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Abstract. Fixed-point arithmetic is a popular alternative to floating-
point arithmetic on embedded systems. Existing work on the verification
of fixed-point programs relies on custom formalizations of fixed-point
arithmetic, which makes it hard to compare the described techniques
or reuse the implementations. In this paper, we address this issue by
proposing and formalizing an SMT theory of fixed-point arithmetic. We
present an intuitive yet comprehensive syntax of the fixed-point theory,
and provide formal semantics for it based on rational arithmetic. We also
describe two decision procedures for this theory: one based on the theory
of bit-vectors and the other on the theory of reals. We implement the
two decision procedures, and evaluate our implementations using exist-
ing mature SMT solvers on a benchmark suite we created. Finally, we
perform a case study of using the theory we propose to verify properties
of quantized neural networks.
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1 Introduction

Algorithms based on real arithmetic have become prevalent. For example, the
mathematical models in machine learning algorithms operate on real numbers.
Similarly, signal processing algorithms often implemented on embedded sys-
tems (e.g., fast Fourier transform) are almost always defined over real numbers.
However, real arithmetic is not implementable on computer systems due to its
unlimited precision. Consequently, we use implementable approximations of real
arithmetic, such as floating-point and fixed-point arithmetic, to realize these
algorithms in practice.

Floating-point arithmetic is the dominant approximation of real arithmetic
that has mature hardware support. Although it enjoys the benefits of being able
to represent a large spectrum of real numbers and high precision of arithmetic
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operations over small numbers, floating-point arithmetic, due to its complex-
ity, can be too expensive in terms of speed and power consumption on cer-
tain platforms. These platforms are often deployed in embedded systems such
as mobile phones, video game consoles, and digital controllers. Recently, the
machine learning community revived the interest in fixed-point arithmetic since
popular machine learning algorithms and models can be implemented using (even
very low bit-width) fixed-points with little accuracy loss [11,27,37]. Therefore,
fixed-point arithmetic has been a popular alternative to floating-point arithmetic
on such platforms since it can be efficiently realized using integer arithmetic.
There are several software implementations of fixed-point arithmetic in differ-
ent programming languages [22,28,34]; moreover, some programming languages,
such as Ada and GNU C, have built-in fixed-point types.

While fixed-point arithmetic is less popular in mainstream applications than
floating-point arithmetic, the systems employing the former are often safety-
critical. For example, fixed-point arithmetic is often used in medical devices,
cars, and robots. Therefore, there is a need for formal methods that can rigor-
ously ensure the correctness of these systems. Although techniques that perform
automated verification of fixed-point programs already exist [1,3,15], all of them
implement a custom dedicated decision procedure without formalizing the details
of fixed-point arithmetic. As a result, it is hard to compare these techniques, or
reuse the implemented decision procedures.

On the other hand, ever since the SMT theory of floating-point numbers
was formalized [8,44] in SMT-LIB [46], there has been a flurry of research in
developing novel and faster decision procedures for the theory [6,7,14,29,35,
50]. Meanwhile, the floating-point theory has also been used by a number of
approaches that require rigorous reasoning about floating-point arithmetic [2,
36,39,41]. The published formalization of the theory enables fair comparison
between the decision procedures, sharing of benchmarks, and easy integration of
decision procedures within tools that need this functionality. In this paper, we
propose and formalize an SMT theory of fixed-point arithmetic, in the spirit of
the SMT theory of floating-point arithmetic, with the hope that it will lead to
similar outcomes and advances.

Contributions. We summarize our main contributions as follows:

– We present an intuitive and comprehensive syntax of fixed-point arithmetic
(Sect. 3) that captures common use cases of fixed-point operations.

– We provide formal semantics of the fixed-point theory based on rational arith-
metic (Sect. 4).

– We propose and implement two decision procedures for the fixed-point theory:
one that leverages the theory of fixed-size bit-vectors and the other the theory
of real numbers (Sect. 5).

– We evaluate the two decision procedures on a set of benchmarks using mature
SMT solvers (Sect. 6), and perform a case study of verifying quantized neural
networks that uses our theory of fixed-point arithmetic (Sect. 7).
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2 Background

Fixed-point arithmetic, like floating-point arithmetic, is used as an approxima-
tion for computations over the reals. Both fixed-point and floating-point num-
bers (excluding the special values) can be represented using rational numbers.
However, unlike floating-point numbers, fixed-point numbers in a certain format
maintain a fixed divisor, hence the name fixed-point. Consequently, fixed-point
numbers have a reduced range of values. However, this format allows for custom
precision systems to be implemented efficiently in software—fixed-point arith-
metic operations can be implemented in a much smaller amount of integer arith-
metic operations compared to their floating-point counterparts. For example, a
fixed-point addition operation simply amounts to an integer addition instruc-
tion provided that wrap-around is the intended behavior when overflows occur.
This feature gives rise to the popularity of fixed-point arithmetic on embedded
systems where computing resources are fairly constrained.

