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Abstract

Breast cancer is the most prevalent and among the most deadly cancers in females. Patients with 

breast cancer have highly variable survival rates, indicating a need to identify prognostic 

biomarkers. By integrating multi-omics data (e.g., gene expression, DNA methylation, miRNA 

expression, and copy number variations (CNVs)), it is likely to improve the accuracy of patient 

survival predictions compared to prediction using single modality data. Therefore, we propose to 

develop a machine learning pipeline using decision-level integration of multi-omics tumor data 

from The Cancer Genome Atlas (TCGA) to predict the overall survival of breast cancer patients. 

With multi-omics data consisting of gene expression, methylation, miRNA expression, and CNVs, 

the top performing model predicted survival with an accuracy of 85% and area under the curve 

(AUC) of 87%. Furthermore, the model was able to identify which modalities best contributed to 

prediction performance, identifying methylation, miRNA, and gene expression as the best 

integrated classification combination. Our method not only recapitulated several breast cancer-

specific prognostic biomarkers that were previously reported in the literature but also yielded 

several novel biomarkers. Further analysis of these biomarkers could lend insight into the 

molecular mechanisms that lead to poor survival.

Keywords

Breast Cancer; Overall Survival; Multi-Omics; Decision-Level Integration; Biomarker 
Identification

I. INTRODUCTION

Breast cancer is the most common type of cancer in females worldwide. In 2018, breast 

cancer constituted over 25% of about 8:5 million new cancer diagnoses in female patients 

[1]. This prevalence pattern is found in America as well, where women have over a 12% risk 

of being diagnosed with breast cancer in their lives, and breast cancer cases are expected to 

*Corresponding author contact: maywang@bme.gatech.edu. 

HHS Public Access
Author manuscript
Proceedings (IEEE Int Conf Bioinformatics Biomed). Author manuscript; available in PMC 
2020 June 29.

Published in final edited form as:
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2019 November ; 2019: 1573–1580. doi:10.1109/
bibm47256.2019.8983243.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



encompass about 30% of new cancer cases [2]. While the principal risk factor for breast 

cancer is age, it is known that selected gene mutations account for about 10% of all breast 

cancer cases [3]. Research into prognostic genomic biomarkers beyond mutational status is 

ongoing and may offer insights into disease mechanisms and new therapies. Breast cancer 

maintains the second highest mortality rate for cancers in females at about 13% [2]. Survival 

rates for breast cancer are typically measured by 5-year post-diagnosis survival. The 5-year 

survival rate is 90% when all stage classifications are considered [4]. With stage breakdown 

accounted for, the risk can be further stratified, as localized breast cancer survival rate is 

99%, while this drops to 85% and 27% for regionally and distantly spread cancer, 

respectively.

Machine learning in bioinformatics, particularly pertaining to breast cancer, has yielded 

positive results. Various methods have been employed with great success in developing 

survival prediction models with large and heterogeneous cancer datasets. Sun et al., for 

example, created a successful 5-year survival prediction model for breast cancer patients 

using multiple kernel learning on various genomic features [5]. Zhao et al. created and 

compared various survival prediction models using different types of popular classification 

algorithms with a high dimensional dataset of breast cancer patients. Authors demonstrated 

that all models performed similarly and consistently [6].

Multi-omics data from breast cancer patients has been made publicly available from The 

Cancer Genome Atlas (TCGA), a joint project between the National Cancer Institute and the 

National Human Genome Research Institute. Using omics data including gene expression, 

methylation, miRNA expression, and CNVs generated from on a set of 1006 patient 

samples, we seek to integrate the multi-omics data at the decision level to improve 

prediction of overall survival for breast cancer patients and identify novel prognostic 

markers. The remainder of the paper is structured as follows: in section 2, we will review 

current research in breast cancer survival prediction and multi-omics data integration. In 

section 3, we describe the proposed methods to construct survival prediction models with 

single genomic data and multi-genomics data, respectively. In section 4, we present the 

results of multiple survival prediction models and the corresponding biological biomarkers 

identified by these models. We will conclude the current work and discuss the future steps in 

section 5 and section 6, respectively.

