depth of 28.03 and kernel trees 46.51 in our corpus (we provide detailed
statistics in Sect.4). Therefore, we flatten the trees into sequences, which can
be trained more efficiently than tree encoders without performance loss [38]. We
flatten the trees with pre-order traversal, and we use “(” and “)” as the bound-
aries of the children of a node. In later parts of this paper, we use syntax and
kernel trees to refer to their flattened versions. In Sect. 3.2, we introduce tree
chopping to reduce the length of the resulting sequences.

To encode lemma statements and flattened tree sequences, we use bi-direc-
tional Long-Short Term Memory (LSTM) [36] networks. LSTMs are advanced

Deep Generation of Coq Lemma Names Using Elaborated Terms 103

(Prod Anonymous (App (Ref (DirPath ((Id ssrbool) (Id ssr) (Id Coq))) (Id eq_mem)) ...
((App (Ref ...))) ...)

(Prod Anonymous (App eq_mem ... (App (Ref ...)) ...))

Fig. 4. Kernel tree sexp before and after chopping; chopped parts are highlighted.

RNNSs good at capturing long-range dependencies in a sequence, and are widely
used in encoders [38]. A bi-directional LSTM learns stronger representations
(than a uni-directional LSTM) by encoding a sequence from both left to right
and right to left [75].

Decoding: We use an LSTM (left to right direction only) as our decoder. To
obtain the initial hidden and cell states (hg, cq) of the decoder, we learn a unified
representation of these separate encoders by concatenating their final hidden and
cell states (h;, ¢;), and then applying a fully connected layer on the concatenated
states: hq = W}, - concat([h;]) + by, and ¢g = W, - concat([¢;]) + b., where Wy,
We, by, and b, are learnable parameters.

During training, we maximize the log likelihood of the reference lemma name
given all input sequences. Standard beam search is used to reduce the search
space for the optimal sequence of tokens. With regular decoding, at each time
step the decoder generates a new token relying on the preceding generated token,
which can be error-prone and leads to slow convergence and instability. We
mitigate this problem by performing decoding with teacher forcing [72] such that
the decoder relies on the preceding reference token. At test time, the decoder
still uses the proceeding generated token as input.

Attention: With RNN encoders, the input sequence is compressed into the
RNN’s final hidden states, which results in a loss of information, especially for
longer sequences. The attention mechanism [48] grants the decoder access to
the encoder hidden and cell states for all previous tokens. At each decoder time
step, an attention vector is calculated as a distribution over all encoded tokens,
indicating which token the decoder should “pay attention to”. To make the
attention mechanism work with multiple encoders, we concatenate the hidden
states of the n encoders [hy, ..., h,,] and apply an attention layer on the result [70].

Initialization: Since there are no pre-trained token embeddings for Coq, we
initialize each unique token in the vocabulary with a random vector sampled from
the uniform distribution U(—0.1,0.1). These embeddings are trained together
with the model. The hidden layer parameters of the encoders and decoders are
also initialized with random vectors sampled from the same uniform distribution.

3.2 Tree Chopping

While syntax and kernel trees for lemma statements can be large, not all parts
of the trees are relevant for naming. For instance, each constant reference is
expanded to its fully qualified form in the kernel tree, but the added prefixes are

104 P. Nie et al.

usually related to directory paths and likely do not contain relevant information
for generating the name of the lemma. Irrelevant information in long sequences
can be detrimental to the model, since the model would have to reason about
and encode all tokens in the sequence.

To this end, we implemented chopping heuristics for both syntax trees and
kernel trees to remove irrelevant parts. The heuristics essentially: (1) replace
the fully qualified name sub-trees with only the last component of the name;
(2) remove the location information from sub-trees; (3) extract the singletons,
i.e., non-leaf nodes that have only one child. Figure 4 illustrates the chopping of a
kernel tree, with the upper box showing the tree before chopping with the parts
to be removed highlighted, and the lower box showing the tree after chopping.
In the example in the figure, we chopped a fully qualified name and extracted
a singleton. These heuristics greatly reduce the size of the tree: for kernel trees,
they reduce the average depth from 39.20 to 11.39.

Our models use chopped trees as the inputs to the encoders. As we discuss in
more detail in Sect. 6, the chopped trees help the models to focus better on the
relevant parts of the inputs. While the attention mechanism in principle could
learn what the relevant parts of the trees are, our evaluation shows that it can
easily be overwhelmed by large amounts of irrelevant information.

3.3 Copy Mechanism

We found it common for lemma name tokens to only occur in a single Coq file,
whence they are unlikely to appear in the vocabulary learned from the training
set, but can still appear in the respective lemma statement, syntax tree, or kernel
tree. For example, mg occurs in both the lemma name and lemma statement in
Fig. 1, but not outside the file the lemma is in. To account for this, we adopt
the copy mechanism [64] which improves the generalizability of our model by
allowing the decoder to copy from inputs rather than always choosing one word
from the fixed vocabulary from the training set. To handle multiple encoders,
similar to what we did with the attention layer, we concatenate the hidden states
of each encoder and apply a copy layer on the concatenated hidden states.

3.4 Sub-tokenization

We sub-tokenize all inputs (lemma statements, syntax and kernel trees) and out-
puts (lemma names) in a pre-processing step. Previous work on learning from
software projects has shown that sub-tokenization helps to reduce the sparsity
of the vocabulary and improves the performance of the model [10]. However,
unlike Java-like languages where the method names (almost) always follow the
CamelCase convention, lemma names in Coq use a mix of snake_case, Camel-
Case, prefixes, and suffixes, thus making sub-tokenization more complex. For
example, extprod mulgA should be sub-tokenized to extprod, _, mul, g, and A.

To perform sub-tokenization, we implemented a set of heuristics based on
the conventions outlined by MathComp developers [19]. After sub-tokenization,
the vocabulary size of lemma names in our corpus was reduced from 8,861 to

Deep Generation of Coq Lemma Names Using Elaborated Terms 105

Table 1. Projects from the MathComp family used in our corpus.

Project SHA #Files | #Lemmas | #Toks LOC LOC/file

Spec. Proof Spec. Proof
finmap ©) | 2764228 | 4 940 78,449 4,260 2,191 1,065.00 | 547.75
fourcolor | €) | 0851d49 | 60 1,157 560,682 9,175 27,963 152.92 | 466.05
math-comp | € | 7484716 | 89 8,802 1,076,096 | 38,243 46,470 429.70 | 522.13
odd-order © | cas02a4 | 34 367 519,855 11,882 24,243 349.47 713.03
Avg. N/A 46.75 2,816.50 558,770.50 | 15,890.00 | 25,216.75 | 339.89 539.40
b5 N/A 187 11,266 2,235,082 | 63,560 100,867 | 63,560 | 100,867

Table 2. Statistics on the lemmas in the training, validation, and testing sets.