A fixed-point number is typically interpreted as a fraction whose numerator
is an integer with fixed bit-width in its two’s complement representation and
denominator is a power of 2. Therefore, a fixed-point format is parameterized by
two natural numbers—tb that defines the bit-width of the numerator and fb that
defines the power of the denominator. A fixed-point number in this format can be
treated as a bit-vector of length tb that is the two’s complement representation
of the numerator integer and has an implicit binary point between the fb + 1th

and fbth least significant bits. We focus on the binary format (as opposed to
decimal, etc.) of fixed-point arithmetic since it is widely adopted in hardware
and software implementations in practice. Moreover, depending on the intended
usage, developers leverage both signed and unsigned fixed-point formats. The
signed or unsigned format determines whether the bit pattern representing the
fixed-point number should be interpreted as a signed or unsigned integer, respec-
tively. Therefore, signed and unsigned fixed-point formats having the same tb
and fb have different ranges ([−2tb−1

2fb
, 2tb−1−1

2fb
] and [0, 2tb−1

2fb
]), respectively.

Fixed-point addition (resp. subtraction) is typically implemented by adding
(resp. subtracting) the two bit-vector operands (i.e., two’s complements),
amounting to a single operation. Because the denominators are the same between
the two operands, we do not need to perform rounding. However, we still have to
take care of potential overflows that occur when the result exceeds the allowed
range of the chosen fixed-point format. Fixed-point libraries typically implement
two methods to handle overflows: saturation and wrap-around. Saturation entails
fixing overflowed results to either the minimal or maximal representable value.
The advantage of this method is that it ensures that the final fixed-point result is
the closest to the actual result not limited by finite precision. Wrap-around allows
for the overflowing result to wrap according to two’s complement arithmetic. The
advantage of this method is that it is efficient and can be used to ensure the sum
of a set of (signed) numbers has a correct final value despite potential overflows
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(if it falls within the supported range). Note that addition is commutative under
both methods, but only addition using the wrap-around method is associative.
The multiplication and division operations are more involved since they have to
include the rounding step as well.

3 Syntax

In this section, we describe the syntax of our proposed theory of fixed-point
arithmetic. It is inspired by the syntax of the SMT theory of floating-points [8,44]
and the ISO/IEC TR 18037 standard [23].

Fixed-Points. We introduce the indexed SMT nullary sorts (_ SFXP tb fb) to rep-
resent signed fixed-point sorts, where tb is a natural number specifying the total
bit-width of the scaled integer in its two’s complement form and fb is a natural
number specifying the number of fractional bits; tb is greater than or equal to fb.
Similarly, we represent unsigned fixed-point sorts with (_ UFXP tb fb). Following
the SMT-LIB notation, we define the following two functions for constructing
fixed-points literals:

((_ sfxp fb) (_ BitVec tb) (_ SFXP tb fb))
((_ ufxp fb) (_ BitVec tb) (_ UFXP tb fb))

where (_ sfxp fb) (resp. (_ ufxp fb)) produces a function that takes a bit-vector
(_ BitVec tb) and constructs a fixed-point (_ SFXP tb fb) (resp. (_ UFXP tb fb)).

Rounding Modes. Similarly to the theory of floating-point arithmetic, we also
introduce the RoundingMode sort (abbreviated as RM) to represent the rounding
mode, which controls the direction of rounding when an arithmetic result cannot
be precisely represented by the specified fixed-point format. However, unlike the
floating-point theory that specifies five different rounding modes, we only adopt
two rounding mode constants, namely roundUp and roundDown, as they are
common in practice.