II. RELATED WORKS

There have been a number of studies that develop breast cancer survival prediction models 

using either genomics data, clinical data, or an integration of the two. Zhao et al. tested 

various classification algorithms to predict 5-year breast cancer survival by integrating gene 

expression data with other clinical and pathological factors. Authors found that all methods 

tested, including gradient boosting, random forest, artificial neural networks, and support 

vector machine, performed rather similarly with accuracy and AUC of .72 and .67, 

respectively. Importantly, this study demonstrates that classification methods may not matter 

as much as the quality of the data itself [6]. Goli et al. developed a breast cancer survival 

prediction model using clinical and pathological data using support vector regression and 

found similar positive results. This study establishes the use of support vectors as a 
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promising route in survival prediction with imbalanced datasets sets, which we explore 

further in our work [7]. Similarly, Gevaert et al. integrated microarray gene expression data 

with clinical data using Bayesian Networks and achieved a maximum AUC of .845. 

Importantly, this study found that incorporating both data modalities improved predictions 

beyond either clinical or gene expression alone [8]. In this study, we hope to not only 

replicate previous success in creating prediction models using machine learning in breast 

cancer data but also expand upon these models by integrating large, heterogeneous datasets.

Compared to survival prediction with single-modality omics data, few studies have 

implemented classification models that integrate multiple types of omics data for survival 

prediction. Sun et al. created 5-year breast cancer survival prediction models using genomic 

data including gene expression, copy number alteration, methylation, and protein expression, 

coupled with pathological imaging data also from TCGA. The authors utilized multiple 

kernel learning to enact feature level integration of all data. Their multi-omics model, 

excluding imaging data, had an AUC of 0.802 ± 0.032. When incorporating the imaging 

data, the AUC went up slightly to 0828 ± 0.034 [5]. This study can serve as a baseline for 

our proposed multi-omics integration method, though we do not incorporate imaging data. 

We have not identified any prior work using decision-level integration of multi-omics data 

for survival prediction. Therefore, the proposed method can potentially demonstrate a novel 

route to utilize multi-omics data for the prediction of survival of breast cancer patients.

With the high dimensionality of omics data by nature, feature selection is essential for 

removing irrelevant features and identifying potential biomarkers. When integrating multiple 

different omics data, feature selection becomes even more important in fitting the predictive 

model efficiently. For example, Zhang et al. used minimum Redundancy Maximum 

Relevance (mRMR) as a feature selection algorithm in using liquid biopsies as a cancer 

subtype diagnostic tool. This method yielded highly informative features that more 

accurately predicted different cancer subtypes when compared to other established gene sets 

[9]. Based on the success in previous genomic data, mRMR will be applied for feature 

selection in our study. On the other hand, Jayanthi et al. used gene set enrichment analysis to 

infer mechanistic role played by several prognostic gene expression biomarkers in breast 

cancer. They found that higher graded tumors had enrichment for cancer-related pathways 

when compared to the less aggressive tumors [10]. To gain an understanding of the resulting 

biomarkers in our study, we incorporate a similar method for the clinical validation of the 

selected omics features.

III. METHODS

A. Dataset

The Cancer Genome Atlas (TCGA) is a large database containing genomic data for over 20; 

000 paired cancer and normal samples from 33 cancer types [11]. Among this data are 1,060 

patient breast cancer samples that were profiled for gene expression, miRNA expression, 

DNA methylation, and copy number variation (CNV). Patients were stratified into two 

groups (survived > 5 years or < 5 years) using metadata provided by TCGA. As seen in 

Table I, patients who are right censored (the last follow-up was prior to the 5-year cutoff, 

and the last known survival status was alive) were excluded from this study since it is 
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unclear to which survival group they should be classified. Therefore, the data used in this 

study consists of 342 breast cancer patients, where 247 patients are long-survival group, and 

95 patients are the short-survival group.

B. Multi-Omics Data Exploration

To visualize the separation of long-survival and short-survival groups, we first apply the 

Kaplan-Meier plot to the 342 breast cancer patients (Fig 1), where we have observed clear 

separation based on our grouping methods (cutoff by 5 years).