#Files | #Lemmas | Name Stmt
#Char | #SubToks | #Char | #SubToks
training | 152 8,861 10.14 [4.22 44.16 |19.59
validation | 18 1,085 9.20 |4.20 38.28 |17.30
testing 17 1,320 9.76 | 4.34 48.49 123.20

2,328. When applying the sub-tokenizer on the lemma statements and syntax and
kernel trees, we sub-tokenize the identifiers and not the keywords or operators.

3.5 Repetition Prevention

We observed that decoders often generated repeated tokens, e.g., mem_mem_mem.
This issue also exists in natural language summarization [69]. We further
observed that it is very unlikely to have repeated sub-tokens in lemma names
used by proof engineers (only 1.37% of cases in our corpus). Hence, we simply

W

forbid the decoder from repeating a sub-token (modulo “_”) during beam search.

4 Corpus

We constructed a corpus of four large Coq projects from the MathComp family,
totaling 164k lines of code (LOC). We selected these projects based on the
recommendation of MathComp developers, who emphasized their high quality
and stringent adherence to coding conventions. Qur corpus is self-contained:
there are inter-project dependencies within the corpus, but no project depends
on a project outside the corpus (except Coq’s standard library). All projects
build with Coq version 8.10.2. Note that we need to be able to build projects to
be able to extract tokens, syntax trees, and kernel trees.

Constituent Projects: Table1 lists the projects in the corpus, along with
basic information about each project. The table includes columns for the project
identifier, revision SHA, number of files (#Files), number of lemmas (#Lemmas),
number of tokens (#Toks), LOC for specifications (Spec.) and proof scripts

https://github.com/math-comp/finmap
https://github.com/math-comp/fourcolor
https://github.com/math-comp/math-comp
https://github.com/math-comp/odd-order

106 P. Nie et al.

Depth #Nodes #Sub-tokens

~
before . I AT SEE—
chopping 2
after | m— .- ; =
chopping I-'_ g
0 20 40 60 0 1000 2000 0 2000 4000
chopping 9
x
after 4 W ... o -
chopping L - é

0 20 40 60 0 1000 2000 0 2000 4000

Fig. 5. Statistics on syntax and kernel trees.

(Proof), and average LOC per file for specifications and proof scripts. The math-
comp SHA corresponds to version 1.9.0 of the library. The LOC numbers are
computed with Coq’s bundled coqwc tool. The last two rows of the table show
the averages and sums across all projects.

Corpus Statistics: We extracted all lemmas from the corpus, and initially
we obtained 15,005 lemmas in total. However, we found several outlier lemmas
where the lemma statement, syntax tree and kernel tree were very large. To
ensure stable training, and similar to prior work on generating method names
for Java [47], we excluded the lemmas with the deepest 25% kernel trees. This
left us with 11,266 lemmas. Column 4 of Table 1 shows the number of lemmas
after filtering.

We randomly split corpus files into training, validation, and testing sets which
contain 80%, 10%, 10% of the files, respectively. Table 2 shows statistics on the
lemmas in each set, which includes columns for the number of files, the number
of lemmas, the average number of characters and sub-tokens in lemma names,
and the average number of characters and sub-tokens in lemma statements.

Figure5 illustrates the changes of the depth, number of nodes and number
of sub-tokens (after flattening) of the kernel trees (first row) and syntax trees
(second row) before and after chopping. Our chopping process reduced tree depth
by 70.9% for kernel trees and 70.7% for syntax trees, and reduced the number
of nodes by 91.5% for kernel trees and 90.8% for syntax trees; after flattening,
the resulting average sequence length is, for kernel trees 165 comparing to the
original 2,056, and for syntax trees 144 comparing to the original 1,590. We
provide additional statistics on lemmas before filtering in the appendix of the
extended paper [57].

5 Implementation

In this section, we briefly describe our toolchain which implements the models
in Sect. 3 and processes and learns from the corpus in Sect. 4; we dub this tool-
chain ROOSTERIZE. The components of the toolchain can be divided into two
categories: (1) components that interact with Coq or directly process information

Deep Generation of Coq Lemma Names Using Elaborated Terms 107

extracted from Coq, and (2) components concerned with machine learning and
name generation.

The first category includes several OCaml-based tools integrated with Ser API
[26] (and thus Coq itself), and Python-based tools for processing of data obtained
via SerAPI from Coq. All OCaml tools have either already been included in, or
accepted for inclusion into, SerAPI itself. The tools are as follows:
sercomp: We integrated the existing program sercomp distributed with SerAPI
into ROOSTERIZE to serialize Coq files to lists of sexps for syntax trees.
sertok: We developed an OCaml program dubbed sertok on top of SerAPI.
The program takes a Coq file as input and produces sexps of all tokens found
by Coq’s lexer in the file, organized at the sentence level.
sername: We developed an OCaml program dubbed sername on top of SerAPI.
The program takes a list of fully qualified (kernel) lemma names and produces
sexps for the kernel trees of the corresponding lemma statements.
postproc & subtokenizer: We created two small independent tools in Python
to post-process Coq sexps and perform sub-tokenization, respectively.

For the second category, we implemented our machine learning models in
Python using two widely-used deep learning libraries: PyTorch [61] and Open-
NMT [41]. More specifically, we extended the sequence-to-sequence models in
OpenNMT to use multi-input encoders, and extended attention and copy lay-
ers to use multiple inputs. Source code for the components of ROOSTERIZE is
available from: https://github.com/EngineeringSoftware/roosterize.

6 Evaluation

This section presents an extensive evaluation of our models as implemented
in ROOSTERIZE. Our automatic evaluation (Sect.6.2) compares ROOSTERIZE
with a series of strong baselines and reports on ablation experiments; additional
experiments, e.g., on chopping heuristics, are described in the appendix of the
extended version of the paper [57]. Our manual quality assessment (Sect.6.3)
analyzes 150 comments we received from the maintainer of the PCM library on
names suggested by ROOSTERIZE for that project using our best model.