Overflow Modes. We introduce the nullary sort OverflowMode (abbreviated as
OM) to capture the behaviors of fixed-point arithmetic when the result of an
operation is beyond the representable range of the used fixed-point format. We
adopt two constants, saturation and wrapAround, to represent the two com-
mon behaviors. The saturation mode rounds any out-of-bound results to the
maximum or minimum values of the representable range, while the wrapAround
mode wraps the results around similar to bit-vector addition.
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Comparisons. The following operators return a Boolean by comparing two fixed-
point numbers:

(sfxp.geq (_ SFXP tb fb) (_ SFXP tb fb) Bool)
(ufxp.geq (_ UFXP tb fb) (_ UFXP tb fb) Bool)
(sfxp.gt (_ SFXP tb fb) (_ SFXP tb fb) Bool)
(ufxp.gt (_ UFXP tb fb) (_ UFXP tb fb) Bool)
(sfxp.leq (_ SFXP tb fb) (_ SFXP tb fb) Bool)
(ufxp.leq (_ UFXP tb fb) (_ UFXP tb fb) Bool)
(sfxp.lt (_ SFXP tb fb) (_ SFXP tb fb) Bool)
(ufxp.lt (_ UFXP tb fb) (_ UFXP tb fb) Bool)

Arithmetic. We support the following binary arithmetic operators over fixed-
point sorts parameterized by tb and fb:

(sfxp.add OM (_ SFXP tb fb) (_ SFXP tb fb) (_ SFXP tb fb))
(ufxp.add OM (_ UFXP tb fb) (_ UFXP tb fb) (_ UFXP tb fb))
(sfxp.sub OM (_ SFXP tb fb) (_ SFXP tb fb) (_ SFXP tb fb))
(ufxp.sub OM (_ UFXP tb fb) (_ UFXP tb fb) (_ UFXP tb fb))
(sfxp.mul OM RM (_ SFXP tb fb) (_ SFXP tb fb) (_ SFXP tb fb))
(ufxp.mul OM RM (_ UFXP tb fb) (_ UFXP tb fb) (_ UFXP tb fb))
(sfxp.div OM RM (_ SFXP tb fb) (_ SFXP tb fb) (_ SFXP tb fb))
(ufxp.div OM RM (_ UFXP tb fb) (_ UFXP tb fb) (_ UFXP tb fb))

Note that we force the sorts of operands and return values to be the same.
The addition and subtraction operations never introduce error into computa-
tion according to our semantics in Sect. 4. Hence, these operators do not take a
rounding mode as input like multiplication and division.

Conversions. We introduce two types of conversions between sorts. First, the
conversions between different fixed-point sorts:

((_ to_sfxp tb fb) OM RM (_ SFXP tb′ fb′) (_ SFXP tb fb))
((_ to_ufxp tb fb) OM RM (_ UFXP tb′ fb′) (_ UFXP tb fb))

Second, the conversions between the real and fixed-point sorts:

((_ to_sfxp tb fb) OM RM Real (_ SFXP tb fb))
((_ to_ufxp tb fb) OM RM Real (_ UFXP tb fb))
(sfxp.to_real (_ SFXP tb fb) Real)
(ufxp.to_real (_ UFXP tb fb) Real)
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4 Semantics

In this section, we formalize the semantics of the fixed-point theory by treating
fixed-points as rational numbers. We first define fixed-points as indexed subsets
of rationals. Then, we introduce two functions, rounding and overflow, that are
crucial for the formalization of the fixed-point arithmetic operations. Finally,
we present the formal semantics of the arithmetic operations based on rational
arithmetic and the two aforementioned functions.

Let Ffb = { n
2fb

| n ∈ Z} be the infinite set of rationals that can be repre-
sented as fixed-points using fb fractional bits. We interpret a signed fixed-point
sort (_ SFXP tb fb) as the finite subset Stb,fb = { n

2fb
| −2tb−1 ≤ n < 2tb−1, n ∈ Z}

of Ffb . We interpret an unsigned fixed-point sort (_ UFXP tb fb) as the finite sub-
set Utb,fb = { n

2fb
| 0 ≤ n < 2tb , n ∈ Z} of Ffb . The rational value of an unsigned

fixed-point constant constructed using (ufxp bv fb) is bv2nat(bv)
2fb

, where function
bv2nat converts a bit-vector to its unsigned integer value. The rational value of
its signed counterpart constructed using (sfxp bv fb) is bv2int(bv)

2fb
, where func-

tion bv2int converts a bit-vector to its signed value. Since we treat fixed-point
numbers as subsets of rational numbers, we interpret fixed-point comparison
operators, such as =, fxp.le, fxp.leq, as simply their corresponding rational
comparison relations, such as =, <, ≤, respectively. To be able to formalize the
semantics of arithmetic operations, we first introduce the round and overflow
helper functions.

