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Abstract. We present a refutationally complete superposition calculus
for a version of higher-order logic based on the combinatory calculus.
We also introduce a novel method of dealing with extensionality. The
calculus was implemented in the Vampire theorem prover and we test
its performance against other leading higher-order provers. The results
suggest that the method is competitive.

1 Introduction

First-order superposition provers are often used to reason about problems in
extensional higher-order logic (HOL) [19,26]. Commonly, this is achieved by
translating the higher-order problem to first-order logic (FOL) using combina-
tors. Such a strategy is sub-optimal as translations generally sacrifice complete-
ness and at times even soundness. In this paper, we provide a modification of
first-order superposition that is sound and complete for a combinatory version
of HOL. Moreover, it is graceful in the sense of that it coincides with standard
superposition on purely first-order problems.

The work is complementary to the clausal λ-superposition calculus of Ben-
tkamp et al. [4]. Our approach appears to offer two clear differences. Firstly, as
our calculus is based on the combinatory logic and first-order unification, it is
far closer to standard first-order superposition. Therefore, it should be easier to
implement in state-of-the-art first-order provers. Secondly, the >ski ordering that
we propose to parameterise our calculus with can compare more terms than can
be compared by the ordering presented in [4]. On the other hand, we suspect that
for problems requiring complex unifiers, our approach will not be competitive
with clausal λ-superposition.

Developing a complete and efficient superposition calculus for a combinatory
version of HOL poses some difficulties. When working with a monomorphic logic
it is impossible to select a finite set of typed combinator axioms that can guaran-
tee completeness for a particular problem [12]. Secondly, using existing orderings,
combinator axioms can superpose among themselves, leading to a huge number
of consequences of the axioms. If the problem is first-order, these consequences
can never interact with non-combinator clauses and are therefore useless.

We deal with both issues in the current work. To circumvent the first issue, we
base our calculus on a polymorphic rather than monomorphic first-order logic.
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The second issue can be dealt with by an ordering that orients combinator axioms
left-to-right. Consider the S-combinator axiom Sx y z ≈ x z (y z). Assume that
there exists a simplification ordering � such that Sx y z � x z (y z). Then, since
superposition is only carried out on the larger side of literals and not at variables,
there can be no inferences between the S-axiom and any other combinator axiom.
Indeed, in this case the axioms can be removed from the clause set altogether
and replaced by an inference rule (Sect. 7).

No ground-total simplification ordering is known that is capable of orienting
all axioms for a complete set of combinators.1 The authors suspect that no such
simplification ordering exists. Consider a KBO-like ordering. Since the variable
x appears twice on the right-hand side of the S-axiom and only once on the
left-hand side, the ordering would not be able to orient it. The same is the case
for any other combinator which duplicates its arguments.

In other related work [10], we have developed an ordering that enjoys most
of the properties of a simplification ordering, but lacks full compatibility with
contexts. In particular, the ordering is not compatible with what we call unstable
contexts. We propose using such an ordering to parameterise the superposition
calculus. In the standard proof of the completeness of superposition, compati-
bility with contexts is used to rule out the need for superposition at or beneath
variables. As the ordering doesn’t enjoy full compatibility with contexts, limited
superposition at and below variables needs to be carried out. This is dealt with
by the addition of an extra inference rule to the standard rules of superposition,
which we call SubVarSup (Sect. 3).

By turning combinator axioms into rewrite rules, the calculus represents a
folding of higher-order unification into the superposition calculus itself. Whilst
not as goal-directed as a dedicated higher-order unification algorithm, it is still
far more goal-directed than using SK-style combinators in superposition provers
along with standard orderings. Consider the conjecture ∃z.∀xy. z x y ≈ f y x.
Bentkamp et al. ran an experiment and found that the E prover [25] running
on this conjecture supplemented with the S- and K-combinator axioms had to
perform 3756 inferences in order to find a refutation [4]. Our calculus reduces
this number to 427 inferences. With the addition of rewrite rules for C-, B- and
I-combinators, the required inferences reduces to 18.

We consider likely that for problems requiring ‘simple’ unifiers, folding unifi-
cation into superposition will be competitive with higher-order unification whilst
providing the advantages that data structures and algorithms developed for first-
order superposition can be re-used unchanged. The results of the empirical eval-
uation of our method can be found in Sect. 8.

2 The Logic

The logic we use is polymorphic applicative first-order logic otherwise known as
λ-free (clausal) higher-order logic.
1 A complete set of combinators is a set of combinators whose members can be com-

posed to form a term extensionally equivalent to any given λ-term.
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Syntax. Let Vty be a set of type variables and Σty be a set of type constructors
with fixed arities. It is assumed that a binary type constructor → is present in
Σty which is written infix. The set of types is defined:

Polymorphic Types τ :: = κ( τn ) |α | τ → τ where α ∈ Vty and κ ∈ Σty

The notation tn is used to denote a tuple or list of types or terms depending
on the context. A type declaration is of the form Π αn . σ where σ is a type and
all type variables in σ appear in α . Let Σ be a set of typed function symbols
and V a set of variables with associated types. It is assumed that Σ contains
the following function symbols, known as basic combinators:

S : Πατγ. (α → τ → γ) → (α → τ) → α → γ I : Πα. α → α
C : Πατγ. (α → τ → γ) → τ → α → γ K : Παγ. α → γ → α
B : Πατγ. (α → γ) → (τ → α) → τ → γ

The intended semantics of the combinators is captured by the following com-
binator axioms:

Sx y z = x z (y z) Ix = x
Cx y z = x z y Kx y = x
Bx y z = x (y z)

The set of terms over Σ and V is defined below. In what follows, type sub-
scripts are generally omitted.