6.1 Models and Baselines

We study the combinations of: (1) using individual input (lemma statement
and trees) in a single encoder, or multi-input encoders with different mixture
of these inputs; and (2) using the attention and copy mechanisms. Our inputs
include: lemma statement (Stmt), syntax tree (SynTree), chopped syntax tree
(ChopSynTree), kernel tree (KnlTree), and chopped kernel tree (ChopKnlTree).
For multiple inputs, the models are named by concatenating inputs with “+7;
a “+7 is also used to denote the presence of attention (attn) or copy (copy).
For example, Stmt-+ChopKnlTree+attn+copy refers to a model that uses two
encoders—one for lemma statement and one for chopped kernel tree—and uses
attention and copy mechanisms.

https://github.com/EngineeringSoftware/roosterize

108 P. Nie et al.

Table 3. Results of Roosterize models.

Group Model BLEU Frag.Acc. Topl Top5
Multicinput Stmt+ChopKnlTree+ChopSynTree+attn+copy 45.4 22.2% 7.5% 16.5%
u+'_tt pu Stmt+ChopKnlTree+attn+copy 47.2 24.9% 9.6% 18.0%
+a " Stmt+ChopSynTree+attn+copy 37.7 18.1% 6.1% 10.6%
€°PY ChopKnlTree+ChopSynTree+attn-+copy 45.4 22.9% 7.6% 15.3%
ChopKnlTree+attn+copy 42.9 19.8% 5.0% 11.7%
Single-input ChopSynTree+attn+copy 39.8 18.3% 6.8% 12.2%
+attn KnlTree+attn+copy 37.0 14.2% 2.2% 8.4%
+copy SynTree+attn+copy 31.0 10.8% 2.8% 6.1%
Stmt+attn+copy 38.9 19.4% 6.9% 11.6%
Stmt+ChopKnlTree+ChopSynTree+attn 24.5 8.6% 0.4% 0.9%
Multi-input Stmt+ChopKnlTree+attn 25.6 8.5% 0.9% 1.7%
+attn Stmt+ChopSynTree4attn 23.8 8.2% 0.8% 1.6%
ChopKnlTree+ChopSynTree+attn 28.4 10.9% 1.8% 3.4%
ChopKnlTree+attn 19.5 4.9% 0.6% 1.3%

Single-i tChopSynTree-‘,—attn 28.9 12.1% 1.5% 2.9%
mie:tnp“ KnlTree+attn 14.1 1.6% 0.0% 0.0%
attn gynTreetattn 8.8 1.0% 0.0% 0.0%
Stmt-+attn 26.9 11.1% 1.1% 2.5%
Stmt+ChopKnlTree4+ChopSynTree 17.7 3.5% 0.1% 0.2%
Multicinput Stmt+ChopKnlTree 19.5 4.5% 0.1% 0.3%
PUY g¢mt+ChopSynTree 12.6 0.6% 0.0% 0.0%
ChopKnlTree+ChopSynTree 16.7 2.4% 0.0% 0.1%
ChopKnlTree 15.5 1.6% 0.0% 0.0%
ChopSynTree 14.5 0.8% 0.1% 0.1%
Single-input KnlTree 12.0 0.6% 0.0% 0.0%
SynTree 5.7 0.4% 0.0% 0.0%

Stmt 20.0 4.7% 0.1% 0.3%

- Retrieval-based 28.3 10.0% 0.2% 0.3%

We consider the vanilla encoder-decoder models with only one input (lemma
statement, kernel tree, or syntax tree) as baseline models. We also compare
with a retrieval-based baseline model implemented using Lucene [6]: a k-nearest
neighbors classifier using the tf-idf of the tokens in lemma statement as features.

Hyperparameters are tuned on the validation set within the following options:
embedding dimensions from {200, 500, 1000}, number of hidden units in each
LSTM from {200, 500, 1000}, number of stacked LSTM layers from {1, 2, 3}. We
set the dropout rate between LSTM layers to 0.5. We set the output dimension
of the fully connected layer for combining encoders to the same number as the
number of hidden units in each LSTM. We checked the validation loss every 200
training steps (as defined in OpenNMT [41], which is similar to one training
epoch on our dataset), and set an early stopping threshold of 3. We used the
Adam [40] optimizer with a learning rate of 0.001. We used a beam size of 5 in
beam search. All the experiments were run with one NVIDIA 1080-TI GPU and
Intel Xeon E5-2620 v4 CPU.

Deep Generation of Coq Lemma Names Using Elaborated Terms 109

6.2 Automatic Evaluation

Metrics: We use four automatic metrics which evaluate generated lemma names
against the reference lemma name (as written by developers) in the testing set.
Each metric captures a different level of granularity of the generation quality.
BLEU [60] is a standard metric used in transduction tasks including language <
code transduction. It calculates the number of n-grams in a generated sequence
that also appear in the reference sequence, where one “n-gram” is n consecu-
tive items in a sequence (in our case, one “n-gram” is n consecutive characters
in the sequence of characters of the lemma name). We use it to compute the
1 ~ 4-grams overlap between the characters in generated name and characters
in the reference name, averaged between 1 ~ 4-grams with smoothing method
proposed by Lin and Och [46]. Fragment accuracy computes the accuracy of gen-
erated names on the fragment level, which is defined by splitting the name by
underscores (“.”). For example, map_determinant mx has a fragment accuracy
of 66.7% when evaluated against det map mx. Unlike BLEU, fragment accuracy
ignores the ordering of the fragments. Finally, top-1 accuracy and top-5 accuracy
compute how often the true name fully matches the generated name or is one of
the top-5 generated names.

Results: Table3 shows the performance of the models. Similar models are
grouped together. The first column shows the names of the model groups and
the second column shows the names of the models. For each model, we show val-
ues for the four automatic metrics, BLEU, fragment accuracy (Frag.Acc.), top-1
accuracy (Topl), and top-5 accuracy (Top5). We repeated each experiment 3
times, with different random initialization each time, and computed the averages
of each automated metric. We performed statistical significance tests—under sig-
nificance level p < 0.05 using the bootstrap method [14]—to compare each pair
of models. We use bold text to highlight the best value for each automatic metric,
and gray background for baseline models. We make several observations:

Finding #1: The best overall performance (BLEU = 47.2) is obtained using
the multi-input model with lemma statement and chopped kernel tree as inputs,
which also includes copy and attention mechanisms (Stmt+ChopKnlTree+
attn+copy). The improvements over all other models are statistically signifi-
cant and all automatic metrics are consistent in identifying the best model. This
shows the importance of using Coq’s internal structures and focusing only on
certain parts of those structures.

Finding #2: The copy mechanism brings statistically significant improvements
to all models. This can be clearly observed by comparing groups 1 and 3 in
the table, as well as groups 2 and 4. For example, BLEU for Stmt+attn and
Stmt+attn+copy are 26.9 and 38.9, respectively. We believe that the copy mech-
anism plays an important role because many sub-tokens are specific to the file
context and do not appear in the fixed vocabulary learned on the files in training
set.

