
Extensible Extraction of Efficient
Imperative Programs with Foreign

Functions, Manually Managed Memory,
and Proofs

Clément Pit-Claudel1(B) , Peng Wang2, Benjamin Delaware3, Jason Gross1 ,
and Adam Chlipala1

1 MIT CSAIL, Cambridge, MA 02139, USA
{cpitcla,jgross,adamc}@csail.mit.edu
2 Google, Mountain View, CA 94043, USA

wangpeng@google.com
3 Purdue University, West Lafayette, IN 47907, USA

bendy@purdue.edu

Abstract. We present an original approach to sound program extrac-
tion in a proof assistant, using syntax-driven automation to derive
correct-by-construction imperative programs from nondeterministic
functional source code. Our approach does not require committing to
a single inflexible compilation strategy and instead makes it straightfor-
ward to create domain-specific code translators. In addition to a small
set of core definitions, our framework is a large, user-extensible collection
of compilation rules each phrased to handle specific language constructs,
code patterns, or data manipulations. By mixing and matching these
pieces of logic, users can easily tailor extraction to their own domains
and programs, getting maximum performance and ensuring correctness
of the resulting assembly code.

Using this approach, we complete the first proof-generating pipeline
that goes automatically from high-level specifications to assembly code.
In our main case study, the original specifications are phrased to resemble
SQL-style queries, while the final assembly code does manual memory
management, calls out to foreign data structures and functions, and is
suitable to deploy on resource-constrained platforms. The pipeline runs
entirely within the Coq proof assistant, leading to final, linked assembly
code with overall full-functional-correctness proofs in separation logic.

1 Introduction

The general area of correct-by-construction code generation is venerable, going
back at least to Dijkstra’s work in the 1960s [5]. Oftentimes, solutions offer a
strict subset of the desiderata of generality, automation, and performance of syn-
thesized code. This paper presents the final piece of a pipeline that sits at the
sweet spot of all three, enabling semiautomatic refinement of high-level speci-
fications into efficient low-level code in a proof-generating manner. Our initial
c© Springer Nature Switzerland AG 2020
N. Peltier and V. Sofronie-Stokkermans (Eds.): IJCAR 2020, LNAI 12167, pp. 119–137, 2020.
https://doi.org/10.1007/978-3-030-51054-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51054-1_7&domain=pdf
http://orcid.org/0000-0002-1900-3901
http://orcid.org/0000-0002-9427-4891
https://doi.org/10.1007/978-3-030-51054-1_7


120 C. Pit-Claudel et al.

specification language is the rich, higher-order logic of Coq, and we support a
high degree of automation through domain-specific refinement strategies, which
in turn enable targeted optimization strategies for extracting efficient low-level
code. In order to take advantage of these opportunities, we have built an exten-
sible compilation framework that can be updated to handle new compilation
strategies without sacrificing soundness. Our pipeline is foundational : it pro-
duces a fully linked assembly program represented as a Coq term with a proof
that it meets the original high-level specification.

Fig. 1. The full pipeline, with this work’s con-
tributions in blue. Stick figures indicate user-
supplied components. (Color figure online)

Our complete toolchain uses
Fiat [4] to refine high-level spec-
ifications of abstract data types
(ADTs) into nondeterministic func-
tional programs depending on
external data structures (expressed
in a shallowly embedded Gallina
DSL), then soundly extracts these
programs to an imperative inter-
mediate language (Facade) using
a novel proof-generating extrac-
tion procedure. The resulting pro-
grams are then translated into the
Cito [29] language by a newly writ-
ten compiler, backed by a non-
trivial soundness argument bridg-
ing two styles of operational seman-
tics. A traditional verified compiler
produces efficient Bedrock assem-
bly [3] from the Cito level, which we
soundly link against hand-verified

implementations of the required data structures. Beyond exploring a new tech-
nique for sound extraction of shallowly embedded DSLs (EDSLs), this work
bridges the last remaining gap (extraction) to present the first mechanically cer-
tified automatic translation pipeline from declarative specifications to efficient
assembly programs, as shown in Fig. 1.

In the original Fiat system, specifications were highly nondeterministic pro-
grams, and final implementations were fully deterministic programs obtained by
repeatedly refining the specification, eventually committing to a single possible
result. As a consequence, the generated code committed to a particular determin-
istic (and pure) implementation of external ADTs and functions that it relied on,
reducing flexibility, optimization opportunities, and overall performance. Addi-
tionally, the final step in previous work using Fiat was to extract this code
directly to OCaml, using Coq’s popular but unverified extraction mechanism.
Unfortunately, this meant that correctness of the compiled executable depended
not only on the correctness of Coq’s kernel but also on that of the extraction
mechanism and of the OCaml compiler and runtime system. These two depen-



Extensible Extraction of Efficient Imperative Programs 121

dencies significantly decreased the confidence that users can place in programs
synthesized by Fiat, and more generally in all programs extracted from Gallina
code.

Our work overcomes these issues via a novel approach to extraction that
is both extensible and correct and produces efficient, stateful low-level code
from nondeterministic functional sources. The process runs within Coq, produces
assembly code instead of OCaml code, and supports linking with handwritten
or separately compiled verified assembly code.

Instead of refining specifications down to a fully deterministic Gallina pro-
gram, as the original Fiat system did, we allow Fiat’s final output to incorpo-
rate nondeterminism. These choices are resolved at a later stage by interpreting
the nondeterminism as a postcondition specification in Hoare logic and linking
against assembly code proven to meet that specification. Nondeterminism at run-
time, which is not normally present in Gallina programs, is essential to support
code derivation with flexible use of efficient low-level data structures. For exam-
ple, if we represent a database with a type of binary trees that does not enjoy
canonical representations, the same data may admit multiple concrete represen-
tations, each corresponding to a different ordering of results for an operation
enumerating all database records.