Terms T :: = x | f〈 τn 〉 | tτ ′→τ t′τ ′ where f : Π αn . σ ∈ Σ, x ∈ V and t, t′ ∈ T

The type of the term f〈 τn 〉 is σ{αn → τn }. Terms of the form t1 t2 are called
applications. Non-application terms are called heads. A term can uniquely be
decomposed into a head and n arguments. Let t = ζ t′n . Then head(t) = ζ where
ζ could be a variable or constant applied to possibly zero type arguments. The
symbol Cany denotes an arbitrary combinator, whilst C3 denotes a member of
{S,C,B}. The S-, C- or B-combinators are fully applied if they have 3 or more
arguments. The K-combinator is fully applied if it has 2 or more arguments
and the I is fully applied if it has any arguments. The symbols Cany and C3

are only used if the symbols they represent are fully applied. Thus, in C3 tn ,
n ≥ 3 is assumed. The symbols x, y, z . . . are reserved for variables, c, d, f . . . for
non-combinator constants and ζ, ξ range over arbitrary function symbols and
variables and, by an abuse of notation, at times even terms. A head symbol that
is not a combinator applied to type arguments or a variable is called first-order.

Positions over Terms: For a term t, if t ∈ V or t = f〈 τ 〉, then pos(t) = {ε}
(type arguments have no position). If t = t1 t2 then pos(t) = {ε} ∪ {i.p | 1 ≤ i ≤
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2, p ∈ pos(ti)}. Subterms at positions of the form p.1 are called prefix subterms.
We define first-order subterms inductively as follows. For any term t, t is a first-
order subterm of itself. If t = ζ tn , where ζ is not a fully applied combinator,
then the first-order subterms of each ti are also first-order subterms of t. The
notation s〈u〉 is to be read as u is a first-order subterm of s. Note that this
definition is subtly different to that in [10] since subterms underneath a fully
applied combinator are not considered to be first-order.

Stable Subterms: Let LPP(t, p) be a partial function that takes a term t, a
position p and returns the longest proper prefix p′ of p such that head(t|p′) is not
a partially applied combinator if such a position exists. For a position p ∈ pos(t),
p is a stable position in t if p is not a prefix position and either LPP(t, p) is not
defined or head(t|LPP(t,p)) is not a variable or combinator. A stable subterm is
a subterm occurring at a stable position. For example, the subterm a is not
stable in f (S a b c), S (S a) b c (in both cases, head(t|LPP(t,p)) = S) and a c (a is
in a prefix position), but is in g a b and f (S a) b. A subterm that is not stable is
known as an unstable subterm.

The notation t[u] denotes an arbitrary subterm u of t. The notation
t[u1, . . . , un]n, at times given as t[u ]n denotes that the the term t contains
n non-overlapping subterms u1 to un. By u[]n, we refer to a context with n
non-overlapping holes.

Weak Reduction: A term t weak-reduces to a term t′ in one step (denoted
t −→w t′) if t = u[s]p and there exists a combinator axiom l = r and substitution
σ such that lσ = s and t′ = u[rσ]p. The term lσ in t is called a weak redex or
just redex. By −→∗

w, the reflexive transitive closure of −→w is denoted. Weak-
reduction is terminating and confluent as proved in [15]. By (t) ↓w, we denote
the term formed from t by contracting its leftmost redex.

Literals and Clauses: An equation s ≈ t is an unordered pair of terms and
a literal is an equation or the negation of an equation represented s �≈ t. Let
ax = l ≈ r be a combinator axiom and xn be a tuple of variables not appearing
in ax. Then ax and l xn ≈ r xn for all n are known as extended combinator
axioms. For example, Ix1 x2 ≈ x1 x2 is an extended combinator axiom. A clause
is a multiset of literals represented L1 ∨ · · · ∨ Ln where each Li is a literal.

Semantics. We follow Bentkamp et al. [6] closely in specifying the semantics.
An interpretation is a triple (U , E ,J ) where U is a ground-type indexed family
of non-empty sets called universes and E is a family of functions Eτ,v : Uτ→v →
(Uτ → Uv). A type valuation ξ is a substitution that maps type variables to
ground types and whose domain is the set of all type variables. A type valuation
ξ is extended to a valuation by setting ξ(xτ ) to be a member of U(τξ). An
interpretation function J maps a function symbol f : Π αn . σ and a tuple of
ground types τn to a member of U(σ{αi→τi}). An interpretation is extensional if
Eτ,v is injective for all τ, v and is standard if Eτ,v is bijective for all τ, v.

For an interpretation I = (U , E ,J ) and a valuation ξ, a term is denoted
as follows: �x�ξ

I = ξ(x), �f〈 τ 〉�ξ
I = J (f, � τ �ξ) and �st�ξ

I = E(�s�ξ
I)(�t�ξ

I). An
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equation s ≈ t is true in an interpretation I with valuation function ξ if �s�ξ
I

and �t�ξ
I are the same object and is false otherwise. A disequation s �≈ t is true

if s ≈ t is false. A clause is true if one of its literals is true and a clause set is
true if every clause in the set is true. An interpretation I models a clause set N ,
written I |= N , if N is true in I for all valuation functions ξ.