We summarized the four omics data modalities (gene expression, miRNA expression, DNA 

methylation, and CNVs) obtained from TCGA dataset in Table II. Principal components 

analysis (PCA) has been applied to each of the four modalities for the entire dataset to 

determine whether the variance within most features naturally delineates the two survival 

classes. After min-max scaling, the first principal component (PC1) was plotted for each 

modality in a scatter plot matrix as seen in Fig 2.

As we can see from Fig 2, the two survival classes are not naturally separated by the most 

highly variable features. This indicates the need for feature selection to identify a subset of 

features that are correlated with patient survival. To identify which data modalities contain 

such features, the mutual information between each feature and the survival classes was 

plotted in Fig 3. This preliminary data exploration indicates that features of the CNV 

modality are far less informative of patient survival compared to those of the other three data 

modalities.

C. Data Scaling and Quality Control

We first removed the right-censored samples from the 1,060 total patients. All data scaling 

and preprocessing were applied only to the remaining 342 patients. To get rid of the low-

quality features, we remove features with all 0 values and features with missing data. To 

reduce the dimensionality and focus on the protein-coding genes, we further removed all 

transcripts from the gene expression dataset that did not code for proteins.

For data scaling, the gene expression and miRNA expression datasets were transformed 

using either the min-max scaler or a robust z-transformer. The min-max scaler coerces the 

range of values for each feature to be between 0-1 by dividing by the max value of each 

feature. The robust z-transformer first removes outliers from each feature and then subtracts 

the mean and divides by the standard deviation. This centers each feature around mean of 0 

with unit variance. CNV did not need scaling since it is discrete. Methylation did not need 

scaling because the values already range between 0-1.

D. Feature Selection

Patient samples were stratified into a training set and a testing set consisting of 291 training 

samples and 51 testing samples, respectively. Feature selection was applied to the training 

set of each data modality in order to reduce the dimensionality of each feature matrix before 

training the classifiers. Multiple feature ranking methods were applied to each modality to 

determine which feature selection method yields the most meaningful features. The ranking 
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method which performed best on cross-validation was selected for further analysis. 

Specifically, four feature selection method including Student’s t-test, mRMR, mutual 

information, and chi-squared test were evaluated. Mutual information was calculated by the 

following formula:

I(X, Y ) = ∑
x, y

PXY (x, y) log PXY (x, y)
PX(x)PY (y) (1)

where PXY (x, y) represents the joint probability between a given feature and the target class. 

mRMR ranks features by iteratively selecting those that are most informative of the target 

class and least similar to all other selected features, which is represented mathematically as a 

quotient, called the mutual information quotient (MIQ) calculated as:

maxi = Ωs
I(i, ℎ)

1
S ∑j = S I(i, j)

(2)

Where I (i, h) is the mutual information between a feature and the target class, I(i, h) is the 

mutual information between two features, and S is the number of features. Chi-squared test 

was applied in place of student’s t-test to perform feature selection on the CNV dataset. The 

Chi-squared test is designed to assess if a significant association exists between categorical 

variables, which applies to the discrete CNV data.

To apply the latter three methods to the continuous data modalities (gene expression, 

miRNA expression, and methylation), we first discretized the continuous omics data. 

Discretization was accomplished by dividing each patient’s expression of a given feature 

into “low”, “middle”, or “high” expression. “Low” expression was assigned if the value for a 

given sample fell below a threshold n standard deviations below the mean. “High” 

expression was assigned to samples above n standard deviations above the mean and 

“middle” expression was considered anything in between −n and n standard deviations. 

Different values for n ranging from 0.5 to 2 were tested. Furthermore, principal components 

analysis (PCA) was applied to the selected feature sets to visually assess the ability of the 

sets to discriminate between the two survival classes.

E. Decision-Level Data Integration

First, individual modality classifiers were trained using the selected features. Then these 

classifiers were used to predict survival for the 51 patient samples initially left aside. 

Receiver operating curves (ROC) and Kaplan-Meier curves were generated to evaluate the 

ability of these classifiers to accurately predict survival from both the high and low survival 

classes. In applying decision-level data integration, a new SVM classifier was trained on the 

same training data using the output predictions from the individual modality classifiers.