Finding #3: Using chopped trees greatly improves performance of models and
the improvements brought by upgrading KnlTree to ChopKnlTree or SynTree to

110 P. Nie et al.

Table 4. Manual quality analysis representative examples.

Lemma statement: p s : supp (kfilter p s) = filter p (supp s)
Hand-written: supp_kfilt Roosterize: supp_kfilter

Comment: v Using only kfilt has cognitive overhead

Lemma statement: g e k v £ : path ord k (supp f) ->
foldfmap g e (ins k v £f) = g (k, v) (foldfmap g e f)

Hand-written: foldf_ins Roosterize: foldfmap_ins

Comment: v The whole function name is used in the suggested name

Lemma statement: : transitive (@ord T)
Hand-written: trans Roosterize: ord_trans

Comment: v Useful to add the ord prefix to the name

Lemma statement: s : sorted (Qord T) s -> sorted (Qoleq T) s
Hand-written: sorted_oleq Roosterize: ord_sorted
Comment: X The conclusion content should have greater priority

Lemma statement: x y : total_spec x y (ord x y) (x == y) (ord y x)
Hand-written: totalP Roosterize: ordP

Comment: x Maybe this lemma should be named ord_totalP?

Lemma statement: p1 p2 s : kfilter (predI pl p2) s =
kfilter pl (kfilter p2 s)

Hand-written: kfilter_predI Roosterize: eq kfilter

Comment: X The suggested name is too generic

ChopSynTree are statistically significant. For example, this can be clearly seen in
the second group: BLEU for KnlTree+attn+copy and ChopKnlTree+attn+copy
are 37.0 and 42.9, respectively. We believe that the size of the original trees,
and a lot of irrelevant data in those trees, hurt the performance. The fact that
ChopKnlTree and ChopSynTree both perform much better than using KnlTree
or SynTree across all groups indicate that the chopped trees could be viewed as
a form of supervised attention with flat values that helps later attention layers
to focus better.

Finding #4: Although chopped syntax tree with attention outperforms (sta-
tistically significant) chopped kernel tree with attention (BLEU 28.9 vs. 19.5),
chopped kernel tree with attention and copy by far outperforms (statistically sig-
nificant) chopped syntax tree with attention and copy (BLEU 42.9 vs. 39.8). The
copy mechanism helps kernel trees much more than the syntax trees, because
the mathematical notations and symbols in the syntax trees get expanded to
their names in the kernel trees, and some of them are needed as a part of the
lemma names.

Finding #5: Lemma statement and syntax tree do not work well together,
primarily because the two representations contain mostly the same information.

Deep Generation of Coq Lemma Names Using Elaborated Terms 111

In which case, a model taking both as inputs may not work as well as using only
one of the inputs, because more parameters need to be trained.

Finding #6: The retrieval-based baseline, which is the strongest among base-
lines, outperforms several encoder-decoder models without attention and copy
or with only attention, but is worse than (statistically significant) all models
with both attention and copy mechanisms enabled.

6.3 Manual Quality Analysis

While generated lemma names may not always match the manually written ones
in the training set, they can still be semantically valid and conform to prevailing
conventions. However, such name properties are not reflected in our automatic
evaluation metrics, since these metrics only consider exactly matched tokens as
correct. To obtain a more complete evaluation, we therefore performed a manual
quality analysis of generated lemma names from ROOSTERIZE by applying it
to a Coq project outside of our corpus, the PCM library [56]. This project
depends on MathComp, and follows, to a degree, many of the MathComp coding
conventions. The PCM library consists of 12 Coq files, and contains 690 lemmas.

We ran ROOSTERIZE with the best model (Stmt+ChopKnlTree+attn+copy)
on the PCM library to get the top-1 suggestions for all lemma names. Overall, the
ROOSTERIZE suggestions achieved a BLEU score of 36.3 and a fragment accuracy
of 17%, and 36 suggestions (5%) exactly match the existing lemma names. Next,
we asked the maintainer of the PCM library to evaluate the remaining 654 lemma
names (those that do not match exactly) and send us feedback.

The maintainer spent one day on the task and provided comments on 150
suggested names. We analyzed these comments to identify patterns and trends.
He found that 20% of the suggested names he inspected were of good quality, out
of which more than half were of high quality. Considering that the analysis was of
top-1 suggestions excluding exact matches, we find these figures encouraging. For
low-quality names, a clear trend was that they were often “too generic”. Similar
observations have been made about the results from encoder-decoder models in
dialog generation [45,65]. In contrast, useful suggestions were typically able to
expand or elaborate on name components that are intuitively too concise, e.g.,
replacing kfilt with kfilter. Table4 lists examples that are representative
of these trends; checkmarks indicate useful suggestions, while crosses indicate
unsuitability. We also include comments from the maintainer. As illustrated by
the comments, even suggestions considered unsuitable may contain useful parts.

7 Discussion

Our toolchain builds on Coq 8.10.2, and thus we only used projects that support
this version. However, we do not expect any fundamental obstacles in support-
ing future Coq releases. Thanks to the use of OCaml metaprogramming via
PPX, which allowed eliding explicit references to the internal structure of Coq

112 P. Nie et al.

datatypes, SerAPI itself and our extensions to it are expected to require only
modest effort to maintain as Coq evolves.

Our models and toolchain may not be applicable to Coq projects unre-
lated to the MathComp family of projects, i.e., projects which do not follow
any MathComp conventions. To the best of our knowledge, MathComp’s coding
conventions are the most recognizable and well-documented in the Coq commu-
nity; suggesting coding conventions based on learning from projects unrelated
to MathComp are likely to give more ambiguous results that are difficult to vali-
date manually. Our case study also included generating suggestions for a project
outside the MathComp family, the PCM library, with encouraging results.

Our models are in principle applicable to proof assistants with similar foun-
dations, such as Lean [54]. However, the current version of Lean, Lean 3, does
not provide serialization of internal data structures as SerAPI does for Coq,
which prevents direct application of our toolchain. Application of our models to
proof assistants with different foundations and proof-checking toolchains, such
as Isabelle/HOL, is even less straightforward, although the Archive of Formal
Proofs (AFP) contains many projects with high-quality lemma names [25].