Unlike certified compilers like CompCert [13] or CakeML [9], we do not imple-
ment our translator in the proof assistant’s logic and prove it sound once and
for all. Instead, we use proof-generating extraction: we phrase the translation
problem in a novel sequent-calculus-style formulation that allows us to apply
all of Coq’s usual scriptable proof automation. The primary reason is that we
want to make our compiler extensible by not committing to a specific compi-
lation strategy: in our system, programmers can teach the compiler about new
verified low-level data structures and code-generation strategies by introducing
new lemmas explaining how to map a Gallina term to a particular impera-
tive program1. Our automation then builds a (deeply embedded) syntax tree
by repeatedly applying lemmas until the nondeterministic functional program
is fully compiled. The many advantages of this approach (extensibility, ease of
development, flexibility, performance, and ease of verification) do come at a cost,
however: compilation is slower, care is needed to make the compiler robust to
small variations in input syntax, and the extensible nature of the compiler makes
it hard to characterize the supported source language precisely.

To summarize the benefits of our approach:

– It is lightweight: it does not require reifying the entirety of Gallina into a
deeply embedded language before compiling. Instead, we use Coq’s tactic
language to drive compilation.

– It is extensible: each part of the compilation logic is expressed as a derivation
rule, proved as an arbitrarily complex Coq theorem. Users can assemble a

1 In fact, nondeterministic choices cannot be compiled systematically, as they can
represent arbitrary complexity. Additionally, a proof-producing approach lets us ele-
gantly bypass the issue of self-reference, since our original programs are shallowly
embedded.



122 C. Pit-Claudel et al.

customized compiler by supplying their own compilation lemmas to extend
the source language or improve the generated code.

– It is well-suited to compiling EDSLs: we support nondeterminism in input
programs (standard extraction requires deterministic code).

– It allows us to link against axiomatically specified foreign functions and data
structures, implemented and verified separately.

– It compiles to a relatively bare language with explicit memory management.

To demonstrate the applicability of this approach, Sect. 6 presents a set of
microbenchmarks of Fiat programs manipulating variables, conditions, and
nested lists of machine words, as well as a more realistic example of SQL-
like programs similar to those of the original Fiat paper. These benchmarks
start from high-level specifications of database queries and pass automatically
through our pipeline to closed assembly programs, complete with full-functional-
correctness specifications and proofs in separation logic. Source code and com-
pilation instructions for the framework and benchmarks are available online at
https://github.com/mit-plv/fiat/tree/ijcar2020.

2 A Brief Outline of Our Approach

We begin with an example of the pipeline in action. Below are an SQL-style query
finding all titles by an author and a Fiat-generated implementation (right):

The generated code relies on a Fiat module IndexedByAuthor , which is not
an executable implementation of the required functionality; rather, it specifies
certain methods nondeterministically, implying that bfind returns the expected
rows in some undetermined order. The order may even be different for every
call, as might arise, for instance, with data structures like splay trees that adjust
their layout even during logically read-only operations.

Such nondeterministic programs are the starting point for our new refinement
phases. The ultimate output of the pipeline is a library of assembly code in the
Bedrock framework [3], obtained by extracting to a new language, Facade, built
as a layer on top of the Cito C-like language [29], and then compiling to Bedrock.

The output for our running
example might look like the
code on the right. Note that
this code works directly with
pointers to heap-allocated muta-
ble objects, handling all memory
management by itself, including
for intermediate values. The gen-
eral IndexedByAuthor interface
has been replaced with calls to a

https://github.com/mit-plv/fiat/tree/ijcar2020


Extensible Extraction of Efficient Imperative Programs 123

concrete module BTree providing binary search trees of tuples, and the call to
map became an imperative loop. We implement and verify BTree in Bedrock
assembly, and then we link code and proofs to obtain a binary and an end-to-end
theorem guaranteeing full functional correctness of assembly libraries, for code
generated automatically from high-level specifications.

The heart of our contribution is spanning the gap from nondeterministic
functional programs (written in Gallina) to imperative low-level programs (writ-
ten in Facade) using an extensible, proof-generating framework. We phrase this
derivation problem as one of finding a proof of a Hoare triple, where the pre-
condition and postcondition are known, but the Facade program itself must be
derived during the proof. The central goal from our running example looks as fol-
lows, where ?1 stands for the overall Facade program that we seek, and where
we unfold IndexedByAuthor.bfind (Subsect. 4.3 defines these triples precisely).

The actual implementation of ?1 is found by applying lemmas to decom-
pose this goal into smaller, similar goals representing subexpressions of the final
program. These lemmas form a tree of deduction steps, produced automatically
by a syntax-directed compilation script written in Coq’s Ltac tactic language.
Crucially, the derivation implemented by this script can include any adequately
phrased lemma, allowing new implementation strategies. Composed with the
automation that comes before and after this stage, we have a fully automated,
proof-generating pipeline from specifications to libraries of assembly code.

3 An Example of Proof-Producing Extraction

We begin by illustrating the compilation process on the example Fiat program
from Sect. 2. We synthesize a Facade program p according to the following spec-

ification2, which we summarize as

– p, when started in an initial state containing the arguments and
must be safe (it must not violate function preconditions, access unde-

fined variables, leak memory, etc.).
– p, when started in a proper initial state, must reach (if it terminates) a state

where the variable has one of the values allowed by the nondeterministic
program p shown above.