The proposed decision-level integration method is visualized in Fig 4. Specifically, this 

ensemble classifier was fed the prediction probabilities from the individual classifiers; these 

were computed using Platt scaling. In total, eleven separate ensemble classifiers were trained 
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for all the different combinations of individual modality classifiers to identify which 

combination of data types performed best.

F. Cross-Validation and Parameter Selection

For each modality, stratified 4-fold cross-validation was used on the training set of patients 

in combination with a grid search to identify the optimal SVM hyperparameters. Values 

tested for the regularization hyperparameter, C, ranged from .001 to 250. As a note, the 

penalty weighting for C was automatically selected to be inversely proportional to class 

frequencies in order to account for imbalanced class sizes in the dataset. Feature set sizes 

ranged between 2-100 at intervals of 2. Finally, the different kernel hyperparameters tested 

included linear, polynomial, radial basis function (RBF), and sigmoid. Heatmaps displaying 

the mean classification score for each parameter combination were constructed for 

visualization. For each modality, the hyperparameter set that maximized mean score across 

folds was advanced, and the classifier was retrained on all of the training data. During this 

process, we considered F1-score, Cohen’s Kappa, and accuracy as scoring metrics for 

evaluating classification performance on each fold, and the metric that yielded the best train/

test accuracies were selected. Finally, this process was repeated ten times, shuffling the 

entire dataset on each iteration, to create validation plots. This allowed for robustness 

assessment of the cross-validation process, ensuring that it consistently yielded similar 

accuracies for both training and test sets. For the integrated classifier, four-fold cross-

validation was used again to find optimal hyper-parameters. Here, the gamma 

hyperparameter was also included in the grid search, with values ranging from 0.01 to 2.

The workflow of the proposed translational pipeline consists of data preprocessing, cross-

validation, feature selection for individual modalities, classification using individual 

modalities, decision-level integration using an ensemble classifier, and biomarker validation. 

The proposed translational pipeline is visualized in Fig 5.

G. Biomarker Analysis

After completing the model building component of this work, an in-depth literature survey 

was conducted on the identified gene expression features, methylation features, and miRNA 

features. Gene set enrichment analysis (GSEA) was further used to understand the biological 

function of the gene expression and methylation biomarkers at the pathway and disease 

level. For the methylation features, the corresponding genes associated with each CpG 

biomarker were used for this analysis. The program Enrichr was used for this purpose and 

was implemented in R. The gene sets tested for overrepresentation come from the following 

databases: WikiPathways 2019 Human, KEGG 2019 Human, BioCarta 2016, Reactome 

2016, HumanCyc 2016, NCI-Nature 2016, GWAS Catalog 2019, GO Molecular Function 

2018, GO Cellular Component 2018, and GO Biological Process 2018. This implementation 

of GSEA uses a hypergeometric test with a false discovery rate correction for multiple 

hypothesis testing.

H. Graphical User Interface (GUI)

We have also implemented a graphical user interface (GUI) for our translational decision-

level integration pipeline so that that classification can be easily run on new patient samples. 
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The primary output is the predicted probability that a new patient belongs to a given class. 

Users are given the option to retrain the classifiers with different feature selection methods 

or to use the ones which performed best. This GUI also allows the users to quickly conduct 

an internet search of the predictive features, using hyperlinks.

IV. RESULTS

A. Single-Modality Classification

The optimal hyperparameters identified from cross-validation and the performance of each 

classifier on the test set are presented in Table III. Heatmaps displaying the mean scores 

across folds for all combinations of parameters were developed (Appendix II).