As Bentkamp et al. point out in [4] there is a subtlety relating to higher-order
models and choice. If, as is the case here, attention is not restricted to models that
satisfy the axiom of choice, naive skolemisation is unsound. One solution would
be to implement skolemisation with mandatory arguments as explained in [21].
However, the introduction of mandatory arguments considerably complicates
both the calculus and the implementation. Therefore, we resort to the same
‘trick’ as Bentkamp et al., namely, claiming completeness for our calculus with
respect to models as described above. This holds since we assume problems to be
clausified. Soundness is claimed for the implementation with respect to models
that satisfy the axiom of choice and completeness can be claimed if the axiom
of choice is added to the clause set.

3 The Calculus

The calculus is modeled after Bentkamp et al.’s intensional non-purifying cal-
culus [6]. The extensionality axiom can be added if extensionality is required.
The main difference between our calculus and that of [6] is that superposition
inferences are not allowed beneath fully applied combinators and an extra infer-
ence rule is added to deal with superposition beneath variables. We name the
calculus clausal combinatory-superposition.

Term Ordering. We also demand that clausal combinatory-superposition is
parameterised by a partial ordering � that is well-founded, total on ground
terms, stable under substitutions and has the subterm property and which orients
all instances of combinator axioms left-to-right. It is an open problem whether a
simplification ordering enjoying this last property exists, but it appears unlikely.
However, for completeness, compatibility with stable contexts suffices. The >ski

ordering introduced in [10] orients all instances of combinator axioms left-to-
right and is compatible with stable contexts. It is not compatible with arbitrary
contexts. For terms t1 and t2 such that t1 >ski t2, it is not necessarily the case
that t1 u >ski t2 u or that S t1 a b >ski S t2 a b. We show that by not superposing
underneath fully applied combinators and carrying out some restricted superpo-
sition beneath variables, this lack of compatibility with arbitrary contexts can be
circumvented and does not lead to a loss of completeness. In a number of places
in the completeness proof, we assume the following conditions on the ordering
(satisfied by the >ski ordering). It may be possible to relax the conditions at the
expense of an increased number of inferences.

P1 For terms t, t′ such that t −→w t′, then t � t′

P2 For terms t, t′ such that t � t′ and head(t′) is first-order, u[t] � u[t′]



A Combinator-Based Superposition Calculus for Higher-Order Logic 283

The ordering � is extended to literals and clauses using the multiset extension
as explained in [22].

Inference Rules. Clausal combinatory-superposition is further parameterised
by a selection function that maps a clause to a subset of its negative literals. Due
to the requirements of the completeness proof, if a term t = x sn>0 is a maximal
term in a clause C, then a literal containing x as a first-order subterm may not
be selected. A literal L is σ-eligible in a clause C if it is selected or there are no
selected literals in C and Lσ is maximal in Cσ. If σ is the identity substitution
it is left implicit. In the latter case, it is strictly eligible if it is strictly maximal.
A variable x has a bad occurrence in a clause C if it occurs in C at an unstable
position. Occurrences of x in C at stable positions are good.
Conventions: Often a clause is written with a single distinguished literal
such as C ′ ∨ t ≈ t′. In this case:

1. The distinguished literal is always σ-eligible for some σ.
2. The name of the clause is assumed to be the name of the remainder

without the dash.
3. If the clause is involved in an inference, the distinguished literal is the

literal that takes part.

Positive and negative superposition:

D′ ∨ t ≈ t′ C ′ ∨ [¬]s〈u〉 ≈ s′
Sup

(C ′ ∨ D′ ∨ [¬]s〈t′〉 ≈ s′)σ

with the following side conditions:

1. The variable condition (below)
holds

2. C is not an extended combinator
axiom;

3. σ = mgu(t, u);
4. tσ �� t′σ;

5. s〈u〉σ �� s′σ;
6. Cσ �� Dσ or D is an extended com-

binator axiom;
7. t ≈ t′ is strictly σ-eligible in D;
8. [¬] s〈u〉 ≈ s′ is σ-eligible in C, and

strictly σ-eligible if it is positive.

Definition 1. Let l = Cany xn and l ≈ r be an extended combinator axiom. A
term v um is compatible with l ≈ r if Cany = I and m = n or if Cany = K and
m ≥ n − 1 or if Cany ∈ {B,C,S} and m ≥ n − 2.

Variable Condition: u /∈ V . If u = x sn and D is an extended combinator
axiom, then D and u must be compatible.

Because the term ordering � is not compatible with unstable contexts, there
are instances when superposition beneath variables must be carried out. The
SubVarSup rule deals with this.
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D′ ∨ t ≈ t′ C ′ ∨ [¬]s〈y un 〉 ≈ s′
SubVarSup

(C ′ ∨ D′ ∨ [¬]s〈zt′ un 〉 ≈ s′)σ

with the following side conditions in addition to conditions 4 – 8 of Sup:

1. y has another occurrence bad in C;
2. z is a fresh variable;
3. σ = {y → z t};
4. t′ has a variable or combinator head;

5. n ≤ 1;

6. D is not an extended combinator
axiom.

The EqRes and EqFact inferences:

C ′ ∨ u �≈ u′
EqRes

C ′σ
C ′ ∨ u′ ≈ v′ ∨ u ≈ v EqFact

(C ′ ∨ v �≈ v′ ∨ u ≈ v′)σ

For both inferences σ = mgu(u, u′). For EqRes, u �≈ u′ is σ-eligible in the
premise. For EqFact, u′σ �� v′σ, uσ �� vσ, and u ≈ v is σ-eligible in the premise.

In essence, the ArgCong inference allows superposition to take place at
prefix positions by ‘growing’ equalities to the necessary size.