Replacing p with our example, we need to find a program p such that

We use our first compilation lemma (with a few examples shown in Fig. 2) to
connect the semantics of Fiat’s bind operation (the ← operator of monads [27])
to the meaning of , which yields the following synthesis goal:

2 In the following, underlined variables such as comp are Fiat computations, and ital-
icized variables such as r are Gallina variables.



124 C. Pit-Claudel et al.

Fig. 2. A few rules of our synthesizing compiler.

In this step, we have broken down the assignment to of a Fiat-level bind
(rows ← ...; ...) into the assignment of two variables: to the intermediate
list of authors, and to the final result. The :: operator separates entries
in a list of bindings of Facade variables to nondeterministic Fiat terms. The
ordering of the individual bindings matters: the Fiat term that we assign to

depends on the particular value chosen for bound locally as r .
We then break down the search for p into the search for two smaller pro-

grams: the first (p1) starts in the initial state (abbreviated to args ) and is only
concerned with the assignment to ; the second (p2) starts in a state where

is already assigned and uses that value to construct the final result.



Extensible Extraction of Efficient Imperative Programs 125

At this point, a lemma about connecting the meaning of the nondeterminis-
tic selection of authors and the Facade-level function tells us that

is a good choice for p1 (this is the call rule
for ). We are therefore only left with p2 to synthesize: noticing
the common prefix of the starting and ending states, we apply a rule (called
chomp in our development) allowing us to set aside the common prefix and
focus on the tail of the pre- and post-states, transforming the problem into

The additional mapping pictured under the arrow indicates that the ini-
tial and final states must both map to the same value r . In this form,
we can first rewrite map to foldL, at which point the synthesis goal matches
the conclusion of the foldL rule shown in Fig. 2c: given a program pinit to ini-
tialize the accumulator and a program pbody to implement the body of the fold,
the Facade program defined by the macro obeys the
specification above. This gives us two new synthesis goals, which we can handle
recursively, in a fashion similar to the one described above. Once these obliga-
tions have been resolved, we arrive at the desired Facade program.

4 Proof-Generating Extraction of Nondeterministic
Functional Programs: From Fiat to Facade

4.1 The Facade Language

We start with a brief description of our newly designed target language, Facade.
Facade is an Algol-like untyped imperative language operating on Facade states,
which are finite maps from variable names to Facade values (either scalars, or
nonnull values of heap-allocated ADTs). Syntactically, Facade includes standard
programming constructs like assignments, conditionals, loops, function calls, and
recursion. What distinguishes the language is its operational semantics, pictured
partially in Fig. 3. First, that semantics follows that of Cito in supporting modu-
larity by modeling calls to externally defined functions via preconditions and post-
conditions. Second, linearity is baked into Facade’s operational semantics, which
enforce that every ADT value on the heap will be referred to by exactly one live
variable (no aliasing and no leakage) to simplify reasoning about the formal con-
nection to functional programs: if every object has at most one referent, then we
can almost pretend that variables hold abstract values instead of pointers to muta-
ble objects. In practice, we have not found this requirement overly constraining for
our applications: one can automatically introduce copying when needed, or one can
require the external ADTs to provide nondestructive iteration.

The program semantics manipulates local-variable environments where
ADTs are associated with high-level models. For instance, a finite set is modeled
as a mathematical set, not as e.g. a hash table. A key parameter to the com-
piler soundness theorem is a separation-logic abstraction relation, connecting the



126 C. Pit-Claudel et al.

Fig. 3. Selected syntax & operational semantics of Facade [28].

domain of high-level ADT models to mutable memories of bytes. By picking dif-
ferent relations at the appropriate point in our pipeline, we can justify linking
with different low-level implementations of high-level concepts. No part of our
automated translation from Fiat to Facade need be aware of which relation
is chosen, and the same result of that process can be reused for different later
choices. This general approach to stateful encapsulation is largely inherited from
Cito, though with Facade we have made it even easier to use.

Facade’s operational semantics are defined by two predicates, Ψ � (p, st)↓
and Ψ � (p, st) ⇓ st’, expressing respectively that the Facade program p will
run safely when started in Facade state st, and that p may reach state st’ when
started from st (this latter predicate essentially acts as a big-step semantics of
Facade). Both predicates are parameterized over a context Ψ mapping function
names to their axiomatic specifications. The semantics is nondeterministic in the
sense that there can be more than one possible st’.

Modularity is achieved through the CallAx rule, allowing a Facade program
to call a function via its specification in Ψ . A function call produces a return value
r and a list of output values v representing the result of in-place modification
of input ADT arguments y. A precondition is a predicate pre on the values
assigned to the input arguments of the callee by the map st. A postcondition is
a predicate post on these input values, output values v , and return value r . The
semantics prescribes that a function call will nondeterministically pick a list of
output values and a return value satisfying post and use them to update the
relevant variables in the caller’s postcall state (possibly deallocating them).

Linearity is achieved by a set of syntactic and semantic provisions. For
instance, variables currently holding ADT values cannot appear on the right-
hand sides of assignments, to avoid aliasing. They also cannot appear on the
lefthand sides of assignments, to avoid losing their current payloads and causing
memory leaks.

We have implemented a verified translation from Facade to Cito, and from
there we reuse established infrastructure to connect into the Bedrock framework
for verified assembly code. Its soundness proof has the flavor of justifying a new
type system for an existing language, since Facade’s syntax matches that of Cito
rather closely.



Extensible Extraction of Efficient Imperative Programs 127

Fig. 4. Equivalence relation on Fiat and Facade states. Because Facade does not allow
us to leak ADT values, we require that all bindings pointing to ADT values in st be
reflected in and vice versa. For scalars, we only require that bindings in

be present in st.