As seen in Table III, gene expression produced the best classifier of the individual 

modalities, yielding the highest predictive accuracy and AUC. Table III further shows the 

optimal feature selection methods and CV scoring methods that worked best for each of the 

modalities. It should also be noted that all classifiers performed best after min-max scaling 

as opposed to the robust Z-transform. Finally, for discretizing the miRNA and methylation 

data, it was found that cutoffs of one standard deviation and two standard deviations, 

respectively, produced the best results. During cross-validations, it became evident that as 

the feature set size increases above 50, classifiers began to overfit. The observation of 

overfitting with a larger number of features was made clear by the diverging trajectories of 

the training and test set accuracies and AUCs (Appendix I). As a result, the feature set size 

hyperparameter was capped-off at the point where divergence begins to take place. This 

approach ensures that the model does not overfit. In test set accuracy versus training set 

accuracy plots, we do not see considerable performance drops in accuracy for the test set 

predictions compared to the training set, which validates that the model is not overfitting 

(Appendix I).

Lists and literature search results of the final selected features for gene expression, miRNA 

expression, and methylation can be seen in the tables in Appendix III. CNV features were 

not further investigated because they failed to classify survival better than random chance. 

The features highlighted in yellow have previously been denoted as biomarkers predictive of 

breast cancer survival.

Fig. 6 shows the distributions of the top 10 ranked features for each data modality, 

respectively. Clear visual distinctions between the distributions for the two classes can be 

observed for some of the features.

Results from the principal component analysis (PCA) performed on the gene expression 

modality give visual validation that the selected features are able to separate these two 

survival classes.

B. Multi-Modality Classification

With the four individual-modality classifiers, we have plotted the predicted class 

probabilities for all samples of the training data set. Histograms of these predicted 

probabilities and dot plots for combinations of different modality predictions are shown in 
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Fig 7. For the gene expression, miRNA expression, and methylation modalities, a clear 

separation of classes is evident.

Using prediction probability results from the individual classifiers as input into training 

decision-level integrated classifiers, we have observed that the integration of gene 

expression, miRNA expression, and DNA methylation performed best. The results of all 

possible combinations are presented in Table IV, and the best three-modality integrated 

classifier achieved an accuracy of 0.85 and an AUC of 0.87.

The optimal hyperparameters for the best performing classifier were C = 0.25, gamma = 1 

and a polynomial kernel. Fig 8 shows that the best performing integrated classifier achieves 

similar accuracies for both training and testing sets.

We have also plotted Kaplan-Meier survival curves on testing data for each of the individual 

modalities included in the integrated classifier, as well as the integrated classifier itself (Fig 

9). The integrated classifier predicted only 25% of the low survival class in the test group to 

meet 5-year survival criteria, while none of the individual modality classifiers below 40% of 

mortality at five years. Finally, ROC curves are presented in Fig 10, which demonstrate that 

the predictive power of the integrated classifier is considerably higher than that of the three 

individual classifiers used to create it.

The best performing three-modality integration classifier was rerun with the linear kernel so 

that feature weights could be assessed for relative feature importance. Weights of 

−1.25491653, −1.00702866, and −1.4855812 were seen for methylation, miRNA, and gene 

expression respectively, which indicates that all three modalities contribute nearly equally to 

its predictive ability, with gene expression being slightly more important.

Analysis of the weights from the integrated classifier consisting of all four modalities yields 

weights of −1.93756891, −1.96328007, −2.02687788, and −0.35547507 for methylation, 

miRNA expression, gene expression, and CNV, respectively. The low weighting assigned to 

CNV indicates that CNV is not an important modality for predicting survival when 

combined with other modalities. A similar trend was observed for all other modality 

combinations with CNV.

C. Biomarkers Validation and GSEA

A table displaying all ranked features selected as biomarkers can be found in Appendix III. 

Several of the biomarkers identified by our feature selection had been previously reported in 

the literature as prognostic of breast cancer survival, and these are highlighted in yellow in 

the table. In the case of the methylation probes, these were first mapped to the corresponding 

genes that they are in the regulatory region of and then the genes themselves were searched. 

Many of these biomarker genes were originally identified in a study by Uhlen et al. Their 

work conducted transcriptomics analysis on 17 types of cancer in nearly 8,000 patients to 

identify prognostic biomarkers, and these have since been made easily accessible through 

the Human Protein Atlas [12].