8 Related Work

Naturalness and Coding Conventions: Hindle et al. [35] first applied the
concept of naturalness to Java-like languages, noting that program statement
regularities and repetitiveness make statistical language models applicable for
performing software engineering tasks [4]. Rahman et al. [62] validated the nat-
uralness of other similar programming languages, and Hellendoorn et al. [31]
found high naturalness in Coq code, providing motivation for our application
of statistical language models to Coq. Allamanis et al. [2] used the concept of
naturalness and statistical language models to learn and suggest coding conven-
tions, including names, for Java, and Raychev et al. [63] used conditional random
fields to learn and suggest coding conventions for JavaScript. To our knowledge,
no previous work has developed applications of naturalness for proof assistants;
Hellendorn et al. [31] only measured naturalness for their Coq corpus.

Suggesting Names: Prior work on suggesting names mostly concerns Java
method names. Liu et al. [47] used a similarity matching algorithm, based on
deep representations of Java method names and bodies learned with Paragraph
Vector and convolutional neural networks, to detect and fix inconsistent Java
method names. Allamanis et al. [3] used logbilinear neural language models
supplemented by additional manual features to predict Java method and class
names. Java method names have also been treated as short, descriptive “sum-
maries” of its body; in this view, prior work has augmented attention mecha-
nisms in convolutional networks [5], used sequence-to-sequence models to learn
from descriptions (e.g., Javadoc comments) [27], and utilized the tree-structure
of the code in a hierarchical attention network [74]. Unlike Java syntax trees,
Coq syntax and kernel trees contain considerable semantic information useful
for naming. In the work closest to our domain, Aspinall and Kaliszyk used a

Deep Generation of Coq Lemma Names Using Elaborated Terms 113

k-nearest neighbors multi-label classifier on a corpus for the HOL Light proof
assistant to suggest names of lemmas [7]. However, their technique only suggests
names that exist in the training data and therefore does not generalize. To our
knowledge, ours is the first neural generation model for suggesting names in a
proof assistant context.

Mining and Learning for Proof Assistants: Miiller et al. [55] exported Coq
kernel trees as XML strings to translate 49 Coq projects to the OMDoc theory
graph format. Rather than translating documents to an independently speci-
fied format, we produce lightweight machine-readable representations of Coq’s
internal data structures. Wiedijk [71] collected early basic statistics on the core
libraries of several proof assistants, including Coq and Isabelle/HOL. Blanchette
et al. [16] mined the AFP to gather statistics such as the average number of lines
of Isabelle/HOL specifications and proof scripts. However, these corpora were
not used to perform learning. Komendantskaya et al. [32-34,42] used machine
learning without neural networks to identify patterns in Coq tactic sequences
and proof kernel trees, e.g., to find structural similarities between lemmas and
simplify proof development. In contrast, our models capture similarity among
several different representations of lemma statements to generate lemma names.

9 Conclusion

We presented novel techniques, based on neural networks, for learning and sug-
gesting lemma names in Coq verification projects. We designed and implemented
multi-input encoder-decoder models that use Coq’s internal data structures,
including (chopped) syntax trees and kernel trees. Additionally, we constructed
a large corpus of high quality Coq code that will enable development and eval-
uation of future techniques for Coq. We performed an extensive evaluation of
our models using the corpus. Our results show that the multi-input models,
which use internal data structures, substantially outperform several baselines;
the model that uses the lemma statement tokens and the chopped kernel tree
with attention and copy mechanism performs the best. Based on our findings, we
believe that multi-input models leveraging key parts of internal data structures
can play a critical role in producing high-quality lemma name suggestions.

Acknowledgments. The authors thank Yves Bertot, Cyril Cohen, Emilio Jests Gal-
lego Arias, Gaétan Gilbert, Hugo Herbelin, Anton Trunov, Théo Zimmermann, and
the anonymous reviewers for their comments and feedback. This work was partially
supported by the US National Science Foundation under Grant Nos. CCF-1652517
and IIS-1850153, and by the Swedish Foundation for Strategic Research under the
TrustFull project.

References

1. Affeldt, R., Garrigue, J.: Formalization of error-correcting codes: from Hamming to
modern coding theory. In: Urban, C., Zhang, X. (eds.) ITP 2015. LNCS, vol. 9236,
pp. 17-33. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22102-1_2

https://doi.org/10.1007/978-3-319-22102-1_2

114

2.

10.

11.

12.

13.

14.

15.

16.

17.

P. Nie et al.

Allamanis, M., Barr, E.T., Bird, C., Sutton, C.: Learning natural coding conven-
tions. In: International Symposium on the Foundations of Software Engineering,
pp. 281-293. ACM, New York (2014). https://doi.org/10.1145/2635868.2635883
Allamanis, M., Barr, E.T., Bird, C., Sutton, C.: Suggesting accurate method and
class names. In: Joint Meeting on Foundations of Software Engineering, pp. 38-49.
ACM, New York (2015). https://doi.org/10.1145/2786805.2786849

. Allamanis, M., Barr, E.T., Devanbu, P., Sutton, C.: A survey of machine learn-

ing for big code and naturalness. ACM Comput. Surv. 51(4), 81:3-81:37 (2018).
https://doi.org/10.1145/3212695

Allamanis, M., Peng, H., Sutton, C.: A convolutional attention network for extreme
summarization of source code. In: International Conference on Machine Learning,
pp. 2091-2100 (2016)

Apache Software Foundation: Apache Lucene (2020). https://lucene.apache.org.
Accessed 23 Jan 2020

Aspinall, D., Kaliszyk, C.: What’s in a theorem name? In: Blanchette, J.C., Merz,
S. (eds.) ITP 2016. LNCS, vol. 9807, pp. 459-465. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-43144-4_28

Avidan, E., Feitelson, D.G.: Effects of variable names on comprehension: an empir-
ical study. In: International Conference on Program Comprehension, pp. 55-65.
IEEE Computer Society, Washington (2017). https://doi.org/10.1109/ICPC.2017.
27

Avigad, J.: Mathlib naming conventions (2016). https://github.com/leanprover-
community /mathlib/blob/snapshot-2019-10/docs/contribute/naming.md.
Accessed 23 Jan 2020

Babii, H., Janes, A., Robbes, R.: Modeling vocabulary for big code machine learn-
ing. CoRR abs/1904.01873 (2019). https://arxiv.org/abs/1904.01873

Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. In: International Conference on Learning Representations
(2015). https://arxiv.org/abs/1409.0473

Barendregt, H., Barendsen, E.: Autarkic computations in formal proofs. J. Autom.
Reason. 28(3), 321-336 (2002). https://doi.org/10.1023/A:1015761529444
Bartzia, E.-I., Strub, P.-Y.: A formal library for elliptic curves in the Coq proof
assistant. In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp. 77-92.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08970-6_6
Berg-Kirkpatrick, T., Burkett, D., Klein, D.: An empirical investigation of statis-
tical significance in NLP. In: Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural Language Learning, pp. 995-
1005. Association for Computational Linguistics, Stroudsburg (2012)

Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development:
Coq’Art: The Calculus of Inductive Constructions. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-662-07964-5

Blanchette, J.C., Haslbeck, M., Matichuk, D., Nipkow, T.: Mining the archive of
formal proofs. In: Kerber, M., Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.)
CICM 2015. LNCS (LNAI), vol. 9150, pp. 3-17. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-20615-8_1

Boogerd, C., Moonen, L.: Evaluating the relation between coding standard vio-
lations and faults within and across software versions. In: International Working
Conference on Mining Software Repositories, pp. 41-50. IEEE Computer Society,
Washington (2009). https://doi.org/10.1109/MSR.2009.5069479

https://doi.org/10.1145/2635868.2635883
https://doi.org/10.1145/2786805.2786849
https://doi.org/10.1145/3212695
https://lucene.apache.org
https://doi.org/10.1007/978-3-319-43144-4_28
https://doi.org/10.1007/978-3-319-43144-4_28
https://doi.org/10.1109/ICPC.2017.27
https://doi.org/10.1109/ICPC.2017.27
https://github.com/leanprover-community/mathlib/blob/snapshot-2019-10/docs/contribute/naming.md
https://github.com/leanprover-community/mathlib/blob/snapshot-2019-10/docs/contribute/naming.md
https://arxiv.org/abs/1904.01873
https://arxiv.org/abs/1409.0473
https://doi.org/10.1023/A:1015761529444
https://doi.org/10.1007/978-3-319-08970-6_6
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-319-20615-8_1
https://doi.org/10.1007/978-3-319-20615-8_1
https://doi.org/10.1109/MSR.2009.5069479

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Deep Generation of Coq Lemma Names Using Elaborated Terms 115

Chen, H., Ziegler, D., Chajed, T., Chlipala, A., Kaashoek, M.F., Zeldovich, N.:
Using crash Hoare logic for certifying the FSCQ file system. In: Symposium on
Operating Systems Principles, pp. 18-37. ACM, New York (2015). https://doi.
org/10.1145/2815400.2815402

Cohen, C.: Contribution guide for the Mathematical Components library
(2018). https://github.com/math-comp/math-comp/blob/mathcomp-1.9.0/
CONTRIBUTING.md. Accessed 14 Apr 2020

Coq Development Team: The Coq proof assistant, version 8.10.0, October 2019.
https://doi.org/10.5281 /zenodo.3476303

Coq Development Team: The Gallina specification language (2019). https://coq.
inria.fr/distrib/V8.10.2 /refman /language/gallina-specification-language.html.
Accessed 17 Apr 2020

Delahaye, D.: A tactic language for the system Coq. In: Parigot, M., Voronkov,
A. (eds.) LPAR 2000. LNAI, vol. 1955, pp. 85-95. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44404-1_7

Doczkal, C., Kaiser, J.O., Smolka, G.: Regular language representations in Coq
(2020). https://github.com/coq-community/reglang. Accessed 09 Apr 2020
Doczkal, C., Smolka, G.: Regular language representations in the constructive type
theory of Coq. J. Autom. Reason. 61(1), 521-553 (2018)

Eberl, M., Klein, G., Nipkow, T., Paulson, L., Thiemann, R.: Archive of Formal
Proofs (2020). https://www.isa-afp.org. Accessed 23 Jan 2020

Gallego Arias, E.J.: SerAPI: machine-friendly, data-centric serialization for Coq.
Technical report, MINES ParisTech (2016). https://hal-mines-paristech.archives-
ouvertes.fr/hal-01384408

Gao, S., Chen, C., Xing, Z., Ma, Y., Song, W., Lin, S.: A neural model for method
name generation from functional description. In: International Conference on Soft-
ware Analysis, Evolution and Reengineering, pp. 414-421. IEEE Computer Society,
Washington (2019). https://doi.org/10.1109/SANER.2019.8667994

Gonthier, G.: Formal proof-the four-color theorem. Not. Am. Math. Soc. 55(11),
1382-1393 (2008)

Gonthier, G., et al.: A machine-checked proof of the odd order theorem. In: Blazy,
S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 163—
179. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39634-2_14
Google: Google-Java-Format (2020). https://github.com/google/google-java-
format. Accessed 23 Jan 2020

Hellendoorn, V.J., Devanbu, P.T., Alipour, M.A.: On the naturalness of proofs. In:
International Symposium on the Foundations of Software Engineering, New Ideas
and Emerging Results, pp. 724-728. ACM, New York (2018). https://doi.org/10.
1145/3236024.3264832

Heras, J., Komendantskaya, E.: ML4PG in computer algebra verification. In:
Carette, J., Aspinall, D., Lange, C., Sojka, P., Windsteiger, W. (eds.) CICM 2013.
LNCS (LNAI), vol. 7961, pp. 354-358. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-39320-4_28

Heras, J., Komendantskaya, E.: Proof pattern search in Coq/SSReflect. CoRR
abs/1402.0081 (2014). https://arxiv.org/abs/1402.0081

Heras, J., Komendantskaya, E.: Recycling proof patterns in Coq: case studies.
Math. Comput. Sci. 8(1), 99-116 (2014). https://doi.org/10.1007/s11786-014-
0173-1

https://doi.org/10.1145/2815400.2815402
https://doi.org/10.1145/2815400.2815402
https://github.com/math-comp/math-comp/blob/mathcomp-1.9.0/CONTRIBUTING.md
https://github.com/math-comp/math-comp/blob/mathcomp-1.9.0/CONTRIBUTING.md
https://doi.org/10.5281/zenodo.3476303
https://coq.inria.fr/distrib/V8.10.2/refman/language/gallina-specification-language.html
https://coq.inria.fr/distrib/V8.10.2/refman/language/gallina-specification-language.html
https://doi.org/10.1007/3-540-44404-1_7
https://github.com/coq-community/reglang
https://www.isa-afp.org
https://hal-mines-paristech.archives-ouvertes.fr/hal-01384408
https://hal-mines-paristech.archives-ouvertes.fr/hal-01384408
https://doi.org/10.1109/SANER.2019.8667994
https://doi.org/10.1007/978-3-642-39634-2_14
https://github.com/google/google-java-format
https://github.com/google/google-java-format
https://doi.org/10.1145/3236024.3264832
https://doi.org/10.1145/3236024.3264832
https://doi.org/10.1007/978-3-642-39320-4_28
https://doi.org/10.1007/978-3-642-39320-4_28
https://arxiv.org/abs/1402.0081
https://doi.org/10.1007/s11786-014-0173-1
https://doi.org/10.1007/s11786-014-0173-1