C ′ ∨ s ≈ s′
ArgCong

C ′σ ∨ (sσ)x ≈ (s′σ)x
C ′σ ∨ (sσ)x2 ≈ (s′σ)x2

C ′σ ∨ (sσ)x3 ≈ (s′σ)x3

...

The literal s ≈ s′ must be σ-eligible in C. Let s and s′ be of type α1 → · · · →
αm → β. If β is not a type variable, then σ is the identity substitution and
the inference has m conclusions. Otherwise, if β is a type variable, the inference
has an infinite number of conclusions. In conclusions where n > m, σ is the
substitution that maps β to type τ1 → · · · → τn−m → β′ where β′ and each
τi are fresh type variables. In each conclusion, the xis are variables fresh for C.
Note that an ArgCong inference on a combinator axiom results in an extended
combinator axiom.

3.1 Extensionality

Clausal combinatory-superposition can be either intensional or extensional. If a
conjecture is proved by the intensional version of the calculus, it means that the
conjecture holds in all models of the axioms. On the other hand, if a conjecture
is proved by the extensional version, it means that the conjecture holds in all
extensional models (as defined above). Practically, some domains naturally lend
themselves to intensional reasoning whilst other to extensional. For example,
when reasoning about programs, we may expect to treat different programs as
different entities even if they always produce the same output when provided the
same input. For the calculus to be extensional, we provide two possibilities. The
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first is to add a polymorphic extensionality axiom. Let diff be a polymorphic
symbol of type Πτ1, τ2. (τ1 → τ2) → (τ1 → τ2) → τ1. Then the extensionality
axiom can be given as:

x (diff〈τ1, τ2〉 x y) �≈ y (diff〈τ1, τ2〉 x y) ∨ x ≈ y

However, adding the extensionality axiom to a clause set can be explosive and
is not graceful. By any common ordering, the negative literal will be the larger
literal and therefore the literal involved in inferences. As it is not of functional
type it can unify with terms of atomic type including first-order terms.

In order to circumvent this issue, we developed another method of dealing
with extensionality. Unification is replaced by unification with abstraction. Dur-
ing the unification procedure, no attempt is made to unify pairs consisting of
terms of functional or variable type. Instead, if the remaining unification pairs
can be solved successfully, such pairs are added to the resulting clause as neg-
ative constraint literals. This process works in conjunction with the negative
extensionality rule presented below.

C ′ ∨ s �≈ s′
NegExt

(C ′ ∨ s (sk〈α 〉 x ) �≈ s′ (sk〈α 〉 x ))σ

where s �≈ s′ is σ-eligible in the premise, α and x are the free type and term
variable of the literal s �≈ s′ and σ is the most general type unifier that ensures
the well-typedness of the conclusion.

We motivate this second approach to extensionality with an example. Con-
sider the clause set:

g x ≈ f x h g �≈ h f

equality resolution with abstraction on the second clause produces the clause
g �≈ f. A NegExt inference on this clause results in g sk �≈ f sk which can super-
pose with g x ≈ f x to produce ⊥.

The unification with abstraction procedure used here is very similar to that
introduced in [24]. Pseudocode for the algorithm can be found in Algorithm1.
The inference rules other than ArgCong and SubVarSup must be modified to
utilise unification with abstraction rather than standard unification. We show the
updated superposition rule. The remaining rules can be modified along similar
lines.

C1 ∨ t ≈ t′ C2 ∨ [¬]s〈u〉 ≈ s′
Sup-wA

(C1 ∨ C2 ∨ D ∨ [¬]s〈t′〉 ≈ s′)σ

where D is the possibly empty set of negative literals returned by unification.
Sup-wA shares all the side conditions of Sup given above. This method of
dealing with extensionality is not complete as shown in Appendix A of [9].



286 A. Bhayat and G. Reger

Algorithm 1. Unification algorithm with constraints
function mguAbs(l, r)

let P be a set of unification pairs; P := {〈l, r〉} , D be a set of disequalities;
D := ∅

let θ be a substitution; θ := {}
loop

if P is empty then return (θ, D), where D is the disjunction of literals in D
Select a pair 〈s, t〉 in P and remove it from P
if s coincides with t then do nothing
else if s is a variable and s does not occur in t then θ := θ ◦ {s �→ t};

P := P{s �→ t}
else if s is a variable and s occurs in t then fail
else if t is a variable then P := P ∪ {〈t, s〉}
else if s and t have functional or variable type then D := D ∪ {s 	≈ t}
else if s and t have different head symbols then fail
else if s = f s1 . . . sn and t = f t1 . . . tn for some f then

P := P ∪ {〈s1, t1〉, . . . , 〈sn, tn〉}

4 Examples

We provide some examples of how the calculus works. Some of the examples
utilised come from Bentkamp et al.’s paper [4] in order to allow a comparison
of the two methods. In all examples, it is assumed that the clause set has been
enriched with the combinator axioms.

Example 1. Consider the unsatisfiable clause:

x a b �≈ x b a

Superposing onto the left-hand side with the extended K axiom Kx1 x2 x3 ≈
x1 x3 results in the clause x1 b �≈ x1 a. Superposing onto the left-hand side of
this clause, this time with the standard K axiom adds the clause x �≈ x from
which ⊥ is derived by an EqRes inference.

Example 2. Consider the unsatisfiable clause set where f a � c:

f a ≈ c h (y b)(y a) �≈ h (g(f b))(g c)

A Sup inference between the B axiom Bx1 x2 x3 ≈ x1 (x2 x3) and the
subterm y b of the second clause adds the clause h(x1(x2 b))(x1(x2 a)) �≈
h(g(f b))(g c) to the set. By superposing onto the subterm x2 a of this clause
with the equation f a ≈ c, we derive the clause h(x1(f b))(x1 c) �≈ h(g(f b))(g c)
from which ⊥ can be derived by an EqRes inference.