Finally, GSEA revealed several molecular pathways that these biomarkers may be acting 

through to impact survival (Appendix IV). Specifically, the enrichment analysis shows that 
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sterol binding, cholesterol binding, EGFR signaling, and glycolysis as some of the pathways 

with the highest significance for enrichment. Notably, differential expression of the PGK 

enzyme between long and short survival classes resulted in enrichment of the glycolysis 

pathway as shown in Fig 11. The PGK enzyme converts ADP to ATP as well as 1,3-BPGA 

to 3-PGA, which is a critical step in cellular energy production. Since pyruvate is the 

primary molecule later converted to ATP in the mitochondria, this enzyme also acts as a 

gateway that can control the citric acid cycle.

D. Demo of the Pipeline with GUI

Fig 12 displays a screen capture of the functional graphical user interface through which the 

pipeline is accessible. A video demonstration of the GUI can be found at https://

drive.google.com/open?id=1SQ86nFxNthXssTPq5AGbDoMeEaXJfIZp.

V. CONCLUSIONS

The best performing classifier was the integration model built using the gene expression, 

miRNA expression, and methylation classifiers. Individually, these three classifiers 

performed similarly in terms of accuracy and AUC with gene expression performing slightly 

better than the other modalities. When the miRNA classifier was combined with the gene 

expression classifier, the accuracy improved by a similar amount as when the methylation 

classifier is combined with the gene expression classifier. When all three of these classifiers 

are combined, the predictive accuracy improves even further. These modality combination 

studies indicate that each of these three modalities contains at least some prognostic 

information that cannot be found in the other two modalities. Importantly, all of these 

classifiers were robust to slight changes in hyperparameters, as is indicated by the smooth 

gradient evident in all the heatmaps (Appendix II). These classifiers also performed similarly 

on the test set as on the training set, indicating their ability to generalize well.

The TCGA dataset possessed possible limitations that limited the performance of these 

models. The relatively small number of patients included is one such limitation. The class 

distribution was also imbalanced, with significantly more patients belonging to the high 

survival class. Due to these limitations, the integrated classifier, as well as individual 

classifiers, would benefit from further training analysis on larger data sets. In analyzing the 

enriched GSEA pathways, some of these pose potential mechanistic explanations of 

observed variable patient survival times. The EGFR transactivation pathway could 

potentially explain the difference in survival times because previous studies have shown this 

pathway as one of the primary mechanisms explaining acquired resistance to anti-estrogen 

therapies used for breast cancer [13]. Increased glycolysis may also explain differences in 

survival times. Some tumors rely on glycolysis for energy production even when the cells 

have a sufficient supply of oxygen. This phenomenon is known as aerobic glycolysis or 

theWarburg Effect. Aerobic glycolysis is associated with tumor aggressiveness and 

decreased survival, potentially explaining the role of the biomarker leading this pathway to 

be enriched, PGK1 [14].
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VI. DISCUSSION AND FUTURE WORK

As future work, we should further validate these predictive classifiers using datasets with 

more samples. As previously stated, different types of classifiers should also be tested on the 

CNV data to see if improved performance can be achieved. Furthermore, it is likely that the 

somewhat arbitrary cutoff of 5-year survival limits the predictive accuracy of the model. It is 

possible, for example, that patients surviving less than 3 years are more genetically similar 

than those surviving less than 5. Further exploratory data analysis should be conducted to 

identify the survival time threshold that maximizes genomic differences between survival 

groups and minimizes genomic differences within survival groups. On this note, predictive 

performance could likely be improved by developing separate integrated classifiers using 1, 

3, 5, and 7 year survival cutoffs. Then, these classifiers could be used in yet another 

ensemble classifier to further improve predictions. Wet lab experimentation should also be 

carried out to validate the presence/absence of the novel prognostic biomarkers identified in 

this study. Finally, further in vitro studies targeting these biomarkers may yield leads to new 

therapeutics for breast cancer that can extend patient survival.
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Fig. 1. 
Kaplan-Meier curve for long-survival (247 patients) and short-survival (95 patients) groups 

of breast cancer patients.
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Fig. 2. 
Pair-wise scatter plot of the first principal component (PC1) for four omics modalities. The 

data points are color coded for long-survival and short-survival groups.
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Fig. 3. 
Mutual information between each feature and survival class of all samples. CNV features 

