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a b s t r a c t 

This paper presents a SEIAR-type model considering quarantined individuals (Q), called SQEIAR model. 

The dynamic of SQEIAR model is defined by six ordinary differential equations that describe the num- 

bers of Susceptible, Quarantined, Exposed, Infected, Asymptomatic, and Recovered individuals. The goal 

of this paper is to reduce the size of susceptible, infected, exposed and asymptomatic groups to conse- 

quently eradicate the infection by using two actions: the quarantine and the treatment of infected peo- 

ple. To reach this purpose, optimal control theory is presented to control the epidemic model over free 

terminal optimal time control with an optimal cost. Pontryagin’s maximum principle is used to charac- 

terize the optimal controls and the optimal final time. Also, an impulsive epidemic model of SQEIAR is 

considered to deal with the potential suddenly increased in population caused by immigration or travel. 

Since this model is suitable to describe the COVID-19 pandemic, especial attention is devoted to this case. 

Thus, numerical simulations are given to prove the accuracy of the theoretical claims and applied to the 

particular data of this infection. Moreover, numerical computations of the COVID-19 are compared with 

diseases like Ebola and Influenza. In addition, the controller is evaluated with system parameters iden- 

tified by using actual data of China. Finally, the controller tuned with the estimated parameters of the 

Chinese data is applied to the actual data of Spain to compare the quarantine and treatment policies in 

both countries. 

© 2020 Elsevier Ltd. All rights reserved. 
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Coronaviruses are a group of viruses that cause infection rang-

ng from a usual cold to Severe Acute Respiratory Syndrome (SARS)

1] . According to the World Health Organization, the current coro-

avirus disease (COVID-19) was first reported in Wuhan, China, on

1 December 2019. General symptoms of this infection are res-

iratory symptoms such as cough, fever, breathing problems, and

hortness of breath. In more critical cases, pneumonia, kidney fail-

re, severe acute respiratory syndrome, and even death have also

een reported [2] . Given that COVID-19 is an unknown disease,

t is understandable that its development and spread cause ner-

ousness and fear. As a result, we decided to represent a more

omplete model than the other works used, [1] , and control the
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nfection with an optimal control strategy. According to [3] , that

resents a new (SEIAR) model for influenza, in the present pa-

er we introduce a related and also new model with a differ-

nce. Since the coronavirus (or any similar infection) does not have

 vaccine yet, in our new model, in addition to Susceptible, Ex-

osed, Infected, Asymptomatic, and Recovered individuals (SEIAR),

e added a new group of people called “people in quarantine”. In

ddition to continuous-time systems, system dynamics can also be

escribed by discrete-time SEIR epidemic models [ 4 , 5 ]. To further-

ore study about discrete-time SEIR epidemic models with time

elay, readers are referred to [6] . 

It is obvious that transportation among regions has also a

trong impact on the dynamic evolution of a disease which can

pread the infection on a large scale. Thus, [7] considers an SEIR

pidemic model and investigated the impact of transport-related

nfection between two cities. Generally, the number of the popu-

ation may grow because of travel or immigration during a period.

herefore, impulsive change of population should be considered,

hich is generates an impulsive epidemic model. The phenomena
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Fig. 1. Conceptual flow diagram of the SEIAR dynamic epidemic model. 
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of ‘impulsive epidemic model’ has important biological meaning in

epidemic models. Impulse is included in epidemic disease models,

which greatly improves biological background [8] . There are some

studies examining this subject including [9] where a system of im-

pulsive functional differential equations is studied by using new

computational techniques for impulsive differential equations and

[10] , that investigated the stability of impulsive delayed nonlinear

hybrid differential systems. Accordingly, in this paper, we consider

a number of susceptible, infected, asymptomatic and exposed indi-

viduals as an impulsive additive population to the community on a

daily basis, which describe the fact that the coronavirus is spread

by the travel of people unaware of the disease that is added to

the population impulsively. Among these models which have used

impulsive strategy, impulsive control has attracted many interests,

which in this article can be seen as an example of this impul-

sive control [11-14] . Optimal control methods are used to control

numerous kinds of models especially dynamic epidemic models

[15-20] . The adaptability and relative simplicity of optimal control

methods can lead to the improvement of the strategies to control

the different kinds of diseases [ 21 , 22 ]. Human mobility is a criti-

cal issue in epidemic models. Thus, for studying the transmission

of infectious diseases and improving epidemic control we also can

use the large-scale systems. We refer to [23] that deals with the

application of optimal control in large-scale systems that can also

be used in epidemic systems. Therefore, in this paper, the optimal

control strategy is applied to the SQEIAR model to decrease the

number of susceptible, infected, exposed and asymptomatic indi-

viduals in the optimal time. It has been proved that as a result of

this that the number of people in quarantine and the total popu-

lation is increased. China, where the virus first began to spread in

late 2019, has seen an obvious reduction in its rate of new cases

and people known to be infected have since recovered, this is only

for strict quarantine and treatment of infected people. Also, Spain

is another country hit by COVID-19. Therefore, in this study, the

accuracy of the controller designed on the estimated parameters

using real data of China has also been examined and the process

of controlling COVID-19 in both countries will be investigated. Ac-

cordingly, in this paper, it was decided to compare the results of

the study with the actual data to evaluate the performance of this

controller. 

The rest of this paper is divided into 7 sections: In the first

section, we introduce and explain the SEIAR model in detail, after

that the optimal control strategy is applied to the SQEIAR dynamic

model in Section 2 . Also, an impulsive SQEIAR epidemic model is

introduced in Section 3 . In Section 4 the proposed controller ap-

plied to impulsive SQEIAR epidemic model. In the following and in

the fifth section, the results of simulations under different cases

are presented. The comparison of the results of this study with

other diseases and actual data is mentioned in section 6 . Finally,

in section 7 the article ends with conclusions. 