116

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

P. Nie et al.

Hindle, A., Barr, E.T., Su, Z., Gabel, M., Devanbu, P.: On the naturalness
of software. In: International Conference on Software Engineering, pp. 837-847.
IEEE Computer Society, Washington (2012). https://doi.org/10.1109/ICSE.2012.
6227135

Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735-1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

HoTT authors: HoTT Conventions and Style Guide (2019). https://github.com/
HoTT/HoTT/blob/V8.10/STYLE.md. Accessed 23 Jan 2020

Hu, X., Li, G., Xia, X., Lo, D., Jin, Z.: Deep code comment generation. In: Inter-
national Conference on Program Comprehension, pp. 200-210. ACM, New York
(2018). https://doi.org/10.1145/3196321.3196334

Iris authors: Iris Style Guide (2019). https://gitlab.mpi-sws.org/iris/iris/blob /iris-
3.2.0/StyleGuide.md. Accessed 17 Apr 2020

Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Interna-
tional Conference on Learning Representations (2015). https://arxiv.org/abs/1412.
6980

Klein, G., Kim, Y., Deng, Y., Senellart, J., Rush, A.M.: OpenNMT: open-source
toolkit for neural machine translation. In: Annual Meeting of the Association
for Computational Linguistics, System Demonstrations, pp. 67-72. Association
for Computational Linguistics, Stroudsburg (2017). https://doi.org/10.18653/v1/
P17-4012

Komendantskaya, E., Heras, J., Grov, G.: Machine learning in Proof General: inter-
facing interfaces. In: Kaliszyk, C., Liith, C. (eds.) International Workshop on User
Interfaces for Theorem Provers. EPTCS, vol. 118, pp. 15-41. Open Publishing
Association, Sydney (2013). https://doi.org/10.4204/EPTCS.118.2

LeClair, A., Jiang, S., McMillan, C.: A neural model for generating natural lan-
guage summaries of program subroutines. In: International Conference on Software
Engineering, pp. 795-806. IEEE Computer Society, Washington (2019). https://
doi.org/10.1109/ICSE.2019.00087

Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107-
115 (2009). https://doi.org/10.1145/1538788.1538814

Li, J., Galley, M., Brockett, C., Gao, J., Dolan, B.: A diversity-promoting objec-
tive function for neural conversation models. In: Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human Language
Technologies, pp. 110-119. Association for Computational Linguistics, Stroudsburg
(2016). https://doi.org/10.18653/v1/n16-1014

Lin, C., Och, F.J.: ORANGE: a method for evaluating automatic evaluation
metrics for machine translation. In: International Conference on Computational
Linguistics, pp. 501-507. Association for Computational Linguistics, Stroudsburg
(2004)

Liu, K., et al.: Learning to spot and refactor inconsistent method names. In: Inter-
national Conference on Software Engineering, pp. 1-12. IEEE Computer Society,
Washington (2019). https://doi.org/10.1109/ICSE.2019.00019

Luong, T., Pham, H., Manning, C.D.: Effective approaches to attention-based neu-
ral machine translation. In: Empirical Methods in Natural Language Processing,
pp. 1412-1421. Association for Computational Linguistics, Stroudsburg (2015).
https://doi.org/10.18653/v1/d15-1166

Mahboubi, A., Tassi, E.: Mathematical Components Book (2017). https://math-
comp.github.io/mcb/. Accessed 17 Apr 2020

Mathematical Components Team: Missing lemmas in Seq (2016). https://github.
com/math-comp/math-comp/pull/41. Accessed 18 Apr 2020

https://doi.org/10.1109/ICSE.2012.6227135
https://doi.org/10.1109/ICSE.2012.6227135
https://doi.org/10.1162/neco.1997.9.8.1735
https://github.com/HoTT/HoTT/blob/V8.10/STYLE.md
https://github.com/HoTT/HoTT/blob/V8.10/STYLE.md
https://doi.org/10.1145/3196321.3196334
https://gitlab.mpi-sws.org/iris/iris/blob/iris-3.2.0/StyleGuide.md
https://gitlab.mpi-sws.org/iris/iris/blob/iris-3.2.0/StyleGuide.md
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/P17-4012
https://doi.org/10.18653/v1/P17-4012
https://doi.org/10.4204/EPTCS.118.2
https://doi.org/10.1109/ICSE.2019.00087
https://doi.org/10.1109/ICSE.2019.00087
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.18653/v1/n16-1014
https://doi.org/10.1109/ICSE.2019.00019
https://doi.org/10.18653/v1/d15-1166
https://math-comp.github.io/mcb/
https://math-comp.github.io/mcb/
https://github.com/math-comp/math-comp/pull/41
https://github.com/math-comp/math-comp/pull/41

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

Deep Generation of Coq Lemma Names Using Elaborated Terms 117

McCarthy, J.: Recursive functions of symbolic expressions and their computation
by machine, part I. Commun. ACM 3(4), 184-195 (1960). https://doi.org/10.1145/
367177.367199

Miara, R.J., Musselman, J.A., Navarro, J.A., Shneiderman, B.: Program indenta-
tion and comprehensibility. Commun. ACM 26(11), 861-867 (1983). https://doi.
org/10.1145,/182.358437

de Moura, L., Avigad, J., Kong, S., Roux, C.: Elaboration in dependent type
theory. CoRR abs/1505.04324 (2015). https://arxiv.org/abs/1505.04324

de Moura, L., Kong, S., Avigad, J., van Doorn, F., von Raumer, J.: The Lean
theorem prover (system description). In: Felty, A.P., Middeldorp, A. (eds.) CADE
2015. LNCS (LNAI), vol. 9195, pp. 378-388. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21401-6_26

Miiller, D., Rabe, F., Sacerdoti Coen, C.: The Coq library as a theory graph. In:
Kaliszyk, C., Brady, E., Kohlhase, A., Sacerdoti Coen, C. (eds.) CICM 2019. LNCS
(LNAI), vol. 11617, pp. 171-186. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-23250-4_12

Nanevski, A., Ley-Wild, R., Sergey, I., Delbianco, G., Trunov, A.: The PCM library
(2020). https://github.com/imdea-software/fcsl-pcm. Accessed 24 Jan 2020

Nie, P., Palmskog, K., Li, J.J., Gligoric, M.: Deep generation of Coq lemma names
using elaborated terms. CoRR abs/2004.07761 (2020). https://arxiv.org/abs/2004.
07761