haves the lowest mutual information compared to the other three modalities.
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Fig. 4. 
Generation of the final integrated prediction model using outputs from the individual 

modality prediction models.
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Fig. 5. 
Pipeline for the decision-level integration of multi-omics data for prediction of overall 

survival of breast cancer patients. We first apply feature selection and predictive modeling in 

individual modalities, we then integrate the prediction probabilities for each modality at the 

decision level by training a second classifier.
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Fig. 6. 
Distributions of the top 10 ranked features, grouped by long and short survival. A. mRNA 

expression; B. DNA Methylation; C. miRNA expression; D. Copy number variations 

(CNVs). Note the CNV features are categorical.
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Fig. 7. 
Pair-wise comparison of individual modality classifier prediction distributions.
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Fig. 8. 
External validation vs. cross-validation performance for the best performing classifier.
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Fig. 9. 
Kaplan Meier Curves for test data classifications (left to right from top-left: Integrated, gene 

expression, DNA methylation, miRNA expression)
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Fig. 10. 
ROC Curves for classifiers (left to right from top-left: Integrated, gene expression, DNA 

methylation, miRNA expression). The AUC of the integrated model of three modalities 

outperforms each individual modality.
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Fig. 11. 
Role of PGK1 in Glycolysis pathway.

Mitchel et al. Page 22

Proceedings (IEEE Int Conf Bioinformatics Biomed). Author manuscript; available in PMC 2020 June 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 12. 
GUI of our translational pipeline for decision-level integration of multi-omics data for 

overall survival prediction of breast cancer patients.
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TABLE I

GROUPINGS OF 1,060 TCGA BREAST CANCER PATIENTS

Group Survival Status # of Patients

Long Survival

Vital status: “dead”
Days to death ≥ 5 years

OR
Vital status: “alive”

Days to last follow up ≥ 5 years

247

Short Survival Vital status: “dead”
Days to death < 5 years  95

Right
Censored

Vital status: “alive”
Days to last follow up < 5 years  718
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TABLE II

OVERVIEW OF Four Omics Data Modalities

Data Modality Measures Continuous/
Discrete

Feature 
Name

# of 
Features Notes

RNA Expression

Fragments per 
killobase of 

transcript per 
million mapped 
reads (FPKM)

Continuous
[0, 1638541951]

Ensembl Gene 
ID 60,483

The number of features includes 
different isoforms

for each gene and some non-coding 
RNA transcripts

Copy Number 
Variation

Gain
Loss

Neutral

Discrete
Gain: 1

Loss: −1
Neutral: 0

Ensembl Gene 
ID 19,729

“Gain” is more copies of a gene than 
normal.

“Loss” is less copies of a gene than 
normal

DNA 
Methylation Beta Value Continuous

[0, 1]
cg probe 
identifier 20,019

A beta value of 0 means that no 
methylation detected for that probe.
Beta value of 1 means that the CpG 

was always methylated

MicroRNA 
Expression

Reads per million 
mapped reads 

(RPM)

Continuous
[0, 589467]

miRNA 
identifier 1,881
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TABLE III

OVERVIEW OF FOUR OMICS DATA MODALITIES

Modality Kernel C # Fea. FS Metrics ACC AUC

Gene Expression Sigmoid 7 28 t-test ACC .75 .74

miRNA Expression Linear 1.5 20 Mutual Info Cohen’s Kappa .73 .71

DNA Methylation RBF 15 54 Mutual Info ACC .61 .71

CNV Linear 5 16 Mutual Info ACC .28 .45
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TABLE IV

INTEGRATED CLASSIFICATION COMBINATION RESULTS

Modalities Single Data Modality Two Data Modalities Three Data Modalities ALL

mRNA Exp. ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

DNA Meth. ✓ ✓ ✓ ✓ ✓ ✓ ✓

CNV ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

miRNA Exp. ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

ACC .75 .62 .29 .73 .81 .60 .83 .79 .81 .75 .71 .85 .79 .81 .85

AUC .74 .71 .45 .71 .80 .75 .83 .71 .80 .66 .78 .87 .79 .79 .84
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