1. SEIAR Epidemic Model 

In this section, we explain the SEIAR epidemic model taken

from [3] but we skipped births and natural mortality (because of

the low μ rate in [3]). This assumption is feasible since the to-

tal population does not change significantly during the spreading

time and we aim at controlling the disease as quickly as possi-

ble. The nonlinear SEIAR epidemiological model includes five non-

negative state variables S ( t ), E ( t ), I ( t ), A ( t ) and R ( t ) that are de-

fined as Susceptible, Exposed, Infected, Asymptomatic, and Recov-

ered people, respectively. Here, S ( t ) represents the number of indi-

viduals who are susceptible to the infection (i.e. they are not in-

fected yet). When a susceptible individual gets infected (i.e. be-

comes exposed to the infection, they move to the exposed peo-

ple group ( E ( t )) that denotes the number of individuals who are
xposed to infection (they are infected but they cannot transmit

he virus). Finally, they reach a level that can transmit the disease

t the rate of κ but a fraction of them have symptoms and the

ther fraction does not have any visible symptoms. We call them

nfected and asymptomatic and they are denoted by I ( t ) and A ( t ),

espectively. The fraction p of exposed people moves to the in-

ected people group and can transmit the infection to the others

nd the fraction ( 1 − p ) of them goes to the asymptomatic peo-

le group who are infected with no symptoms of infection ( A ( t )).

he fraction f of infected people become recovered at the rate of α
nd the remaining of them (the fraction ( 1 − f ) ) will die because

f the infection. Therefore, R ( t ) denotes the recovered people from

he virus, and finally, N ( t ) is the total population size. Fig. 1 shows

 flow diagram of SEIAR dynamic model. The dynamic model is

athematically described as: 

˙ 
 ( t ) = −β�( t ) S ( t ) (1-a)

˙ 
 ( t ) = β�( t ) S ( t ) − κE ( t ) (1-b)

˙ 
 ( t ) = ( 1 − z ) ηA ( t ) − αI ( t ) + pκE ( t ) (1-c)

˙ 
 ( t ) = ( 1 − p ) κE ( t ) − ηA ( t ) (1-d)

˙ 
 ( t ) = zηA ( t ) + fαI ( t ) (1-e)

ere, N(t) = S(t) + E(t) + I(t) + A (t) + R (t) , �(t) = εE(t) + ( 1 − q ) I(t)

 δA (t) . The non-negative initial conditions are (S(0) , E(0) ,

(0) , A (0) , R (0)) = ( S 0 , E 0 , I 0 , A 0 , R 0 ) . The state variables and pa-

ameters are positive values. For further study, view [ 3 , 24 ]. 

. The Optimal Control Problem of SQEIAR Epidemic Model 

Since the vaccines that we have against the virus do not work

nd recovery depends on the strength of the immune system,

any of those who have died were already in poor health. So,

t the moment, the best way to prevent the spread of the virus

s to quarantine susceptible people against the infection. There-

ore, in this section, we want to use optimal control theory to

radicate the epidemic within the shortest pre-defined period of

ime (for example 10 days) by quarantining susceptible people

nd by applying antiviral therapies to infected people. A num-

er of susceptible people must become quarantined at the rate of

( t ), that means they move to a group called quarantined peo-

le, described by Q ( t ). After eradication of the disease the total

ize of people almost includes the quarantined and recovered peo-

le ( R ( t) + Q(t) ∼= 

N(t) ) , because a percentage of infected people

ill die because of infection and not all of them recover. Fig. 2

hows the flow diagram of SQEIAR dynamic model in the presence

f the controller (i.e. the addition of the extra state Q ( t ) is indeed
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Fig. 2. Conceptual flow diagram of the SQEIAR dynamic model with the proposed 

controller. 
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 control action on the SEAIR model describing the spread of the

nfection). The dynamic model with the controller is given by: 

˙ 
 ( t ) = −( β�( t ) + λ( t ) ) S ( t ) (2-a) 

˙ 
 ( t ) = λ( t ) S ( t ) (2-b) 

˙ 
 ( t ) = β�( t ) S ( t ) − κE ( t ) (2-c) 

˙ 
 ( t ) = ( 1 − z ) ηA ( t ) − αI ( t ) + pκE ( t ) − U ( t ) I ( t ) (2-d)

˙ 
 ( t ) = ( 1 − p ) κE ( t ) − ηA ( t ) (2-e) 

˙ 
 ( t ) = zηA ( t ) + fαI ( t ) + U ( t ) I ( t ) (2-f)

here, N(t) = S(t) + Q(t) + E(t) + I(t) + A (t) + R (t) . 

In optimal control theory, the main objective is the mini-

ization of the number of the susceptible, infected, exposed and

symptomatic population while minimizing the cost of applying

he controls U ( t ) (0 ≤ U ( t ) ≤ 1, treatment), and controls λ( t )

0 ≤ λ( t ) ≤ 1, quarantine) in an optimal time interval. Therefore,

he problem is to minimize the cost function J with a free termi-

al optimal time control: 

J ( U ( t ) , λ( t ) , T ) 

= 

T ∫ 
0 

[
A 1 I ( t ) + A 2 A ( t ) + A 3 E ( t ) + A 4 S ( t ) + 

A 5 

2 

U ( t ) 
2 + 

A 6 

2 

λ( t ) 
2 

]

dt + ∅ ( T ) (3) 