4.2 Fiat and Facade States

We connect Fiat’s semantics to those of Facade by introducing a notion of Fiat
states, which allow us to express pre and post-conditions in a concise and homo-
geneous way, facilitating syntax-driven compilation. Each Fiat state (denoted as
st ) describes a set of Facade states (denoted as st): in Facade, machine states
are unordered collections of names and values. Fiat states, on the other hand,
are ordered collections of bindings (sometimes called telescopes), each containing
a variable name and a set of permissible values for that variable.

Forexample,thetelescope
describes all machine states in which maps to a positive value x and maps
to the pair (x, x + 1). Each variable in a Fiat state is annotated with a function
wrap describing how to inject values of its type in and out of the concrete type
used at the Facade level (e.g. a linked list may be extracted to a vector, as in
our example).

Finally, to be able to implement the aforementioned chomp rule, Fiat states
are extended with an unordered map (ext ) from names to concrete values. A full
Fiat state is thus composed of a telescope st and an extra collection of bindings
ext , written . We relate Fiat states to Facade states using the ternary
predicate st�st � ext defined in Fig. 4, which ensures that the values assigned
to variables in the Facade state st are compatible with the bindings described
in the Fiat state .

4.3 Proof-Generating Extraction by Synthesis

Armed with this predicate, we are ready for the full definition of st
p

ext
st’:

– ∀ st. st�st � ext =⇒ (p, st)↓
For any initial Facade state st, if st is in relation with the Fiat state st

extended by ext , then it is safe to run the Facade program p from state st.
– ∀ st, st’. st�st � ext ∧ (p, st) ⇓ st’ =⇒ st’�st’ � ext

For all initial and final Facade states st and st’, if st is in relation with the
Fiat state st extended by ext , and if running the Facade program p starting
from st may produce the Facade state st’, then st’ is in relation with the
Fiat state st’ extended by ext .



128 C. Pit-Claudel et al.

This definition is enough to concisely and precisely phrase the three types of
lemmas required to synthesize Facade programs: properties of the relation
used to drive the proof search and provide the extraction architecture; connec-
tions between the relation and Fiat’s semantics, used to reduce extraction
of Fiat programs to that of Gallina programs; and connections between Fiat and
Facade, such as the FoldL rule of Fig. 2c (users provide additional lemmas of
the latter kind to extend the scope of the compiler and broaden the range of
source programs that the compiler is able to handle).

With these lemmas, we can phrase certified extraction as a proof-search
problem that can be automated effectively. Starting from a Fiat computation

mixing Gallina code with calls to external ADTs, we generate a speci-
fication �f� based on the predicate (which itself is defined in terms of Facade’s
operational semantics):

(1)

From this starting point, extraction proceeds by analyzing the shapes of the pre-
and post-states to determine applicable compilation rules, which are then used to
build a Facade program progressively. This stage explains why we chose strongly
constrained representations for pre and post-states: where typical verification
tasks compute verification conditions from the program’s source, we compute
the program from carefully formulated pre- and postconditions (proper care in
designing the compilation rules and their preconditions obviates the need for
backtracking).

In practice, this syntax-driven process is implemented by a collection of
matching functions written in Ltac. These may either fail, or solve the cur-
rent goal by applying a lemma, or produce a new goal by applying a compilation
lemma of the form shown in Fig. 2. Our extraction architecture is extensible:
the main loop exposes hooks that users can rebind to call their own matching
rules. Examples of such rules are provided in Sect. 6.1. Our focus is on extracting
efficient code from Gallina EDSLs, so the set of rules is tailored to each domain
and does not cover all possible programs (in particular, we do not have support
for arbitrary fixpoints or pattern-matching constructs; we use custom lemmas
mapping specific matches to specific code snippets or external functions). When
the compiler encounters an unsupported construct C, it stops and presents the
user with a goal of the form indicating which piece is
missing so the user can provide the missing lemmas and tactics.

In our experience, debugging proof search and adding support for new con-
structs is relatively easy, though it does require sufficient familiarity with Coq.
Typically, our compiler would have two classes of users: library developers, who
interactively implement support for new DSLs (developing compilation tactics
requires manual labor similar to writing a domain-specific compiler); and final
users, who write programs within supported DSLs and use fully automated com-
pilation tactics.



Extensible Extraction of Efficient Imperative Programs 129

5 The Complete Proof-Generating Pipeline

The components presented in the previous section form the final links in an auto-
mated pipeline lowering high-level specifications to certified Bedrock modules,
whose correctness is guaranteed by Theorem 1.

Starting from a Fiat ADT specification ADTspec (a collection of high-level
method specifications mspec, as shown in Fig. 5a), we obtain by refinement under
a relation ≈ a Fiat ADT implementation ADTimpl (a collection of nondetermin-
istic functional programs mimpl, as shown in Fig. 5b). Each method of this imple-
mentation is assigned an operational specification �mimpl� (Eq. 1), from which
we extract (using proof-producing synthesis, optionally augmented with user-
specified lemmas and tactics) a verified Facade implementation mimpl (Sect. 4.3)
that calls into a number of external functions (Ψ , Fig. 3), as shown in Fig. 5c.

Finally, we package the resulting Facade methods into a Facade module.
This module imports Ψ (i.e. it must be linked against implementations of the
functions in Ψ) and exports axiomatic specifications straightforwardly lifted from
the original high-level specifications into Facade-style axiomatic specifications (of
the style demonstrated in the call rule of Fig. 3): for each high-level specification
methspec, we export the following (written �methspec�):

Since we are working in an object-oriented style at the high level, our low-level
code follows a convention of an extra “self” argument added to each method,
written in this logical formulation as rS for spec-level “self” values and rI for
implementation-level “self” values.