We interpret the rounding mode sort RoundingMode as the set rmode =
{ru, rd}, where �roundUp� = ru and �roundDown� = rd . Let rndFfb

: rmode×R �→
Ffb be a family of round functions parameterized by fb that map a rounding mode
and real number to an element of Ffb . Then, we define rndFfb

as

rndFfb
(ru, r) = min({x | x ≥ r, x ∈ Ffb})

rndFfb
(rd , r) = max({x | x ≤ r, x ∈ Ffb})

We interpret the overflow mode sort OverflowMode as the set omode =
{sat ,wrap}, where �saturation� = sat and �wrapAround� = wrap. Let ovf

F
:

omode × Ffb �→ F be a family of overflow functions parameterized by F that
map a rounding mode and element of Ffb to an element of F; here, F is either
Stb,fb or Utb,fb depending on whether we are using signed or unsigned fixed-point
numbers, respectively. Then, we define ovf

F
as

ovf
F
(sat , x) =

⎧
⎪⎨

⎪⎩

x if x ∈ F

max(F) if x > max(F)
min(F) if x < min(F)

ovf
F
(wrap, x) = y such that y · 2fb ≡ x · 2fb (mod 2tb) ∧ y ∈ F

Note that x · 2fb , y · 2fb ∈ Z according to the definition of F, and also there is
always exactly one y satisfying the constraint.
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Now that we introduced our helper round and overflow functions, it is easy
to define the interpretation of fixed-point arithmetic operations:

�sfxp.add�(om, x1, x2) = ovf
Stb,fb

(om, x1 + x2)

�ufxp.add�(om, x1, x2) = ovf
Utb,fb

(om, x1 + x2)

�sfxp.sub�(om, x1, x2) = ovf
Stb,fb

(om, x1 − x2)

�ufxp.sub�(om, x1, x2) = ovf
Utb,fb

(om, x1 − x2)

�sfxp.mul�(om, rm, x1, x2) = ovf
Stb,fb

(om, rndFfb
(rm, x1 · x2))

�ufxp.mul�(om, rm, x1, x2) = ovf
Utb,fb

(om, rndFfb
(rm, x1 · x2))

�sfxp.div�(om, rm, x1, x2) = ovf
Stb,fb

(om, rndFfb
(rm, x1/x2))

�ufxp.div�(om, rm, x1, x2) = ovf
Utb,fb

(om, rndFfb
(rm, x1/x2))

Note that it trivially holds that ∀x1, x2 ∈ Ffb . x1 + x2 ∈ Ffb ∧ x1 − x2 ∈ Ffb .
Therefore, we do not need to round the results of the addition and sub-
traction operations. In the case of division by zero, we adopt the semantics
of other SMT theories such as reals: (= x (sfxp.div om rm y 0)) and
(= x (ufxp.div om rm y 0)) are satisfiable for every x, y ∈ F, om ∈ omode,
rm ∈ rmode. Furthermore, for every x, y ∈ F, om ∈ omode, rm ∈ rmode,
if (= x y) then (= (sfxp.div om rm x 0) (sfxp.div om rm y 0)) and
(= (ufxp.div om rm x 0) (ufxp.div om rm y 0)).

Note that the order of applying the rnd and ovf functions to the results
in real arithmetic matters. We choose rnd followed by ovf since it matches
the typical real-world fixed-point semantics. Conversely, reversing the order can
lead to out-of-bound results. For example, assume that we extend the signa-
ture of the ovf function to omode × R �→ R while preserving its semantics as
a modulo operation over 2tb−fb . Then, ovf

U3,2
(wrap, 7.5) evaluates to 7.5

4 , and
applying rndF2 to it when the rounding mode is ru evaluates to 8

4 ; this is greater
than the maximum number in U3,2, namely 7

4 . On the other hand, evaluating
ovf

U3,2
(wrap, rndF2(ru, 7.5)) produces 0, which is the expected result. We could

apply the ovf function again to the out-of-bound results, but the current seman-
tics achieves the same without this additional operation.

Let castF,Ffb
: omode × rmode × R �→ F be a family of cast functions param-

eterized by F and Ffb that map an overflow mode, rounding mode, and real
number to an element of F; as before, F is either Stb,fb or Utb,fb depending on
whether we are using signed or unsigned fixed-point numbers, respectively. Then,
we define castF,Ffb

(om, rm, r) = ovf
F
(om, rndFfb

(rm, r)), and the interpretation
of the conversions between reals and fixed-points as

�(_ to_sfxp tb fb)�(om, rm, r) = castStb,fb ,Ffb
(om, rm, r)

�(_ to_ufxp tb fb)�(om, rm, r) = castUtb,fb ,Ffb
(om, rm, r)

�sfxp.to_real�(r) = r

�ufxp.to_real�(r) = r
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5 Decision Procedures

In this section, we propose two decision procedures for the fixed-point theory by
leveraging the theory of fixed-size bit-vectors in one and the theory of reals in
the other.