OCaml Labs: PPX (2017). http://ocamllabs.io/doc/ppx.html. Accessed 23 Jan
2020

Ogura, N., Matsumoto, S., Hata, H., Kusumoto, S.: Bring your own coding style. In:
International Conference on Software Analysis, Evolution and Reengineering, pp.
527-531. IEEE Computer Society, Washington (2018). https://doi.org/10.1109/
SANER.2018.8330253

Papineni, K., Roukos, S., Ward, T., Zhu, W.: BLEU: a method for automatic
evaluation of machine translation. In: Annual Meeting of the Association for Com-
putational Linguistics, pp. 311-318. Association for Computational Linguistics,
Stroudsburg (2002)

Paszke, A., et al.: Automatic differentiation in PyTorch. In: Autodiff Workshop
(2017). https://openreview.net/forum?id=BJJsrmfCZ

Rahman, M., Palani, D., Rigby, P.C.: Natural software revisited. In: International
Conference on Software Engineering, pp. 37-48. IEEE Computer Society, Wash-
ington (2019). https://doi.org/10.1109/ICSE.2019.00022

Raychev, V., Vechev, M., Krause, A.: Predicting program properties from “big
code”. In: Symposium on Principles of Programming Languages, pp. 111-124.
ACM, New York (2015). https://doi.org/10.1145/2676726.2677009

See, A., Liu, P.J., Manning, C.D.: Get to the point: summarization with pointer-
generator networks. In: Annual Meeting of the Association for Computational Lin-
guistics, pp. 1073-1083. Association for Computational Linguistics, Stroudsburg
(2017). https://doi.org/10.18653 /v1/P17-1099

Serban, I.V., Sordoni, A., Bengio, Y., Courville, A., Pineau, J.: Building end-to-end
dialogue systems using generative hierarchical neural network models. In: AAAI
Conference on Artificial Intelligence, pp. 3776-3783. AAAI Press, Palo Alto (2016)
Sergey, 1., Nanevski, A., Banerjee, A.: Mechanized verification of fine-grained con-
current programs. In: Conference on Programming Language Design and Imple-
mentation, pp. 77-87. ACM, New York (2015). https://doi.org/10.1145/2737924.
2737964

https://doi.org/10.1145/367177.367199
https://doi.org/10.1145/367177.367199
https://doi.org/10.1145/182.358437
https://doi.org/10.1145/182.358437
https://arxiv.org/abs/1505.04324
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-030-23250-4_12
https://doi.org/10.1007/978-3-030-23250-4_12
https://github.com/imdea-software/fcsl-pcm
https://arxiv.org/abs/2004.07761
https://arxiv.org/abs/2004.07761
http://ocamllabs.io/doc/ppx.html
https://doi.org/10.1109/SANER.2018.8330253
https://doi.org/10.1109/SANER.2018.8330253
https://openreview.net/forum?id=BJJsrmfCZ
https://doi.org/10.1109/ICSE.2019.00022
https://doi.org/10.1145/2676726.2677009
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.1145/2737924.2737964
https://doi.org/10.1145/2737924.2737964

118

67.

68.

69.

70.

71.

72.

73.

74.

75.

P. Nie et al.

Shneiderman, B., McKay, D.: Experimental investigations of computer program
debugging and modification. Hum. Factors Soc. Ann. Meet. 20(24), 557-563
(1976). https://doi.org/10.1177/154193127602002401

Sutskever, 1., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural
networks. In: Advances in Neural Information Processing Systems 27, pp. 3104—
3112. MIT Press, Cambridge (2014)

Suzuki, J., Nagata, M.: Cutting-off redundant repeating generations for neural
abstractive summarization. In: Conference of the European Chapter of the Associ-
ation for Computational Linguistics, pp. 291-297. Association for Computational
Linguistics, Stroudsburg (2017). https://doi.org/10.18653/v1/el17-2047

Unanue, I.J., Borzeshi, E.Z., Piccardi, M.: A shared attention mechanism for
interpretation of neural automatic post-editing systems. In: Workshop on Neural
Machine Translation and Generation, pp. 11-17. Association for Computational
Linguistics, Stroudsburg (2018). https://doi.org/10.18653/v1/w18-2702

Wiedijk, F.: Statistics on digital libraries of mathematics. Stud. Logic Gramm.
Rhetor. 18(31), 137-151 (2009)

Williams, R.J., Zipser, D.: A learning algorithm for continually running fully recur-
rent neural networks. Neural Comput. 1(2), 270-280 (1989). https://doi.org/10.
1162/neco.1989.1.2.270

Woos, D., Wilcox, J.R., Anton, S., Tatlock, Z., Ernst, M.D., Anderson, T.: Planning
for change in a formal verification of the Raft consensus protocol. In: Certified
Programs and Proofs, pp. 154-165. ACM, New York (2016). https://doi.org/10.
1145/2854065.2854081

Xu, S., Zhang, S., Wang, W., Cao, X., Guo, C., Xu, J.: Method name suggestion
with hierarchical attention networks. In: Workshop on Partial Evaluation and Pro-
gram Manipulation, pp. 10-21. ACM, New York (2019). https://doi.org/10.1145/
3294032.3294079

Zhang, S., Zheng, D., Hu, X., Yang, M.: Bidirectional long short-term memory
networks for relation classification. In: Pacific Asia Conference on Language, Infor-
mation and Computation, pp. 207-212. Association for Computational Linguistics,
Stroudsburg (2015). https://doi.org/10.18653/v1/p16-2034

https://doi.org/10.1177/154193127602002401
https://doi.org/10.18653/v1/e17-2047
https://doi.org/10.18653/v1/w18-2702
https://doi.org/10.1162/neco.1989.1.2.270
https://doi.org/10.1162/neco.1989.1.2.270
https://doi.org/10.1145/2854065.2854081
https://doi.org/10.1145/2854065.2854081
https://doi.org/10.1145/3294032.3294079
https://doi.org/10.1145/3294032.3294079
https://doi.org/10.18653/v1/p16-2034

	Deep Generation of Coq Lemma Names Using Elaborated Terms
	1 Introduction
	2 Background
	3 Models
	3.1 Core Architecture
	3.2 Tree Chopping
	3.3 Copy Mechanism
	3.4 Sub-tokenization
	3.5 Repetition Prevention

	4 Corpus
	5 Implementation
	6 Evaluation
	6.1 Models and Baselines
	6.2 Automatic Evaluation
	6.3 Manual Quality Analysis

	7 Discussion
	8 Related Work
	9 Conclusion
	References