A generic proof guarantees that the operational specifications �methimpl� used
to synthesize Facade code indeed refine the axiomatic specifications �methspec�
exported by our Facade module. Compiling this Facade module via our new for-
mally verified Facade compiler produces a correct Bedrock module, completing
Theorem 1:

Theorem 1. Starting from a valid refinement ADTimpl of a Fiat ADT specifica-
tion ADTspec with methods methimpl and methspec and a set of Facade programs
synthesized from each �methimpl�, we can build a certified Bedrock module whose
methods satisfy the axiomatic specifications �methspec�.
The final Bedrock module satisfies the original, high-level Fiat specifications. It
specifies its external dependencies Ψ , for which verified assembly implementa-
tions must be provided as part of the final linking phase, which happens entirely
inside of Coq. After linking, we obtain a closed, executable Bedrock module,
exposing an axiomatic specification directly derived from the original, high-
level ADT specification. Our implementation links against verified hand-written
implementations of low-level indexing structures, though it would be possible to
use the output of any compiler emitting Bedrock assembly code.



130 C. Pit-Claudel et al.

6 Evaluation

6.1 Microbenchmarks

We first evaluated our pipeline by extracting a collection of twenty six Gal-
lina programs manipulating machine words, lists, and nested lists, with optional
nondeterministic choices. Extraction takes a few seconds for each program, rang-
ing from simple operations such as performing basic arithmetic, allocating data
structures, calling compiler intrinsics, or sampling arbitrary numbers to more

Fig. 5. Different stages of a process-scheduler compilation example (see also the anno-
tated ‘ProcessScheduler.v’ file).

https://github.com/mit-plv/fiat/tree/ijcar2020/ProcessScheduler.v


Extensible Extraction of Efficient Imperative Programs 131

complex operations involving sequence manipulations, like reversing, filtering,
reducing (e.g. reading in a number written as a list of digits in a given base),
flattening, and duplicating or replacing elements. All examples, and the cor-
responding outputs, are included in a literate Coq file available online. These
examples illustrate that our extraction engine supports a fluid, extensible source
language, including subsets of Gallina and many nondeterministic Fiat programs.

6.2 Relational Queries

To evaluate our full pipeline in realistic conditions, we targeted the query-
structure ADT library of the Fiat paper [4] as well as an ADT modeling process
scheduling inspired by Hawkins et al. [7]. This benchmark starts from high-level
Fiat specifications (as shown in Fig. 5a) and outputs a closed Bedrock module,
linked against a hand-verified nested-binary-tree implementation.

From Fiat specifications we derive a collection of nondeterministic Fiat pro-
grams (one per ADT method, as demonstrated in Fig. 5b), then extract each
method to Facade Fig. 5c) and compile to Bedrock. Extraction is fully auto-
matic; it draws from the default pool of extraction lemmas (about conditionals,
constants, arithmetic operations, etc.) and from bag-specific lemmas that we
added to the compiler (these manually verified call rules connect the pure bag
specifications used in Fiat sources to Bedrock-style specifications of mutable
binary search trees using the relation).

0 1000 2000 3000 4000 5000

Number of processes (10 active, n−10 sleeping)

10−2

10−1

100

R
un
ni
ng

tim
e
(s
ec
on
ds
)

Fig. 6. Process scheduler benchmarks.

Figure 6 presents the res-
ults of our experimental val-
idation. We compare our
own verified implementation
(“Fiat”) against the corre-
sponding SQL queries exe-
cuted by SQLite 3.8.2 (using
an in-memory database) and
PostgreSQL 9.3.11 (“PG”).
For increasingly large collec-
tions of processes, we run
20,000 Enumerate queries to
locate the 10 active pro-
cesses, followed by 10,000
GetCPUTime queries for arbi-
trary process IDs. In all
cases, the data is indexed
by (state, PID) to allow
for constant-time Enumerate
queries (the number of active
processes is kept constant) and logarithmic-time GetCPUTime queries (assuming
a B-tree–style index and skip-scans).

https://github.com/mit-plv/fiat/tree/ijcar2020/fiat/src/CertifiedExtraction/Benchmarks/MicrobenchmarksAnnotated.v


132 C. Pit-Claudel et al.

Our implementation behaves as expected: it beats SQLite and PostgreSQL
by 1.5 and 2.5 orders of magnitude respectively on GetCPUTime, and com-
petes honorably with SQLite (while beating PostgreSQL by one order of mag-
nitude) on Enumerate. Notice the red curves on the graph: without an explicit
“ ” clause, both database management systems missed the skip-
scan opportunity and exhibited asymptotically suboptimal linear-time behav-
ior, so we had to tweak the queries fed to PostgreSQL and SQLite to obtain
good GetCPUTime performance (in contrast, the optimizer in our system can be
guided explicitly by adding compiler hints in the form of extra tactics, without
modifying the specifications).

Of course, our implementation does much less work than a database engine;
the strength of our approach is to expose an SQL-style interface while enabling
generation of specialized data-structure-manipulation code, allowing program-
mers to benefit from the conciseness and clarity of high-level specifications with-
out incurring the overheads of a full-fledged DBMS.

Trusted Base. Our derivation assumes ensemble extensionality and Axiom K.
Our trusted base comprises the Coq 8.4 checker [25] (∼10 000 lines of OCaml
code), the semantics of the Bedrock IL and the translator from it to x86 assembly
(∼1200 lines of Gallina code), an assembler, and wrappers for extracted methods
(∼50 lines of x86 assembly). We used Proof General [2] for development.