Bit-Vector Encoding. The decision procedure based on the theory of fixed-size
bit-vectors is akin to the existing software implementations of fixed-point arith-
metic that use machine integers. More specifically, a fixed-point sort parameter-
ized by tb is encoded as a bit-vector sort of length tb. Therefore, the encoding of
the constructors of fixed-point values simply amounts to identity functions. Simi-
larly, the encoding of the comparison operators uses the corresponding bit-vector
relations. For example, the comparison operator sfxp.lt is encoded as bvslt.
The essence of the encoding of the arithmetic operations is expressing the numer-
ator of the result, after rounding and overflow handling, using bit-vector arith-
metic. We leverage the following two observations in our encoding. First, round-
ing a real value v to the value in the set Ffb amounts to rounding v ·2fb to an inte-
ger following the same rounding mode. This observation explains why rounding
is not necessary for the linear arithmetic operations. Second, we can encode the
wrap-around of the rounded result as simply extracting tb bits from the encoded
result thanks to the wrap-around nature of the two’s complement SMT represen-
tation. We model the behavior of division-by-zero using uninterpreted functions
of the form (RoundingMode OverflowMode (_ BitVec tb) (_ BitVec tb)), with
one such function for each fixed-point sort appearing in the query. The result
of division-by-zero is then the result of applying this function to the numera-
tor, conditioned on the denominator being equal to zero. This ensures that all
divisions-by-zero with equal numerators produce equal results when the overflow
and rounding modes are also equal.

Real Encoding. The decision procedure based on the theory of reals closely mim-
ics the semantics defined in Sect. 4. We encode all fixed-point sorts as the real
sort, while we represent fixed-point values as rational numbers. Therefore, we
can simply encode fixed-point comparisons as real relations. For example, both
sfxp.lt and ufxp.lt are translated into < relation. We rely on the first obser-
vation above to implement the rounding function rndfb using an SMT real-to-
integer conversion. We implement the overflow function ovftb,fb using the SMT
remainder function. Note that the encodings of both functions involve non-linear
real functions, such as the real-to-int conversion. Finally, we model division as
the rounded, overflow-corrected result of the real theory’s division operation.
Since the real theory’s semantics ensures that equivalent division operations pro-
duce equivalent results, this suffices to capture the fixed-point division-by-zero
semantics.

Implementation. We implemented the two decision procedures within the
pySMT framework [25]: the two encodings are rewriting classes of pySMT. We
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made our implementations publicly available.1 We also implemented a random
generator of queries in our fixed-point theory, and used it to perform thorough
differential testing of our decision procedures.

6 Experiments

We generated the benchmarks we use to evaluate the two encodings described
in Sect. 5 by translating the SMT-COMP non-incremental QF_FP bench-
marks [45]. The translation accepts benchmarks that contain only basic arith-
metic operations defined in both theories. Moreover, we exclude all the bench-
marks in the wintersteiger folder because they are mostly simple regressions to
test the correctness of an implementation of the floating-point theory. In the
end, we manage to translate 218 QF_FP benchmarks in total.

We translate each QF_FP benchmark into 4 benchmarks in the fixed-point
theory, which differ in the configurations of rounding and overflow modes. We
denote a configuration as a (rounding mode, overflow mode) tuple. Note that
changing a benchmark configuration alters the semantics of its arithmetic opera-
tions, which might affect its satisfiability. Our translation replaces floating-point
sorts with fixed-point sorts that have the same total bit-widths; the number of
fractional bits is half of the bit-width. This establishes a mapping from single-
precision floats to Q16.16 fixed-points implemented by popular software libraries
such as libfixmath [34]. It translates arithmetic operations into their correspond-
ing fixed-point counterparts using the chosen configuration uniformly across a
benchmark. The translation also replaces floating-point comparison operations
with their fixed-point counterparts. Finally, we convert floating-point constants
by treating them as reals and performing real-to-fixed-point casts. We made our
fixed-point benchmarks publicly available.2

The SMT solvers that we use in the evaluation are Boolector [9] (version
3.1.0), CVC4 [4] (version 1.7), MathSAT [13] (version 5.5.1), Yices2 [19] (version
2.6.1), and Z3 [17] (version 4.8.4) for the decision procedure based on the theory
of bit-vectors. For the evaluation of the decision procedure based on the theory
of reals, we use CVC4, MathSAT, Yices2, and Z3. We ran the experiments on
a machine with four Intel E7-4830 sockets, for a total of 32 physical cores, and
512GB of RAM, running Ubuntu 18.04. Each benchmark was limited to 1200 s
of wall time and 8GB of memory, and no run of any benchmark exceeded the
memory limit. We set processor affinity for each solver instance in order to reduce
variability due to cache effects.