A 1 , A 2 , A 3 , and A 4 are the gains of the infected, asymp-

omatic, exposed, and susceptible individuals, respectively. Also,

 5 and A 6 are the gains of controllers with final fixed pre-

efined time T . ∅ ( t ) is a positive increasing function such that

lim 

→∞ 

∅ (t) = ∞ . In other words, we want to reach the optimal con-

rols ( U 

∗( t ), λ∗( t )) in an optimal terminal time ( T ∗) such that

( U 

∗(t) , T ∗) = min { J( U( t) , T ) | U(t) ∈ U 1 , T ∈ R 

+ } and J( λ∗(t) , T ∗) =
in { J( λ( t) , T ) | λ(t) ∈ U 2 , T ∈ R 

+ } . The set of admissible controls

efined by U 1 and U 2 as U 1 = { U (t) | U (t) is measurable, 0 ≤
(t) ≤ U max = 1 , t ∈ [ 0 , T ] } and similarly U 2 = { λ(t) | λ(t) is measur-

ble, 0 ≤ λ(t) ≤ λmax = 1 , t ∈ [ 0 , T ] } . The necessary conditions for

ptimality are expressed by: [∇ 

∅ 
x f 

− p 
(
t f 

)]T 
δx f 

+ 

[
H 

(
x 
(
t f 

)
, U 

(
t f 

)
, λ

(
t f 

)
, p 

(
t f 

)
, t f 

)
+ 

∂∅ 
∂ t f 

]
δt f = 0 (4) 
Here, the gradient ( ∇ 

∅ 
x f 

) is the derivative of ∅ ( x f , t f ) with re-

pect to x f , and t f is final time. Since x ( t f ) is constant value (The fi-

al value of all states is known) then δx f = 0 and H is Hamiltonian,

iven as: 

 = g + p T ( t ) f (5) 

here, p(t) = [ p 1 (t ) , p 2 (t ) , p 3 (t ) , p 4 (t ) , p 5 (t ) , p 6 (t ) ] such that

 1 ( t ), p 2 ( t ), p 3 ( t ), p 4 ( t ), p 5 ( t ), and p 6 ( t ) are adjoint variables and

 = [ A 1 I(t) + A 2 A (t) + A 3 E(t) + A 4 S(t) + 

A 5 
2 U (t) 2 + 

A 6 
2 λ(t) 2 ] and 

f = ˙ x = [ ̇ S (t) , ˙ Q (t) , ˙ E (t) , ˙ I (t) , ˙ A (t) , ˙ R (t) ] T . Therefore, in this study

he Hamiltonian yields as: 

 = A 1 I ( t ) + A 2 A ( t ) + A 3 E ( t ) + A 4 S ( t ) + 

A 5 

2 

U ( t ) 
2 + 

A 6 

2 

λ( t ) 
2 

+ p 1 ( t ) ̇ S ( t ) + p 2 ( t ) ˙ Q ( t ) + p 3 ( t ) ̇ E ( t ) + p 4 ( t ) ̇ I ( t ) 

+ p 5 ( t ) ̇ A ( t ) + p 6 ( t ) ̇ R ( t ) (6) 

lso, 

˙ p ( t ) = − ∂H 

∂x ( t ) 

= 

[
− ∂H 

∂S ( t ) 
, − ∂H 

∂Q ( t ) 
, − ∂H 

∂E ( t ) 
, − ∂H 

∂ I ( t ) 
, − ∂H 

∂A ( t ) 
, − ∂H 

∂R ( t ) 

]T 

(7) 

To calculate the necessary conditions, we use Pontryagin’s max-

mum principle as follows: 

heorem. Given optimal controls ( U 

∗( t ), λ∗( t )) and solutions S ∗( t ),

 

∗( t ), E ∗( t ), I ∗( t ), A 

∗( t ), and R ∗( t ) of the corresponding system, there

xists adjoint variables p 1 ( t ), p 2 ( t ), p 3 ( t ), p 4 ( t ), p 5 ( t ), and p 6 ( t ) that

atisfy 

˙ p 1 ( t ) = − ∂H 

∂S ( t ) 
= −A 4 + λ( t ) [ p 1 ( t ) − p 2 ( t ) ] 

+ ( β( 1 − q ) I ( t ) + βεE ( t ) + βδA ( t ) ) [ p 1 ( t ) − p 3 ( t ) ] (8-a) 

˙ p 2 ( t ) = − ∂H 

∂Q ( t ) 
= 0 (8-b) 

˙ p 3 ( t ) = − ∂H 

∂E ( t ) 
= −A 3 + βεS ( t ) [ p 1 ( t ) − p 3 ( t ) ] 

+ κ[ p 3 ( t ) − p 5 ( t ) ] + pκ[ p 5 ( t ) − p 4 ( t ) ] (8-c) 

˙ p 4 ( t ) = − ∂H 

∂ I ( t ) 
= −A 1 + β( 1 − q ) S ( t ) [ p 1 ( t ) − p 3 ( t ) ] 

+ U ( t ) [ p 4 ( t ) − p 6 ( t ) ] + α[ p 4 ( t ) − p 6 ( t ) f ] (8-d) 

˙ p 5 ( t ) = − ∂H 

∂A ( t ) 
= −A 2 + η[ p 5 ( t ) − p 4 ( t ) ] + zη[ p 4 ( t ) − p 6 ( t ) ] 

+ βδS ( t ) [ p 1 ( t ) − p 3 ( t ) ] (8-e) 

˙ p 6 ( t ) = − ∂H 

∂R ( t ) 
= 0 (8-f) 

here, p i (T ) = 0 , i = 1 , . . . , 6 . By using the optimality conditions,

e can solve the optimal controls as ∇ 

H 
U(t) 

= 0 and ∇ 

H 
λ(t) 

= 0 .

herefore: 

 

∗( t ) = 

I ∗( t ) [ p 4 ( t ) − p 6 ( t ) ] 

A 5 

(9) 

nd 

∗( t ) = 

S ∗( t ) [ p 1 ( t ) − p 2 ( t ) ] 

A 

(10) 

6 
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d  

c  
therefore, 

 