Example 3. Consider the unsatisfiable clause set where f a � c. This example is
the combinatory equivalent of Bentkamp et al.’s Example 6.

f a ≈ c h (y (B g f) a) y �≈ h (g c) I
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A Sup inference between the extended I axiom Ix1 x2 ≈ x1 x2 and the sub-
term y (B g f) a of the second clause adds the clause h (B g f a) I �≈ h (g c) I to the
set. Superposing onto the subterm B g f a of this clause with the B axiom results
in the clause h (g (f a)) I �≈ h (g c) I. Superposition onto the subterm f a with the
first clause of the original set gives h (g c)) I �≈ h (g c) I from which ⊥ can be
derived via EqRes.

Note that in Examples 2 and 3, no use is made of SubVarSup even though
the analogous FluidSup rule in required in Bentkamp et al.’s calculus. We have
been unable to develop an example that requires the SubVarSup rule even
though it is required for the completeness result in Sect. 6.

5 Redundancy Criterion

In Sect. 6, we prove that the calculus is refutationally complete. The proof fol-
lows that of Bachmair and Ganzinger’s original proof of the completeness of
superposition [2], but is presented in the style of Bentkamp et al. [6] and Wald-
mann [31]. As is normal with such proofs, it utilises the concept of redundancy
to reduce the number of clauses that must be considered in the induction step
during the model construction process.

We define a weaker logic by an encoding � � of ground terms into non-
applicative first-order terms with � � as its inverse. The encoding works by index-
ing each symbol with its type arguments and argument number. For example,
�f� = f0, �f〈 τ 〉a� = f τ

1 (a0). Terms with fully applied combinators as their head
symbols are translated to constants such that syntactically identical terms are
translated to the same constant. For example, �S t1 t2 t3� = s0. The weaker logic
is known as the floor logic whilst the original logic is called the ceiling logic.
The encoding can be extended to literals and clauses in the obvious manner as
detailed in [5]. The function �� is used to compare floor terms. More precisely,
for floor logic terms t and t′, t � t′ if �t� � �t′�. It is straightforward to show
that the order � on floor terms is compatible with all contexts, well-founded,
total on ground terms and has the subterm property.

The encoding serves a dual purpose. Firstly, as redundancy is defined with
respect to the floor logic, it prevents the conclusion of all ArgCong from being
redundant. Secondly, subterms in the floor logic correspond to first-order sub-
terms in the ceiling logic. This is of critical importance in the completeness
proof.

An inference is the ground instance of an inference I if it is equal to I after the
application of some grounding substitution θ to the premise(s) and conclusion
of I and the result is still an inference.

A ground ceiling clause C is redundant with respect to a set of ground ceiling
clauses N if �C� is entailed by clauses in �N� smaller than itself and the floor
of ground instances of extended combinator axioms in �N�. An arbitrary ceiling
clause C is redundant to a set of ceiling clauses N if all its ground instances are
redundant with respect to GΣ(N), the set of all ground instances of clauses in
N . Red(N) is the set of all clauses redundant with respect to N .
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For ground inferences other than ArgCong, an inference with right premise
C and conclusion E is redundant with respect to a set of clauses N if �E� is
entailed by clauses in �GΣ(N)� smaller than �C�. A non-ground inference is
redundant if all its ground instances are redundant.

An ArgCong inference from a combinator axiom is redundant with respect
to a set of clauses N if its conclusion is in N . For any other ArgCong inference,
it is redundant with respect N if its premise is redundant with respect to N , or
its conclusion is in N or redundant with respect to N . A set N is saturated up to
redundancy if every inference with premises in N is redundant with respect to N .

6 Refutational Completeness

The proof of refutational completeness of clausal combinatory-superposition is
based on the completeness proof the λ-free HOL calculi presented in [6]. We
first summarise their proof and then indicate the major places where our proof
differs. A detailed version of the proof can be found in our technical report [9].

Let N be a set of clauses saturated to redundancy by one of the λ-free HOL
calculi and not containing ⊥. Then, Bentkmap et al. show that N must have a
model. This is done in stages, first building a model R∞ of �GΣ(N)� and then
lifting this to a model of GΣ(N) and N . Most of the heavy work is in showing
R∞ to be a model of �GΣ(N)�. In the standard first-order proof, superposition
is ruled out at or beneath variables. Consider a clause C containing a variable
x. Since the orderings that parameterise standard first-order superposition are
compatible with contexts, we are guaranteed for terms t and t′ such that t � t′

and grounding substitution θ that Cθ[x → t] � Cθ[x → t′]. Then, the induction
hypotheses is used to show that Cθ[x → t′] is true in the candidate interpreta-
tion rendering superposition into x unnecessary. A similar argument works for
superposition below variables.

This argument does not work for the λ-free calculi since in their case the
ordering is not compatible with arguments. Consider the clause C = f x ≈
g x ∨ x u ≈ v. For terms t and t′ such that t � t′, it cannot be guaranteed that
Cθ[x → t] � Cθ[x → t′] since t′ u � t u is possible. Therefore, some superposition
has to take place at variables. Even in those cases where it can be ruled out,
the proof is more complex than the standard first-order proof. Superposition
underneath variables can be ruled out entirely.