Table 1 shows the results of running the SMT solvers on each configuration
with both encodings (bit-vector and real). We do not observe any inconsistencies
in terms of satisfiability reported among all the solvers and between both encod-
ings. The performance of the solvers on the bit-vector encoding is typically better
than on the real encoding since it leads to fewer timeouts and crashes. More-
over, all the solvers demonstrate similar performance for the bit-vector encoding
1 https://github.com/soarlab/pysmt/tree/fixed-points.
2 https://github.com/soarlab/QF_FXP.

https://github.com/soarlab/pysmt/tree/fixed-points
https://github.com/soarlab/QF_FXP
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Table 1. The results of running SMT solvers on the four different configurations of
the benchmarks using both encodings. Boolector and MathSAT are denoted by Btor
and MSAT, respectively. Column “All” indicates the number of benchmarks for which
any solver answered sat or unsat; benchmarks for which no solver gave an answer are
counted as unknown.
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Table 2. Comparison of the number of benchmarks (considering all configurations)
solved by a solver but not solved by another solver. Each row shows the number of
benchmarks solved by the row’s solver but not solved by the column’s solver. We mark
the bit-vector (resp. real) encoding with B (resp. R).

Btor-B CVC4-B MSAT-B Yices2-B Z3-B CVC4-R MSAT-R Yices2-R Z3-R

Btor-B — 33 37 11 52 165 183 86 185
CVC4-B 19 — 46 6 57 154 160 70 170
MSAT-B 8 31 — 4 39 141 174 78 160
Yices2-B 35 44 57 — 79 194 198 95 208
Z3-B 31 50 47 34 — 151 189 103 168

CVC4-R 2 5 7 7 9 — 113 49 41
MSAT-R 17 8 37 8 44 110 — 23 118
Yices2-R 28 26 49 13 66 154 131 — 162
Z3-R 3 2 7 2 7 22 102 38 —

across all the configurations, whereas they generally produce more timeouts for
the real encoding when the overflow mode is wrap-around. We believe that this
can be attributed to the usage of nonlinear operations (e.g., real to int casts) in
the handling of wrap-around behaviors. This hypothesis could also explain the
observation that the bit-vector encoding generally outperform the real encoding
when the overflow mode is wrap-around since wrap-around comes at almost no
cost for the bit-vector encoding (see Sect. 5).

Column “All” captures the performance of the solvers when treated as one
portfolio solver. This improves the overall performance since the number of solved
benchmarks increases, indicating that each solver has different strengths and
weaknesses. Table 2 further analyzes this behavior, and we identify two reasons
for it when we consider unique instances solved by each individual solver. First,
when the overflow mode is saturation, Yices2 is the only solver to solve unique
instances for both encodings. Second, when the overflow mode is wrap-around,
the uniquely solved instances come from solvers used on the bit-vector encoding,
except one that comes from Yices2 on the real encoding. These results provide
further evidence that the saturation configurations are somewhat easier to solve
with reals, and that wrap-around is easier with bit-vectors.

Figure 1 uses quantile plots [5] to visualize our experimental results in terms
of runtimes. A quantile plot shows the minimum runtime on y-axis within which
each of the x-axis benchmarks is solved. Some characteristics of a quantile plot
are helpful in analyzing the runtimes. First, the rightmost x coordinate is the
number of benchmarks that a solver returns meaningful results for (i.e., sat or
unsat). Second, the uppermost y coordinate is the maximum runtime of all the
benchmarks. Third, the area under a line approximates the total runtime.

Although the semantics of the benchmarks vary for each configuration, we can
observe that the shapes of the bit-vector encoding curves are similar, while those
of the real encoding differ based on the chosen overflow mode. More precisely,
solvers tend to solve benchmarks faster when their overflow mode is saturation
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(a) (RoundUp, Saturation) (b) (RoundUp, WrapAround)

(c) (RoundDown, Saturation) (d) (RoundDown, WrapAround)

Fig. 1. Quantile plots of our experimental results.

as opposed to wrap-around. We observe the same behavior in Table 1, and it is
likely due to the fact that we introduce nonlinear operations to handle wrap-
around behaviors when using the real encoding.