∗( t ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 

I ∗( t ) [ p 4 ( t ) −p 6 ( t ) ] 
A 5 

≥ 1 

I ∗( t ) [ p 4 ( t ) −p 6 ( t ) ] 
A 5 

0 < 

I ∗( t ) [ p 4 ( t ) −p 6 ( t ) ] 
A 5 

< 1 

0 

I ∗( t ) [ p 4 ( t ) −p 6 ( t ) ] 
A 5 

≤ 0 

(11)

and 

λ∗( t ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 

S ∗( t ) [ p 1 ( t ) −p 2 ( t ) ] 
A 6 

≥ 1 

S ∗( t ) [ p 1 ( t ) −p 2 ( t ) ] 
A 6 

0 < 

S ∗( t ) [ p 1 ( t ) −p 2 ( t ) ] 
A 6 

< 1 

0 

S ∗( t ) [ p 1 ( t ) −p 2 ( t ) ] 
A 6 

≤ 0 

(12)

so, the optimal controls are written as: 

 

∗( t ) = max 

{
min 

{
I ∗( t ) [ p 4 ( t ) − p 6 ( t ) ] 

A 5 

, U max 

}
, 0 

}
(13)

and 

λ∗( t ) = max 

{
min 

{
S ∗( t ) [ p 1 ( t ) − p 2 ( t ) ] 

A 6 

, λmax 

}
, 0 

}
(14)

and we can calculate the optimal final time ( T ∗) by: 

H ( S ∗( t ) , Q 

∗( t ) , E ∗( t ) , I ∗( t ) , A 

∗( t ) , R 

∗( t ) , U 

∗( t ) , λ∗( t ) , T ∗) 

+ 

∂φ

∂t 
( T ∗) = 0 (15)

thus, 

∂φ

∂t 
( T ∗) 

= −H ( S ∗( t ) , Q 

∗( t ) , E ∗( t ) , I ∗( t ) , A 

∗( t ) , R 

∗( t ) , U 

∗( t ) , λ∗( t ) , T ∗) 

(16)

therefore, by applying using the characterization of the optimal

control, the following optimality system to optimal control is ob-

tained as: 

˙ S ∗( t ) 

= −
(

β�( t ) + max 

{
min 

{
S ∗( t ) [ p 1 ( t ) − p 2 ( t ) ] 

A 6 
, λmax 

}
, 0 

} )
S ∗( t ) 

(17-a)

˙ Q 

∗( t ) = 

(
max 

{
min 

{
S ∗( t ) [ p 1 ( t ) − p 2 ( t ) ] 

A 6 

, λmax 

}
, 0 

})
S ∗( t ) 

(17-b)

˙ E ∗( t ) = β�( t ) S ∗( t ) − κE ∗( t ) (17-c)

˙ I ∗( t ) = ( 1 − z ) ηA 

∗( t ) − αI ∗( t ) + pκE ∗( t ) 

−
(

max 

{
min 

{
I ∗( t ) [ p 4 ( t ) − p 6 ( t ) ] 

A 4 

, U max 

}
, 0 

})
I ∗( t ) (17-d)

˙ A 

∗( t ) = ( 1 − p ) κE ∗( t ) − ηA 

∗( t ) (17-e)

˙ R 

∗( t ) = zηA 

∗( t ) + fαI ∗( t ) 

+ 

(
max 

{
min 

{
I ∗( t ) [ p 4 ( t ) − p 6 ( t ) ] 

A 4 

, U max 

}
, 0 

})
I ∗( t ) (17-f)

The adjoint equation are also obtained as: 

˙ p 1 ( t ) = − ∂H 

∂S ( t ) 
= −A 4 
+ 

(
max 

{
min 

{
S ∗( t ) [ p 1 ( t ) − p 2 ( t ) ] 

A 6 

, λmax 

}
, 0 

})
[ p 1 ( t ) − p 2 ( t ) ] + ( β( 1 − q ) I ∗( t ) + βε E ∗( t ) + βδA 

∗( t ) ) 

[ p 1 − p 3 ] (18-a)

˙ p 2 ( t ) = − ∂H 

∂Q ( t ) 
= 0 (18-b)

˙ p 3 ( t ) = − ∂H 

∂E ( t ) 
= −A 3 + βε S ∗( t ) [ p 1 ( t ) − p 3 ( t ) ] 

+ κ[ p 3 ( t ) − p 5 ( t ) ] + pκ[ p 5 ( t ) − p 4 ( t ) ] (18-c)

˙ p 4 ( t ) = − ∂H 

∂ I ( t ) 
= −A 1 + β( 1 − q ) S ∗( t ) [ p 1 ( t ) − p 3 ( t ) ] 

+ α[ p 4 ( t ) − p 6 ( t ) f ] 

+ 

(
max 

{
min 

{
I ∗( t ) [ p 4 ( t ) − p 6 ( t ) ] 

A 5 

, U max 

}
, 0 

})
[ p 4 ( t ) − p 6 ( t ) ] 

(18-d)

˙ p 5 ( t ) = − ∂H 

∂A ( t ) 
= −A 2 + η[ p 5 ( t ) − p 4 ( t ) ] + zη[ p 4 ( t ) − p 6 ( t ) ] 

+ βδS ∗( t ) [ p 1 ( t ) − p 3 ( t ) ] (18-e)

˙ p 6 ( t ) = − ∂H 

∂R ( t ) 
= 0 (18-f)

emark 1: Considering that S(t) = −β�(t) + λ(t ) S(t ) then we

an write S(t) = −ϑ(t ) S(t ) in which ϑ( t ) > 0 (because of the

ositivity of parameters and states), therefore, S ( t ) changes are

ubtractive. Since S (0) > 0 then, S ( t ) converges asymptotically

o zero in the finite time. By zeroing S ( t ) it can be concluded

hat βS(t)�(t) = 0 and Eq. 2 − c turns into E(t) = −κE(t) where

> 0 and E (0) > 0, thereupon, E ( t ) converges exponentially to

ero. And so on, A (t) = −ηA (t) ( η > 0, A (0) > 0) then it will be-

ome zero over time. According to the zeroing of A ( t ) and E ( t ) the

q. ( 2 − d ) rewrite as I t = −( α + U( t) ) I (t) in which α + U(t) > 0

herefore I ( t ) → 0. Also, the change of Q ( t ) is also zero and remain

t its maximum value as a result of zeroing S ( t ). R ( t ) converges to

ts maximum value as well indirectly because of zeroing the in-

ected and asymptomatic people. Consequently, the control objec-

ive is attained. 