7 Related Work

Closely related to our work is a project by Lammich [10] that uses Isabelle/HOL
to refine functional programs to an embedded imperative language that requires
garbage collection. This approach has been applied to various complex algo-
rithms, whereas our focus is on fully automatic derivation from highly reg-
ular specs. Both approaches use some form of linearity checking to bridge
the functional-imperative gap (Lammich et al. use separation logic [20] and
axiomatic semantics, while we apply Facade’s lighter-weight approach: decid-
able syntactic checks applied after-the-fact, with no explicit pointer reasoning).
A recent extension [11] targets LLVM directly. Crucially, the initial work only
targets Imperative/HOL and its extension does not support linking against sep-
arately verified libraries, while our pipeline allows linking, inside of Coq, low-
level programs against verified libraries written in any language of the Bedrock
ecosystem. Finally, we have integrated our translation into an automated proof-
generating pipeline from relational specifications to executable assembly code—
as far as we know, no such pipeline has been presented before.

Another closely related project by Kumar et al. [8,17] focuses on extract-
ing terms written in a purely functional subset of HOL4’s logic into the
CakeML dialect of ML. The main differences with our pipeline are optimization
opportunities, extensibility, and external linking. Indeed, while the compiler to
CakeML bridges a relatively narrow gap (between two functional languages with
expressive type systems and automatic memory management), our extraction



Extensible Extraction of Efficient Imperative Programs 133

procedure connects two very different languages, opening up many more oppor-
tunities for optimizations (including some related to memory management). We
expose these opportunities to our users by letting them freely extend the com-
piler based on their domain-specific optimization knowledge.

Recent work by Protzenko et al. [19] achieves one of our stated goals (efficient
extraction to low-level code, here from F* to C) but does not provide formal
correctness guarantees for the extracted code (the tool, KreMLin, consists of
over 15,000 lines of unverified OCaml code). Additionally, KreMLin requires
source programs to be written in a style matching that of the extracted code:
instead of extending the compiler with domain-specific representation choices
and optimizations, users must restrict their programs to the Low* subset of F*.

One last related project is the compiler of the Cogent language [18]. Its
sources are very close to Facade’s (it allows for foreign calls to axiomatically
specified functions, but it does not permit iteration or recursion except through
foreign function calls), and its compiler also produces low-level code without a
garbage collector. Our projects differ in architecture and in spirit: Cogent is
closer to a traditional verified compiler, producing consecutive embeddings of a
source program (from C to a shallow embedding in Isabelle/HOL) and generating
equivalence proofs connecting each of them. Cogent uses a linear type system to
establish memory safety, while we favor extensibility over completeness, relying
on lemmas to justify the compilation of arbitrary Gallina constructs.

We draw further inspiration from a number of other efforts:

Program Extraction. Program extraction (a facility offered by Coq and other
proof assistants) is a popular way of producing executable binaries from verified
code. Extractors are rather complex programs, subjected to varying degrees of
scrutiny: for example, the theory behind Coq’s extraction was mechanically for-
malized and verified [14], but the corresponding concrete implementation itself
is unverified. The recent development of CertiCoq [1], a verified compiler for
Gallina, has significantly improved matters over unverified extraction, but it
only supports pure Gallina programs, and it uses a fixed compilation strategy.
In contrast, our pipeline ensures that nondeterministic specifications are pre-
served down to the generated Bedrock code and grants user fine control over the
compilation process.

Compiler Verification. Our compilation strategy allows Fiat programs to depend
on separately compiled libraries. This contrasts with verified compilers like
CakeML [9] or CompCert [13]: in the latter, correctness guarantees only extend
to linking with modules written in CompCert C and compiled with the same
version of the compiler. Recent work [23] generalized these guarantees to cover
cross-language compilation, but these developments have not yet been used to
perform functional verification of low-level programs assembled from separately
verified components.



134 C. Pit-Claudel et al.

An alternative approach, recently used to verify an operating-system kernel
[21], is to validate individual compiler outputs. This is particularly attractive
as an extension of existing compilers, but it generally falls short when trying
to verify complex optimizations, such as our high-level selection of algorithms
and data structures. In the same vein, verified compilers often rely on unverified
programs to solve complex problems such as register allocation, paired with
verified checkers to validate solutions. In our context, the solver is the proof-
producing extraction logic, and the verifier is Coq’s kernel: our pipeline produces
proofs that witness the correctness of the resulting Facade code.

Extensible Compilation. Multiple research projects let users add optimizations
to existing compilers. Some, like Racket [26], do not focus on verification. Oth-
ers, like Rhodium [12], let users phrase and verify transformations using DSLs.
Unfortunately, most of these tools are unverified and do not provide end-to-
end guarantees. One recent exception is XCert [24], which lets CompCert users
soundly describe program transformations using an EDSL. Our approach is sim-
ilar insofar as we assemble DSL compilers from collections of verified rewritings.

Program Synthesis. Our approach of program generation via proofs follows in
the deductive-synthesis tradition started in the 1980s [15]. We use the syntactic
structure of our specialized pre- and postconditions to drive synthesis: the idea
of strongly constraining the search space is inherited from the syntax-guided
approach pioneered in the Sketch language [22]. That family of work uses SMT
solvers where we use a proof assistant, offering more baseline automation with
less fundamental flexibility.

Formal Decompilation. Instead of deriving low-level code from high-level specifi-
cations, some authors have used HOL-family proof assistants to translate unver-
ified low-level programs (in assembly [16] or C [6]) into high-level code suitable
for verification. Decompilation is an attractive approach for existing low-level
code, or when compiler verification is impractical.