7 Case Study: Verification of Quantized Neural Networks

Neural networks have experienced a significant increase in popularity in the past
decade. Such networks that are realized by a composition of non-linear layers
are able to efficiently solve a large variety of previously unsolved learning tasks.
However, neural networks are often viewed as black-boxes, whose causal structure
cannot be interpreted easily by humans [40]. This property makes them unfit for
applications where guaranteed correctness has a high priority. Advances in formal
methods, in particular SMT solvers, leveraging the piece-wise linear structure
of neural networks [20,31,47], have made it possible to verify certain formal
properties of neural networks of reasonable size. While these successes provide
an essential step towards applying neural networks to safety-critical tasks, these
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Fig. 2. Satisfiability of specifications of our cart-pole controller.

methods leave out one crucial aspect—neural networks are usually quantized
before being deployed to production systems [30].

Quantization converts a network that operates over 32-bit floating-point
semantics into a fewer-bit fixed-point representation. This process serves two
goals: compressing the memory requirement and increasing the computational
efficiency of running the network. Quantization introduces additional non-linear
rounding operations to the semantics of a neural network. Recently, Giacobbe
et al. [26] have shown that, in practice, this can lead to situations where a net-
work that satisfies formal specifications might violate them after the quantization
step. Therefore, when checking formal properties of quantized neural networks,
we need to take their fixed-point semantics into account.

We derive a set of example fixed-point problem instances based on two
machine learning tasks to demonstrate the capabilities of our fixed-point SMT
theory on realistic problems. For all tasks, we train multi-layer perceptron mod-
ules [43] with ReLU-7 activation function [32] using quantization-aware train-
ing [30]. This way we avoid that quantization results in a considerable loss of
accuracy. To encode a neural network into an SMT formula, we rely on the Gia-
cobbe et al.’s [26] approach for encoding the summations and activation func-
tions. We quantize all neural networks using the signed fixed-point format with
8 bits total and 4 fractional bits. We are using the bit-vector encoding decision
procedure in combination with the Boolector SMT solver.

7.1 Cart-Pole Controller

In our first task, we train a neural network controller using the cart-pole envi-
ronment of OpenAI’s “gym” reinforcement learning suite. In this task, an agent
has to balance a pole mounted on a movable cart in an upright position. The cart
provides four observation variables x,ẋ,ϕ,ϕ̇ to the controller, where x is the posi-
tion of the cart and ϕ the angle of the pole. The controller then steers the cart by
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discrete actions (move left or right). Our neural network agent, composed of three
layers (4,8,1), solves the task by achieving an average score of the maximal 500
points. We analyze what our black-box agent has learned by using our decision
procedure. In particular, we are interested in how much our agent relies on the
input variable x compared to ϕ for making a decision. Moreover, we are interested
in which parts of the input space the agent’s decision is constant. We assume
the dynamics of the cart is bounded, i.e., −0.3 ≤ ẋ ≤ 0.3,−0.02 ≤ ϕ̇ ≤ 0.2,
and partition the input space of the remaining two input variables into a grid
of 64 tiles. We then check for each tile whether there exists a situation when
the network would output a certain action (left, right) by invoking our decision
procedure.

Figure 2 shows that the agent primarily relies on the input variable ϕ for
making a decision. If the angle of the pole exceeds a certain threshold, the
network is guaranteed to make the vehicle move left; on the other hand, if the
angle of the pole is below a different threshold, the network moves the vehicle
right. Interestingly, this pattern is non-symmetric, despite the task being entirely
symmetric.

7.2 Checking Fairness

Table 3. Satisfiability of specifications
of our fairness example.

Score Diff Status Runtime

11.25 sat 10s
11.5 sat 9s
11.75 unsat 200s

12 unsat 706s

For our second task, we checked the fair-
ness specification proposed by Giacobbe
et al. [26] to evaluate the maximum influ-
ence of a single input variable on the deci-
sion of a network. We train a neural net-
work on student data to predict the score
on a math exam. Among other personal
features, the gender of a person is fed into
the network for making a decision. As the
training data contains a bias in the form
of a higher average math score for male
participants, the network might learn to underestimate the math score of female
students. We employ our decision procedure to compute the maximum influence
of the gender of a person to its predicted math score. First, we create encodings
of the same network (3 layers of size 6, 16, and 1) that share all input variables
except the gender as a single fixed-point theory formula. We then constrain the
predicted scores such that the one network outputs a score that is c higher than
the score predicted by the other network. Finally, we perform binary search by
iteratively invoking our decision procedure to find out at what bias c the formula
changes from satisfiable to unsatisfiable.