emark 2: To control the pandemic diseases, disease time con-

rol has more priority and we should be able to drive the disease

odel to the disease-free equilibrium point in the shortest possi-

le time. Our purpose is to minimize the number of susceptible,

xposed, infected and asymptomatic people in the optimal time.

herefore, we considered the cost function with a free terminal

ptimal time control. By minimizing the cost function, the rates

quarantine and treatment rates) computed that give us input op-

imal controls, that is, if we quarantine the people at the rate λ( t )

nd treat them at the rate U ( t ). Then, we can eradicate the disease

n the shortest possible time. 

. An Impulsive SEIAR Epidemic Model 

In this section, an impulsive SEIAR epidemic model is intro-

uced due to sudden change that may occur for any reason, in-

luding travel and immigration for the whole population of the
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Fig. 3. Conceptual flow diagram of impulsive SEIAR dynamic model. 
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Fig. 4. Conceptual flow diagram of impulsive SQEIAR dynamic model with the pro- 

posed controller. 
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tudy area. Fig. 3 displays the diagram of impulsive SEIAR dynamic

odel. The dynamic of SEIAR model changes as follows: 
 

 

 

 

 

 

 

 

 

˙ S ( t ) = −β�( t ) S ( t ) 
˙ E ( t ) = β�( t ) S ( t ) − κE ( t ) 
˙ I ( t ) = ( 1 − z ) ηA ( t ) − αI ( t ) + pκE ( t ) 
˙ A ( t ) = ( 1 − p ) κE ( t ) − ηA ( t ) 
˙ R ( t ) = zηA ( t ) + fαI ( t ) 

, t / ∈ t k (19-a) 

 

 

 

 

 

 

 

 

 

 

 

˙ S 
(
t + 

k 

)
= −β�( t ) S ( t ) + θ1 ( t ) S ( t ) 

˙ E 
(
t + 

k 

)
= β�( t ) S ( t ) − κE ( t ) + θ2 ( t ) E ( t ) 

˙ I 
(
t + 

k 

)
= ( 1 − z ) ηA ( t ) − αI ( t ) + pκE ( t ) + θ3 ( t ) I ( t ) 

˙ A 

(
t + 

k 

)
= ( 1 − p ) κE ( t ) − ηA ( t ) + θ4 ( t ) A ( t ) 

˙ R 

(
t + 

k 

)
= zηA ( t ) + fαI ( t ) 

, t ∈ t k 

(19-b) 

here t k are integer numbers in which k = 1 , 2 , . . . , p, . . . and θ i ( t )

hich indicates the rate of new people being impulsively added to

he population. 

emark 3: Travel or immigration is the reason for this sud-

en change in population to groups ( S, E, I, A ) that is modeled

s impulsive action in the model system. These individuals are

dded to the groups of the population once a day. In the real

orld, the people who are added include susceptible, infected, ex-

osed and asymptomatic people. As a result, this population af-

ects most of the groups and they add a population to each of

hese groups on a daily basis. The controller must also be able

o counteract the effects of this sudden and daily increase in this

opulation. 

. The Optimal Control Problem of the Impulsive SQEIAR 

pidemic Model 

In this section, the controller design equations for the new

odel are modified. Also, Fig. 4 shows the applied controller on

mpulsive SQEIAR epidemic model. In this way, Eq. (19) is changed

s follows: 

˙ 
 ( t ) = −( β�( t ) + λ( t ) ) S ( t ) + 

t 

t 
θ1 ( t ) S ( t ) (20-a) 

˙ 
 ( t ) = λ( t ) S ( t ) (20-b) 

˙ 
 ( t ) = βS ( t ) �( t ) − κE ( t ) + 

t 
θ2 ( t ) E ( t ) (20-c)
t 
˙ 
 ( t ) = ( 1 − z ) ηA ( t ) − αI ( t ) + pκE ( t ) − U ( t ) I ( t ) + 

t 

t 
θ3 ( t ) I ( t ) 

(20-d) 

˙ 
 ( t ) = ( 1 − p ) κE ( t ) − ηA ( t ) + + 

t 

t 
θ4 ( t ) A ( t ) (20-e)

˙ 
 ( t ) = zηA ( t ) + fαI ( t ) + U ( t ) I ( t ) (20-f)

uch that . is floor function. If t �∈ t k ( t k indicates the day), then the

erm 

t 
t θ1 (t) S(t) will be eliminated and if t ∈ t k , term 

t 
t θ1 (t) S(t) is

dded to the model as an impulsive. Similarly, this is true for Eqs.

( 20 − c ) − ( 20 − e ) . 