8 Conclusion

The extraction technique presented in this paper is a convenient and lightweight
approach for generating certified extracted programs, reducing the trusted base
of verified programs to little beyond a proof assistant’s kernel. We have shown our
approach to be suitable for the extraction of DSLs embedded in proof assistants,
using it to compile a series of microbenchmarks and to do end-to-end proof-
generating derivation of assembly code from SQL-style specifications. Crucially,
the latter derivations work via linking with verified implementations of assem-
bly code that our derivation pipeline could never produce directly. To ease this
transition, we developed Facade, a new language designed to facilitate reasoning
about memory allocation in synthesized extracted programs. In the process,



Extensible Extraction of Efficient Imperative Programs 135

we have closed the last gap in the first automatic and mechanically certi-
fied translation pipeline from declarative specifications to assembly-language
libraries, supporting user-guided optimizations and parameterization over
abstract data types implemented, compiled, and verified using arbitrary lan-
guages and tools.

Acknowledgments. This work has been supported in part by NSF grants CCF-
1512611 and CCF-1521584, and by DARPA under agreement number FA8750-16-C-
0007. The U.S. Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright notation thereon. The views
and conclusions contained herein are those of the authors and should not be interpreted
as necessarily representing the official policies or endorsements, either expressed or
implied, of DARPA or the U.S. Government.

References

1. Anand, A., et al.: CertiCoq: a verified compiler for Coq. In: The Third International
Workshop on Coq for PL, CoqPL 2017, January 2017

2. Aspinall, D.: Proof general: a generic tool for proof development. In: Graf, S.,
Schwartzbach, M. (eds.) TACAS 2000. LNCS, vol. 1785, pp. 38–43. Springer, Hei-
delberg (2000). https://doi.org/10.1007/3-540-46419-0 3

3. Chlipala, A.: The Bedrock structured programming system: combining generative
metaprogramming and Hoare logic in an extensible program verifier. In: ACM SIG-
PLAN International Conference on Functional Programming, ICFP 2013, Boston,
MA, USA, 25–27 September 2013, pp. 391–402 (2013). https://doi.org/10.1145/
2500365.2500592

4. Delaware, B., Pit-Claudel, C., Gross, J., Chlipala, A.: Fiat: deductive synthesis
of abstract data types in a proof assistant. In: ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL 2015, Mumbai, India, 15–17
January 2015, pp. 689–700 (2015). https://doi.org/10.1145/2676726.2677006

5. Dijkstra, E.W.: A constructive approach to the problem of program correct-
ness, August 1967. https://www.cs.utexas.edu/users/EWD/ewd02xx/EWD209.
PDF, circulated privately

6. Greenaway, D., Andronick, J., Klein, G.: Bridging the gap: automatic verified
abstraction of C. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp.
99–115. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32347-8 8

7. Hawkins, P., Aiken, A., Fisher, K., Rinard, M.C., Sagiv, M.: Data representation
synthesis. In: ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2011, San Jose, CA, USA, 4–8 June 2011, pp. 38–49 (2011).
https://doi.org/10.1145/1993498.1993504

8. Ho, S., Abrahamsson, O., Kumar, R., Myreen, M.O., Tan, Y.K., Norrish, M.:
Proof-producing synthesis of CakeML with I/O and local state from monadic HOL
functions. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.) IJCAR 2018. LNCS
(LNAI), vol. 10900, pp. 646–662. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-94205-6 42

9. Kumar, R., Myreen, M.O., Norrish, M., Owens, S.: CakeML: a verified imple-
mentation of ML. In: ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 2014, San Diego, CA, USA, 20–21 January 2014, pp.
179–192 (2014). https://doi.org/10.1145/2535838.2535841

https://doi.org/10.1007/3-540-46419-0_3
https://doi.org/10.1145/2500365.2500592
https://doi.org/10.1145/2500365.2500592
https://doi.org/10.1145/2676726.2677006
https://www.cs.utexas.edu/users/EWD/ewd02xx/EWD209.PDF
https://www.cs.utexas.edu/users/EWD/ewd02xx/EWD209.PDF
https://doi.org/10.1007/978-3-642-32347-8_8
https://doi.org/10.1145/1993498.1993504
https://doi.org/10.1007/978-3-319-94205-6_42
https://doi.org/10.1007/978-3-319-94205-6_42
https://doi.org/10.1145/2535838.2535841


136 C. Pit-Claudel et al.

10. Lammich, P.: Refinement to imperative/HOL. In: Urban, C., Zhang, X. (eds.) ITP
2015. LNCS, vol. 9236, pp. 253–269. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-22102-1 17

11. Lammich, P.: Generating verified LLVM from Isabelle/HOL. In: International Con-
ference on Interactive Theorem Proving, ITP 2019, Portland, OR, USA, 9–12
September 2019, pp. 22:1–22:19 (2019). https://doi.org/10.4230/LIPIcs.ITP.2019.
22

12. Lerner, S., Millstein, T.D., Rice, E., Chambers, C.: Automated soundness proofs
for dataflow analyses and transformations via local rules. In: ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2005, Long
Beach, California, USA, 12–14 January 2005, pp. 364–377 (2005). https://doi.org/
10.1145/1040305.1040335

13. Leroy, X.: Formal certification of a compiler back-end or: programming a compiler
with a proof assistant. In: ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2006, Charleston, South Carolina, USA, 11–13
January 2006, pp. 42–54 (2006). https://doi.org/10.1145/1111037.1111042

14. Letouzey, P.: A new extraction for coq. In: Geuvers, H., Wiedijk, F. (eds.) TYPES
2002. LNCS, vol. 2646, pp. 200–219. Springer, Heidelberg (2003). https://doi.org/
10.1007/3-540-39185-1 12

15. Manna, Z., Waldinger, R.J.: A deductive approach to program synthesis. ACM
Trans. Program. Lang. Syst. 2(1), 90–121 (1980). https://doi.org/10.1145/357084.
357090