Returning to our calculus, we face a number of additional difficulties. Since
the ordering that we use is not compatible with arguments, but also not compati-
ble with stronger concept of unstable subterms, we cannot rule out superposition
beneath a variable. Consider, for example, the clause C = f x ≈ g x ∨ y x u ≈ v
and the grounding substitution θ = {y → S a, x → K t}. Let θ′ be the same as θ,
but with x mapped to K t′. Even if t � t′, we do not necessarily have Cθ � Cθ′

since t occurs at an unstable position. Thus, some superposition below variables
must be carried out.

This introduces a new difficulty, namely, showing that superposition below a
variable is the ground instance of a SubVarSup rule. In some cases it may not be.
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Consider the clause C = x u ≈ v and the grounding substitution θ = {x → f t a}.
A superposition inference from Cθ with conclusion C ′ that replaces t with t′ is
not the ground instance of a SubVarSup from C. The only conclusion of a
SubVarSup from C is z t′ u ≈ v. There is no instantiation of the z variable that
can make the term z t′ equal to f t′ a. However, mapping z to C f a results in a term
that is equal to f t′ a modulo the combinator axioms. Let C ′′ = z t′ u ≈ v{z →
C f a}. Since it is the set N that is saturated up to redundancy, we have that
all ground instances of the SubVarSup inference are redundant with respect
GΣ(N). For this to imply that C ′ is redundant with respect to GΣ(N) requires
C ′′ be rewritable to C ′ using equations true in R�Cθ� (the partial interpretation
built from clauses smaller than Cθ). This requires that all ground instances of
combinator and extended combinator axioms be true in R�Cθ� for all clauses C.

This leads to probably the most novel aspect of our proof. We build our
candidate interpretations differently to the standard proof by first adding rules
derived from combinator axioms. Let RECA be the set of rewrite rules formed
by turning the floor of all ground instances of combinator axioms into left right
rewrite rules. Then for all clauses C ∈ �GΣ(N)�, RC is defined to be RECA ∪
(
⋃

D≺C ED). In the detailed proof, we show that RC and R∞ are still terminating
and confluent.

In lifting R∞ to be a model of GΣ(N), we face a further difficulty. This is
related to showing that for ceiling terms t, t′, u and u′, if ��t��ξ

R∞ = ��t′��ξ
R∞

and ��u��ξ
R∞ = ��u′��ξ

R∞ , then ��t u��ξ
R∞ = ��t′ u′��ξ

R∞ . The difficulty arises
because t, t′ or both may be of the form C3 t1 t2. In such a case rewrites that can
be carried out from subterms of �t� cannot be carried out from �t u� because
t u has a fully applied combinator as its head and therefore is translated to a
constant in the floor logic. The fact that the ground instances of all combinator
axioms are true in R∞ comes to the rescue. With these difficulties circumvented,
we can prove refutational completeness.

Theorem 1. For a set of clauses N saturated to redundancy by the above cal-
culus, N has a model iff it does not contain ⊥. Moreover, if N contains the
extensionality axiom, the model is extensional.

7 Removing Combinator Axioms

Next, we show that it is possible to replace the combinator axioms with a dedi-
cated inference rule. We name the inference Narrow. Unlike the other inference
rules, it works at prefix positions. We define nearly first-order positions induc-
tively. For any term t, either t = ζ tn where ζ is not a fully applied combinator
or t = Cany tn . In the first case, the nearly first-order subterms of t are ζ ti for
0 ≤ i ≤ n and all the nearly first-order subterms of the ti. In the second case,
the nearly first-order subterms are Cany ti for 0 ≤ i ≤ n. The notation s〈[u]〉 is
to be read as u is a nearly first-order subterm of s. The Narrow inference:

C ′ ∨ [¬]s〈[u]〉 ≈ s′
Narrow

(C ′ ∨ [¬]s〈[r]〉 ≈ s′)σ

with the following side conditions:
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1. u /∈ V
2. Let l ≈ r be a combinator axiom.

σ = mgu(l, u);

3. s〈[u]〉σ �� s′σ;
4. [¬] s〈[u]〉 ≈ s′ is σ-eligible in C, and

strictly σ-eligible if it is positive.

We show that any inference that can be carried out using an extended com-
binator axiom can be simulated with Narrow proving completeness. It is obvi-
ous that an EqRes or EqFact inference cannot have an extended combinator
axiom as its premise. By the SubVarSup side conditions, an extended combi-
nator axiom cannot be either of its premises. Thus we only need to show that
Sup inferences with extended combinator axioms can be simulated. Note that
an extended axiom can only be the left premise of a Sup inference. Consider the
following inference:

l ≈ r C ′ ∨ [¬]s〈u〉|p ≈ s′
Sup

(C ′ ∨ [¬]s〈r〉 ≈ s′)σ

Let l = S xn>3 . By the variable condition, we have that u = ζ tm where
n ≥ m ≥ n − 2. If u = y tn−2 , then σ = {y → Sx1 x2, x3 → t1, . . . , xn →
tn−2}. In this case rσ = (x1 x3 (x2 x3)x4 . . . xn)σ = x1 t1 (x2 t1) t2 . . . tn−2 and
the conclusion of the inference is (C ′ ∨ [¬]s〈x1 t1 (x2 t1) t2 . . . tn−2〉 ≈ s′){y →
Sx1 x2}. Now consider the following Narrow inference from C at the nearly
first-order subterm y t1:

C ′ ∨ [¬]s〈〈[y t1]〉t2 . . . tn〉|p ≈ s′
Narrow

(C ′ ∨ [¬]s〈x1 t1 (x2 t1) t2 . . . tn−2〉 ≈ s′){y → Sx1 x2}
As can be seen, the conclusion of the Sup inference is equivalent to that of

the Narrow inference up to variable naming. The same can be shown to be
the case where u = y tn−1 or u = y tn or u = S tn . Likewise, the same can be
shown to hold when the l ≈ r is an extended B,C,K or I axiom.