Similarly to the previous section, the problem is to minimize

he cost function J that is written as Eq.3. So, the optimal controls

re written as: 

 

∗( t ) = max 

{
min 

{
I ∗( t ) [ p 4 ( t ) − p 6 ( t ) ] 

A 5 

, U max 

}
, 0 

}
and λ∗( t ) 

= max 

{
min 

{
S ∗( t ) [ p 1 ( t ) − p 2 ( t ) ] 

A 6 

, λmax 

}
, 0 

}
, 

herefore, the adjoint equation are also obtained as: 

˙ p 1 ( t ) = − ∂H 

∂S ( t ) 
= −A 4 

+ 

(
max 

{
min 

{
S ∗( t ) [ p 1 ( t ) − p 2 ( t ) ] 

A 6 

, λmax 

}
, 0 

})
[ p 1 ( t ) − p 2 ( t ) ] 

− t 

t 
θ1 ( t ) p 1 ( t ) 

+ ( β( 1 − q ) I ∗( t ) + βε E ∗( t ) + βδA 

∗( t ) ) [ p 1 ( t ) − p 3 ( t ) ] (21-a) 

˙ p 2 ( t ) = − ∂H 

∂Q ( t ) 
= 0 (21-b) 

˙ p 3 ( t ) = − ∂H 

∂E ( t ) 
= −A 3 + βε S ∗( t ) [ p 1 ( t ) − p 3 ( t ) ] 

+ κ[ p 3 ( t ) − p 5 ( t ) ] + pκ[ p 5 ( t ) − p 4 ( t ) ] − t 

t 
θ2 ( t ) p 3 ( t ) (21-c) 

˙ p 4 ( t ) = − ∂H 

∂ I ( t ) 
= −A 1 + β( 1 − q ) S ∗( t ) [ p 1 ( t ) − p 3 ( t ) ] 

+ α[ p 4 ( t ) − p 6 ( t ) f ] − t 
θ3 ( t ) p 4 ( t ) 
t 
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a  
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5

 

t  

S  

S  
+ 

(
max 

{
min 

{
I ∗( t ) [ p 4 ( t ) − p 6 ( t ) ] 

A 5 

, U max 

}
, 0 

})
[ p 4 ( t ) − p 6 ( t ) ] 

(21-d)

˙ p 5 ( t ) = − ∂H 

∂A ( t ) 
= −A 2 + η[ p 5 ( t ) − p 4 ( t ) ] + zη[ p 4 ( t ) − p 6 ( t ) ] 

+ βδS ∗( t ) [ p 1 ( t ) − p 3 ( t ) ] − t 

t 
θ4 ( t ) p 5 ( t ) (21-e)

˙ p 6 ( t ) = − ∂H 

∂R ( t ) 
= 0 (21-f)

Remark 4: According to ˙ S (t) = ( −βεE(t) − β( 1 − q ) I(t) − βδA (t)

−λ(t) + 

t 
t θ1 (t)) S(t) , if we can prove (βεE(t) + β( 1 − q ) I(t)

+ βδA (t) + λ(t )) > 

t 
t θ1 (t ) then, the change of S ( t ) is also decreas-

ing and converges to zero. 

Proof of Remark 4: 1. If t �∈ t k then βεE(t) + β( 1 − q ) I(t) +
βδA (t) + λ(t) > 0 fact that according to the positiv-

ity of parameters and states, is always true. 

2. If t ∈ t k then βεE(t) + β( 1 − q ) I(t) + βδA (t) + λ(t) > θ1 (t) ,

since λ( t ) is the control input and when needed, it can appear

at its maximum value (0 ≤ λ( t ) ≤ 1) then λmax (t) = 1 , So in the

worst case, that the impulsive population add to the population

the same size as the number of each group ( θ1 (t) = θmax (t) = 1 )

we can write βεE(t) + β( 1 − q ) I(t) + βδA (t) + 1 > 1 , given

that the states and parameters are positive, βεE(t) +
β( 1 − q ) I(t) + βδA (t) + λ(t) > θ1 (t) is always true. 

Then change of S ( t ) is also decreasing and converges to zero. 

Remark 5: When S → 0 then Eq. (20-c) changes as: 

˙ E ( t ) = 

(
−k + 

t 

t 
θ2 ( t ) 

)
E ( t ) (22)

if we can prove 
∑ 

f or all t 

k > 

∑ 

f or all t 

t 
t θ2 (t) then 

t 2 ∫ 
t 1 

˙ E (t) dt < 0 and

E( t 2 ) − E( t 1 ) < 0 also, since t 2 > t 1 (because t is time) then, the

change of E ( t ) is decreasing and converges to zero E ( t ) → 0. 

To proof of 
∑ 

f or all t 

k > 

∑ 

f or all t 

t 
t θ2 (t) , first, we suppose there is

w 

′ ( w 

′ ≥ 1) day and each day is divided into w ( w ≥ 1) sections.

Now the impact of the whole period is investigated: 

Proof of Remark 5: 1. If 

k > 

t 

t 
θ2 ( t ) (23)

and knowing that in each part of a day (not a whole day, t �∈ t k )

then 

t 
t = 0 , therefore, Eq. (23) changes to k > 0 and in every day

(one single day, t ∈ t k ) then 

t 
t = 1 , therefore, Eq. (23) changes to

k > θ2 ( t ). 

If we add up Eq. (23) for all t ( t �∈ t k and t ∈ t k ) for w 

′ days that

we have w sections per day then we can write: 

w 

′ kw > 

w 

′ ∑ 

i =1 

θ2 ( i ) (24)

Eq. (24) can be written as: 

k > 

∑ w 

′ 
i =1 θ2 ( i ) 

w 

′ w 

(25)

In the worst case ( θ2 (i ) = 1 for all i ) then 

w 

′ ∑ 

i =1 

θ2 (i ) = w 

′ and

the Eq. (25) rewrite as: 

k > 

w 

′ 
′ = 

1 

(26)

w w w 
Since the SQEIAR dynamic is in continuous time, then the num-

er of parts of a day is a large number w → ∞ then k > 0, that

s always true. As a result, the Eq. (24) exist in whole period then

t can be concluded that the change of E ( t ) is also decreasing and

onverges to zero. 2. If 

 < 

t 

t 
θ2 ( t ) (27)

We need to examine the validity of the following equation: 

 

′ kw < 

w 

′ ∑ 

i =1 

θ2 ( i ) (28)

a) If θ2 (i ) = 0 then 

w 

′ ∑ 

i =1 

θ2 (i ) = 0 . Therefore, w 

′ kw < 0, which is

ever true because of all three parameters are positive. 

b) If θ2 (i ) = 1 then 

w 

′ ∑ 

i =1 

θ2 (i ) = w 

′ . Therefore, w 

′ kw < w 

′ , there-

pon kw < 1 and since w → ∞ and k is positive, as a result,

w < 1 is never true. 