Table 3 shows that there exists a hypothetical person whose predicted math
score would drop by 11.5 points out of 100 if the person is female instead of
male. Moreover, our results also show that for no person the math score would
change by 11.75 points if the gender would be changed.
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8 Related Work

Ruemmer and Wahl [44] and Brain et al. [8] propose and formalize the SMT
theory of the IEEE-754 floating-point arithmetic. We were inspired by these
papers both in terms of the syntax and the formalization of the semantics of
our theory. There are several decision procedures for the floating-point theory.
In particular, Brain et al. [7] present an efficient and verified reduction from the
theory of floating-points to the theory of bit-vectors, while Leeser et al. [33] solve
the floating-point theory by reducing it to the theory of reals. These two decision
procedures are much more complicated than the ones we describe in Sect. 5 due
to the more complex nature of floating-point arithmetic.

In the rest of this section, we introduce related approaches that perform ver-
ification or synthesis of programs that use fixed-point arithmetic. Many of these
approaches, and in particular the SMT-based ones, could benefit from our unified
formalization of the theory of fixed-point arithmetic. For example, they could
leverage our decision procedures instead of developing their own from scratch.
Moreover, having the same format allows for easier sharing of benchmarks and
comparison of results among different decision procedures.

Eldib et al. [21] present an SMT-based method for synthesizing optimized
fixed-point computations that satisfy certain acceptance criteria, which they
rigorously verify using an SMT solver. Similarly to our paper, their approach
encodes fixed-point arithmetic operations using the theory of bit-vectors. Anta
et al. [3] tackle the verification problem of the stability of fixed-point controller
implementations. They provide a formalization of fixed-point arithmetic seman-
tics using bit-vectors, but unlike our paper they do not formalize rounding and
overflows. Furthermore, they encode the fixed-point arithmetic using unbounded
integer arithmetic, arguing that unbounded integer arithmetic is a better fit
for their symbolic analysis. We could also reduce our bit-vector encoding to
unbounded integers following a similar scheme as Anta et al.

Bounded model checker ESMBC [15,24] supports fixed-point arithmetic and
has been used to verify safety properties of fixed-point digital controllers [1].
Like us, it also employs a bit-vector encoding. However, it is unclear exactly
which fixed-point operations are supported. UppSAT [50] is an approximating
SMT solver that leverages fixed-point arithmetic as an approximation theory to
floating-point arithmetic. Like the aforementioned work, UppSAT also encodes
fixed-point arithmetic using the theory of bit-vectors. Its encoding ignores round-
ing modes, but adds special values such as infinities.

In addition to SMT-based verification, another important aspect of reason-
ing about fixed-point computations is error bound analysis, which is often used
for the synthesis of fixed-point implementations. Majumdar et al. [38] synthesize
Pareto optimal fixed-point implementations of control software in regard to per-
formance criteria and error bounds. They reduce error bound computation to an
optimization problem solved by mixed-integer linear programming. Darulova et
al. [16] compile real-valued expressions to fixed-point expressions, and rigorously
show that the generated expressions satisfy given error bounds. The error bound
analysis is static and based on affine arithmetic. Volkova et al. [48,49] propose
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an approach to determine the fixed-point format that ensures the absence of
overflows and minimizes errors; their error analysis is based on Worst-Case Peak
Gain measure. TAFFO [12] is an LLVM plugin that performs precision tuning by
replacing floating-point computations with their fixed-point counterparts. The
quality of precision tuning is determined by a static error propagation analysis.

9 Conclusions and Future Work

In this paper, we propose an SMT theory of fixed-point arithmetic to facili-
tate SMT-based software verification of fixed-point programs and systems by
promoting the development of decision procedures for the proposed theory. We
introduce the syntax of fixed-point sorts and operations in the SMT-LIB for-
mat similar to that of the SMT floating-point theory. Then, we formalize the
semantics of the fixed-point theory, including rounding and overflow, based on
the exact rational arithmetic. We develop two decision procedures for the fixed-
point theory that encode it into the theory of bit-vectors and reals. Finally, we
study the performance of our prototype decision procedures on a set of bench-
marks, and perform a realistic case study by proving properties of quantized
neural networks.

As future work, we plan to add more complex operations to the fixed-point
theory, such as conversions to/from floating-points and the remainder operation.
Moreover, we would like to apply the fixed-point theory to verify existing software
implementations of fixed-point arithmetic in different programming languages.
We plan to do this by integrating it into the Boogie intermediate verification
language [18] and the SMACK verification toolchain [10,42].
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