8 Implementation and Evaluation

Clausal combinatory-superposition has been implemented in the Vampire theo-
rem prover [11,17]. The prover was first extended to support polymorphism.
This turned out to be simpler than expected with types being turned into
terms and type equality checking changing to a unifiability (or matching) check.
Applicative terms are supported by the use of a polymorphic function app of
type Πα, β. (α → β) → α → β.

As the Sup, EqRes and EqFact inferences are identical to their first-
order counterparts, these required no updating. The Narrow, SubVarSup and
ArgCong inferences had to be added to the implementation. Further, though
the NegExt inference is not required for completeness, empirical results suggest
that it is so useful, that it is permanently on in the implementation.
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The ArgCong inference implemented in Vampire does not match the rule
given in the calculus. The rule provided can have an infinite number of conclu-
sions. In Vampire, we have implemented a version of ArgCong that appends a
single fresh variable to each side of the selected literal rather than a tuple and
therefore only has a single conclusion. This version matches what was originally
in the calculus. Shortly before the submission of this paper, it was discovered
that this leads to a subtle issue in the completeness proof and the inference was
changed to its current version. We expect to be able to revert to the previous
version and fix the proof. As matters stand, Vampire contains a potential source
of incompleteness.

A greater challenge was posed by the implementation of the >ski ordering in
the prover. The ordering is based on the length of the longest weak-reduction
from a term. In order to increase the efficiency of calculating this quantity, we
implemented caching and lazy evaluation. For example, when inserting a term
of the form f t1 t2 into the term-sharing data structure, a check is made to see
if the maximum reduction lengths of t1 and t2 have already been calculated.
If they have, then the maximum reduction length of the term being inserted is
set to the sum of the maximum reduction lengths of t1 and t2. If not, it is left
unassigned and only calculated at the time it is required.

During the experimentation phase, it was realised that many redundant
clauses were being produced due to narrowing. For example, consider the
clause x a b ≈ d ∨ f x ≈ a. Narrowing the first literal with C-axiom results
in x′ b a ≈ d ∨ f (Cx′) ≈ a. A second narrow with the same axiom results in
x′′ a b ≈ d ∨ f (C (Cx′′)) ≈ a which is extensionally equivalent to first clause and
therefore redundant. However, it will not be removed by subsumption since it is
only equivalent extensionally. To deal with this problem, we implemented some
rewrite rules that replace combinator terms with smaller extensionally equiva-
lent terms.2 For example, any term of the form C (C t) is rewritten to t. There
is no guarantee that these rewrites remove all such redundant clauses, but in
practice, they appear to help.

To implement unification with abstraction, we reused the method introduced
in our previous work relating to the use of substitution trees as filters [8]. In our
current context, this involves replacing all subterms of functional or variable sort
with special symbols that unify with any term prior to inserting a term into the
substitution tree index.

To evaluate our implementation, we ran a number of versions of our prover
across two problem sets and compared their performance against that of some of
the leading higher-order provers. The first problem set we tested on was the set
of all 592 monomorphic, higher-order problems from the TPTP problem library
[29] that do not contain first-class boolean subterms. We restricted our attention
to monomorphic problems since some of the provers we used in our evaluation
do not support polymorphism. The second benchmark set was produced by the
Isabelle theorem prover’s Sledgehammer system. It contains 1253 benchmarks
kindly made available to us by the Matryoshka team and is called SH-λ fol-

2 Thanks to Petar Vukmirović for suggesting and discussing this idea.
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Table 1. Problems proved theorem or unsat

TPTP TH0 problems Sh-λ problems

Solved Uniques Solved Uniques

Satallax 3.4 473 0 628 5

Leo-III 1.4 482 6 661 13

Vampire-THF 4.4 472 1 717 14

Vampire-csup-ninj 470 0 (1) 687 1 (2)

Vampire-csup-ax 469 0 (0) 680 0 (3)

Vampire-csup-abs 472 0 (0) 685 0 (0)

Vampire-csup-prag 475 1 (3) 628 0 (1)

Zipperposition 1.5 476 0 609 6

lowing their naming convention. All tests were run with a CPU time limit of
300. Experiments were performed on StarExec [28] nodes equipped with four
2.40 GHz Intel Xeon CPUs. Our experimental results are publicly available3.

To compare out current implementation against, we chose the Leo-III, 1.4,
Satallax 3.4, Zipperposition 1.5 and Vampire-THF 4.4 provers. These provers
achieved the top four spots in the 2019 CASC system competition. Vampire THF
4.4 was developed by the authors, but uses different principles being based on
combinatory unification. We compare the performance of these provers against
four variants of our current implementation. First, Vampire-csup-ax which imple-
ments clausal combinatory-superposition as described above and uses the exten-
sionality axiom. Second, Vampire-csup-abs which deals with extensionality via
unification with abstraction. Third, Vampire-csup-ninj which incorporates an
inference to synthesise left-inverses for injective functions in a manner similar to
Leo-III [26, Section 4.2.5] and finally Vampire-csup-prag which introduces var-
ious heuristics to try and control the search space, though at the expense of
completeness. For example, it implements a heuristic that restricts the number
of narrow steps. It also switches off the SubVarSup rule which is never used
in a proof produced by the other variants of Vampire-csup. All four versions
are run on top of a first-order portfolio of strategies. These strategies control
options such as the saturation algorithm used, which simplification inferences
are switched on and so forth. The results of the experiments can be found sum-
marised in Table 1. In brackets, the number of uniques between Vampire-csup
versions is provided.