From (a) and (b), Eq. (28) is not true. 

So, it can be concluded, when Eq. (28) is not true then

q. (24) is definitely and always true. 

emark 6: As a result of this, the change of E ( t ) is also decreasing

nd converges to zero ( E ( t ) → 0). Since, we proved the number of

usceptible and exposed coverage to zero, therefore, the dynamics

f the asymptomatic (Eq . ( 20 − e ) ) changes as follows: 

˙ 
 ( t ) = 

(
−η + 

t 

t 
θ4 ( t ) 

)
A ( t ) (29)

in similar way, if η > 

t 
t θ4 (t) or η < 

t 
t θ4 (t) , therefore,

 

′ ηw > 

w 

′ ∑ 

i =1 

θ4 (i ) and the change of A ( t ) is also decreasing and

onverges to zero ( A ( t ) → 0). 

emark 7: Since A ( t ) and E ( t ) converged to zero then it is possible

o deduce Eq. ( 20 − d ) reformed as: 

˙ 
 (t) = 

(
−α − U(t) + 

t 

t 
θ3 (t) 

)
I(t) (30)

If we can prove ( α + U(t) ) > 

t 
t θ3 (t) then, the change of I ( t ) is

ecreasing and converges to zero. In similar way for susceptible

eople: 

roof of Remark 7: 1. According to positivity of parameters, there-

ore, If t �∈ t k then α + U(t) > 0 . Therefore, this equation is always

rue. 

2. If t ∈ t k then α + U(t) > θ3 (t) . 

Since U ( t ) is the control input and (0 ≤ U ( t ) ≤ 1) then U max (t) =
 , So in the worst case ( θmax (t) = 1 ) we can write α + 1 > 1 ,

herefore, this equation is always true. 

We proved the number of infected ( I ), susceptible ( S ), exposed

 E ) converged to zero then the Eqs. ( 20 − b ) and ( 20 − f ) r eformed

s ˙ Q (t) = 0 , ˙ R (t) = 0 , it is noticeable that when the change of them

s zero, then they remain on their maximum value. 

After investigating the effect of the proposed controller on

QEIAR and impulsive SQEIAR model, we should simulate our re-

ult. Therefore, we outlined the results of our work in the next

ection as simulation result. 

. Simulation Results 

In this section, a numerical result is given to corroborate

he theoretical results presented in the two previous sections.

ection 5 .A illustrates the result of optimal control applied on the

QEIAR dynamic model while Section 5 .B investigates the impact
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Fig. 5. Changes in population number of asymptomatic individuals over time with and without control. 

Table 1 

Initial values of the SQEIAR epidemic model. 

State variable Initial value 

S 0 8000 

Q 0 0 

E 0 1000 

I 0 500 

A 0 500 

R 0 0 

N 0 10,000 

Table 2 

Parameters values of the SQEIAR epidemic model. 

Parameter Value 

κ 0.54/day 

α 0.3/day 

η 0.3/day 

p 0.1 

f 0.965 

ɛ 0 

δ 1 

q 0.5 

z 0.02 
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1  
f the controller on sudden population change on this dynamic

nd presents the results. The initial parameter values of the SQEIAR

pidemic model is shown in Table 1 and the model is applied to

he case of SARS-Cov-2. Also, the values of the parameters in our

pidemic model based on experimental data are from [25] and

26] . Some values have changed based on the specific case of

OVID-19 according to [2] . 

. Simulation Results of the SQEIAR Epidemic Model 

The Figures below show the difference between the number of

eople from all of the groups in the both cases of absence and

resence of the controller over the period shown. The plot of peo-

le without any control of them is illustrated in red, while the plot

f people with control are shown in blue. 

Fig. 5 compares the number of asymptomatic people without

ny control applied and the number of them with control (includ-

ng quarantining the susceptible people and antiviral treatment of

nfected people). It is clear that the number of asymptomatic peo-

le decreased rapidly to zero (in approximately 20 day). Also, the
eak difference between the number of people when the infection

s uncontrolled by the time, we applied the controller on the dy-

amics is almost 1400. This indicates that the controller has been

ble to reduce the number of asymptomatic people involved. As

hown in Fig. 6 the number of infected people increased from 500

o just over 2200 only in 10 days when there wasn’t any control

f them. But when we applied the controller, the infected people

ave also been going down and converge to zero in about 15 days,

nd the process of control has not caused to exceed the number of

nfected over 500. 

In Fig. 7 , from the first day to day five, there was a big increase

n the number of exposed people. By contrast, there was a big fall

n the number of them controlled by the proposed controller in

lmost ten days. Fig. 8 gives information about the number of sus-

eptible people with and without control in 15 days. It is notice-

ble that control the infection by quarantining susceptible people

as been effective, therefore, the number of susceptible people fell

y 80 0 0 to zero in around five days. 

Fig. 9 compares the number of recovered individuals with and

ithout the applied controller. We can see a decrease in the num-

er of recovered individuals with the controller over the 35-day

eriod. It is noticeable that in almost 15 days only about 2500 of

hem are recovered and remained at 2500. The reason for this is

bvious because when people are quarantined against the infec-

ion, fewer people will get infected then fewer people will recover

hich is discussed in greater detail in Fig. 13 . Fig. 10 also shows

hen there was no control over the infection, the number of quar-

ntined individuals was zero and with the control of them, the

umber gradually increases, which is normal. 