16. Myreen, M.O., Gordon, M.J.C., Slind, K.: Decompilation into logic - improved. In:
Formal Methods in Computer-Aided Design, FMCAD 2012, Cambridge, UK, 22–25
October 2012, pp. 78–81 (2012). https://ieeexplore.ieee.org/document/6462558/

17. Myreen, M.O., Owens, S.: Proof-producing synthesis of ML from higher-order logic.
In: ACM SIGPLAN International Conference on Functional Programming, ICFP
2012, Copenhagen, Denmark, 9–15 September 2012, pp. 115–126 (2012). https://
doi.org/10.1145/2364527.2364545

18. O’Connor, L., et al.: COGENT: certified compilation for a functional systems lan-
guage. CoRR abs/1601.05520 (2016). https://arxiv.org/abs/1601.05520

19. Protzenko, J., et al.: Verified low-level programming embedded in F*. In: Pro-
ceedings of the ACM on Programming Languages 1(ICFP), pp. 17:1–17:29 (2017).
https://doi.org/10.1145/3110261

20. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
IEEE Symposium on Logic in Computer Science, LICS 2002, Copenhagen, Den-
mark, 22–25 July 2002, pp. 55–74 (2002). https://doi.org/10.1109/LICS.2002.
1029817

21. Sewell, T.A.L., Myreen, M.O., Klein, G.: Translation validation for a verified OS
kernel. In: ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2013, Seattle, WA, USA, 16–19 June 2013, pp. 471–482
(2013). https://doi.org/10.1145/2491956.2462183

22. Solar-Lezama, A.: The sketching approach to program synthesis. In: Hu, Z. (ed.)
APLAS 2009. LNCS, vol. 5904, pp. 4–13. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-10672-9 3

23. Stewart, G., Beringer, L., Cuellar, S., Appel, A.W.: Compositional CompCert. In:
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2015, Mumbai, India, 15–17 January 2015, pp. 275–287 (2015). https://doi.
org/10.1145/2676726.2676985

https://doi.org/10.1007/978-3-319-22102-1_17
https://doi.org/10.1007/978-3-319-22102-1_17
https://doi.org/10.4230/LIPIcs.ITP.2019.22
https://doi.org/10.4230/LIPIcs.ITP.2019.22
https://doi.org/10.1145/1040305.1040335
https://doi.org/10.1145/1040305.1040335
https://doi.org/10.1145/1111037.1111042
https://doi.org/10.1007/3-540-39185-1_12
https://doi.org/10.1007/3-540-39185-1_12
https://doi.org/10.1145/357084.357090
https://doi.org/10.1145/357084.357090
https://ieeexplore.ieee.org/document/6462558/
https://doi.org/10.1145/2364527.2364545
https://doi.org/10.1145/2364527.2364545
https://arxiv.org/abs/1601.05520
https://doi.org/10.1145/3110261
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1145/2491956.2462183
https://doi.org/10.1007/978-3-642-10672-9_3
https://doi.org/10.1007/978-3-642-10672-9_3
https://doi.org/10.1145/2676726.2676985
https://doi.org/10.1145/2676726.2676985


Extensible Extraction of Efficient Imperative Programs 137

24. Tatlock, Z., Lerner, S.: Bringing extensibility to verified compilers. In: ACM SIG-
PLAN Conference on Programming Language Design and Implementation, PLDI
2010, Toronto, Ontario, Canada, 5–10 June 2010, pp. 111–121 (2010). https://doi.
org/10.1145/1806596.1806611

25. The Coq Development Team: The Coq Proof Assistant Reference Manual (2012).
https://coq.inria.fr, version 8.4

26. Tobin-Hochstadt, S., St-Amour, V., Culpepper, R., Flatt, M., Felleisen, M.: Lan-
guages as libraries. In: ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2011, San Jose, CA, USA, 4–8 June 2011, pp.
132–141 (2011). https://doi.org/10.1145/1993498.1993514

27. Wadler, P.: Comprehending monads. Math. Struct. Comput. Sci. 2(4), 461–493
(1992). https://doi.org/10.1017/S0960129500001560

28. Wang, P.: The Facade language. Technical report, MIT CSAIL (2016). https://
people.csail.mit.edu/wangpeng/facade-tr.pdf

29. Wang, P., Cuellar, S., Chlipala, A.: Compiler verification meets cross-language
linking via data abstraction. In: ACM International Conference on Object Oriented
Programming Systems Languages & Applications, OOPSLA 2014, part of SPLASH
2014, Portland, OR, USA, 20–24 October 2014, pp. 675–690 (2014). https://doi.
org/10.1145/2660193.2660201

https://doi.org/10.1145/1806596.1806611
https://doi.org/10.1145/1806596.1806611
https://coq.inria.fr
https://doi.org/10.1145/1993498.1993514
https://doi.org/10.1017/S0960129500001560
https://people.csail.mit.edu/wangpeng/facade-tr.pdf
https://people.csail.mit.edu/wangpeng/facade-tr.pdf
https://doi.org/10.1145/2660193.2660201
https://doi.org/10.1145/2660193.2660201

	Extensible Extraction of Efficient Imperative Programs with Foreign Functions, Manually Managed Memory, and Proofs
	1 Introduction
	2 A Brief Outline of Our Approach
	3 An Example of Proof-Producing Extraction
	4 Proof-Generating Extraction of Nondeterministic Functional Programs: From Fiat to Facade
	4.1 The Facade Language
	4.2 Fiat and Facade States
	4.3 Proof-Generating Extraction by Synthesis

	5 The Complete Proof-Generating Pipeline
	6 Evaluation
	6.1 Microbenchmarks
	6.2 Relational Queries

	7 Related Work
	8 Conclusion
	References