The closeness of the results on the TPTP benchmarks is striking. Out of the
592 benchmarks, 95 are known not to be theorems, leaving 497 problems that
could possibly be proved. All the provers are remarkably close to this number and
each other. Leo-III which is slightly ahead of the other provers, only manages

3 https://github.com/vprover/vampire publications/tree/master/experimental data/
IJCAR-2020-COMB-SUP.

https://github.com/vprover/vampire_publications/tree/master/experimental_data/IJCAR-2020-COMB-SUP
https://github.com/vprover/vampire_publications/tree/master/experimental_data/IJCAR-2020-COMB-SUP
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this through function synthesis which is not implemented in any of the other
provers.

It is disappointing that Vampire-csup performs worse than its predeces-
sor Vampire-THF 4.4 on Sledgehammer problems. We hypothesise that this is
related to the explosion in clauses created as a result of narrowing. Vampire-
csup-prag is supposed to control such an explosion, but actually performs worst
of all. This is likely due to the fact that it runs a number of lengthy strategies
aimed particularly at solving higher-order problems requiring complex unifiers.
Interestingly, the pragmatic version solved a difficulty rating 1.00 TPTP prob-
lem, namely, NUM829∧5.p.

9 Conclusion and Related Work

The combinatory superposition calculus presented here is amongst a small group
of complete proof calculi for higher-order logic. This group includes the RUE
resolution calculus of Benzmüller which has been implemented in the Leo-II
theorem prover [7]. The Satallax theorem prover implements a complete higher-
order tableaux calculus [13]. More recently, Bentkamp et al. have developed a
complete superposition calculus for clausal HOL [4]. As superposition is one
of the most successful calculi in first-order theorem proving [22], their work
answered a significant open question, namely, whether superposition could be
extended to higher-order logic.

Our work is closely related to theirs, and in some senses, the SubVar-
Sup rule of clausal combinatory-superposition mirrors the FluidSup rule of
clausal λ-superposition. However, there are some crucial differences. Arguably,
the side conditions on SubVarSup are tighter than those on FluidSup and some
problems such as the one in Example 3 can be solved by clausal combinatory-
superposition without the use of SubVarSup whilst requiring the use of Fluid-
Sup in clausal λ-superposition. Clausal λ-superposition is based on higher-order
unification and λ-terms. Our calculus is based on (applicative) first-order terms
and first-order unification and implementations can therefore reuse the well-
studied data structures and algorithms of first-order theorem proving. On the
downside, narrowing terms with combinator axioms is still explosive and results
in redundant clauses. It is also never likely to be competitive with higher-order
unification in finding complex unifiers. This is particularly the case with recent
improvements in higher-order unification being reported [30].

Many other calculi for higher-order theorem proving have been devel-
oped, most of them incomplete. Amongst the early calculi to be devised are
Andrew’s mating calculus [1] and Miller’s expansion tree method [20] both
linked to tableaux proving. More recent additions include an ordered (incom-
plete) paramodulation calculus as implemented in the Leo-III prover [27] and a
higher-order sequent calculus implemented in the AgsyHOL prover [18]. In pre-
vious work, the current authors have extended first-order superposition to use a
combinatory unification algorithm [8]. Finally there is ongoing work to extend
SMT solving to higher-order logic [3].
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There have also been many attempts to prove theorems in HOL by translating
to FOL. One of the pioneers in suggesting this approach was Kerber [16]. Since
his early work, it has become commonplace to combine a dedicated higher-
order theorem prover with a first-order prover used to discharge first-order proof
obligations. This is the approach taken by many interactive provers and their
associated hammers such as Sledgehammer [23] and CoqHammer [14]. It is also
the approach adopted by leading automated higher-order provers Leo-III and
Satallax.

In this paper we have presented a complete calculus for a polymorphic,
boolean-free, intensional, combinatory formulation of higher-order logic. For the
calculus to be extensional, an extensionality axiom can be added maintaining
completeness, but losing gracefulness. Alternatively, unification can be turned
into unification with abstraction maintaining gracefulness, but losing a com-
pleteness guarantee. Experimental results show an implementation of clausal
combinatory-superposition to be competitive with leading higher-order provers.

It remains to tune the implementation and calculus. We plan to further
investigate the use of heuristics in taming the explosion of clauses that result
from narrowing. the heuristics may lead to incompleteness. It would also be of
interest to investigate the use of heuristics or even machine learning to guide the
prover in selecting specific combinator axioms to narrow a particular clause with.
One of the advantages of our calculus is that it does not consider terms modulo
β- or weak-reduction. Therefore, theoretically, a larger class of terms should be
comparable by the non-ground order than is possible with a calculus that deals
with β- or weak-equivalence classes. It remains to implement a stricter version
of the >ski ordering and evaluate its usefulness.

As a next step, we plan to add support for booleans and choice to the calculus.
An appealing option for booleans is to extend the unification with abstraction
approach currently used for functional extensionality. No attempt would be made
to solve unification pairs consisting of boolean terms. Rather, these would be
added as negated bi-implications to the result which would then be re-clausified.

Finally, we feel that our calculus complements existing higher-order calculi
and presents a particularly attractive option for extending existing first-order
superposition provers to dealing with HOL.
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