Looking at Fig. 11 , when the controller applied to the dynamic,

ore people survive because the total number of the population

quals the number of recovered and quarantined people. The rea-

on that the total number of people is not exactly equal to 10,0 0 0

eople is that 3.5% of infected people die from their infection.

ig. 12 shows the absolute difference between N ( t ) with and with-

ut the controller, it can conclude the difference between them

eaches to a constant value (approximately 315), meaning the con-

roller has managed to keep 315 more people alive. 

In Fig. 13 , there are two separate cases: with no control and

ith control. In the case of people under control, more than

alf of the recovered people went down while quarantined peo-

le are almost 7200, therefore a total of them is approximately

0,0 0 0( ∼= 

9970). It is noticeable that the majority of susceptible
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Fig. 6. Changes in population number of infected individuals over time with and without control. 

Fig. 7. Changes in population number of exposed individuals over time with and without control. 

Fig. 8. Changes in population number of susceptible individuals over time with and without control. 
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Fig. 9. Changes in population number of recovered individuals over time with and without control. 

Fig. 10. Changes in population number of quarantined individuals over time with and without control. 

Fig. 11. Changes in total number of populations over time with and without control. 
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Fig. 12. Comparison between total population ( N ( t )) with and without the controller. 

Fig. 13. Comparison between the recovered and quarantined individuals and a total of them with and without control. 

Fig. 14. Time evolution of asymptomatic people with and without controls with the impulsive rate of growth. 
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Fig. 15. Time evolution of infected people with and without controls with the impulsive rate of growth. 

Fig. 16. Time evolution of exposed people with and without controls with the impulsive rate of growth. 

Fig. 17. Time evolution of susceptible people with and without controls with the impulsive rate of growth. 
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Fig. 18. Time evolution of recovered and quarantined people and a total of them with and without controls with the impulsive rate of growth. 

Fig. 19. Time evolution of total population of people with and without controls with the impulsive rate of growth. 
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people are quarantined and there are fewer infected people to be-

come recovered. While in the case of people without the controller

the number of recovered people rose to around 9660 and there are

any quarantined people, therefore, a total of them is about 9660. as

a result, the total number of alive people with control is more than

the case without control. Approximately 200 more people have

survived from infection when the infection is under control which

is very significant in a community of 10,0 0 0 people. 

B. Simulation Results of the Impulsive SQEIAR Epidemic Model 

The following figures compare the number of people from dif-

ferent groups introduced before with and without the controller.

The difference between these figures and the figures of Section 5 .A

is that in this section, some people are being added at variable

rates θ i ( t ) to susceptible, exposed, infected and asymptomatic in-

dividuals every day. This fact means the number of these people

will never be zero but the controller has been able to overcome

this population growth and eradicate the disease. 
There is a number of asymptomatic people that is added to the

symptomatic group of travelers and migrants entering the soci-

ty every day at variable rates and they do not allow declining the

opulation of asymptomatic individuals. They are also causing the

pidemic to continue, so with proper and optimal control, we must

revent it from spreading in the community. Fig. 14 illustrates the

umber of asymptomatic people decreasing daily and it eventually

eaches 250 and remains stable. This is because populations that

ome into society every day change suddenly and prevent this de-

line. On the other hand, the blue line shows that the controller

as been able to overcome this population stagnation and reduce

heir numbers. 

Since those who are added to the society (by travel or immi-

ration) also include the infected individuals which cause the out-

reak, daily injections of people on to the whole population under

tudy have a profound effect on the number of infected people too.

he controller was also able to reduce the number of infected peo-

le because if the infected population was not controlled, approxi-

ately 500 people in the community would infect and spread the
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Fig. 20. The absolute of total population of people with and without controls with the impulsive rate of growth. 
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Table 3 

Parameters values of the SQEIAR epidemic model. 

Parameter Ebola [27] Influenza(H2N2) [24] COVID-19 

κ 0.0023 0.526 0.54 

α 0.178 0.244 0.3 

η 0.178 0.244 0.3 

p 0.76 0.667 0.1 

f 0.26 0.98 0.965 

ɛ 0 0 0 

δ 1 1 1 

q 0.5 0.5 0.5 

z 0.02 0.9 0.02 

t  
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s  

p  

d  

l  

t  
isease daily. But the reason for the population staying constant is

hat as infected people are added to the population daily, some of

hem recover and go to the recovered group and some die from

he infection then the population almost reaches stability and re-

ains constant that is controlled by the controller, and finally the

umber of infected people has fallen to zero shown in Fig. 15 . 

In Figs. 16 and 17 , it can be observed the impact of the sud-

en population increase on the number of exposed and susceptible

ndividuals, respectively. The controller reduced the population of

usceptible individuals to zero within five days and the population

f exposed individuals to the lowest possible extent. 

As previously mentioned, the number of individuals in quaran-

ine is equal to zero when there is no control over the disease,

ut when we implement the controller, the number of people in

uarantine increases. It is noticeable in Fig. 13 that the number of

eople in quarantine when no population enters the community

s approximately 7200, but in Fig. 18 when people come into the

ommunity that included susceptible people too, the same number

ust also be quarantined daily. Thus, there was about 700 increase

n numbers and the number of people in quarantine went up to

pproximately under 80 0 0. The number of recovered people has

lso increased compared to the time when there was no sudden

njection of the population because those who enter the commu-

ity include infected people who go to the recovered group after

he recovery and increase the number of recovered people. While

ome people are adding to the population and there is no con-

rol over it, the number of recovered people is greater than when

he population is controlled because in a controlled case, because

he susceptible individuals are rapidly quarantined and fewer peo-

le get infected and eventually recover. The total number of people

n the quarantine plus the recovered ones in the controlled case is

igher because in the uncontrolled case there were no quarantined

eople at all, but in the controlled case, the people in the quaran-

ine are all healthy and have a large share in society. The reason for

he daily increase in the R (t) + Q(t) plot is that the population of

he community is dynamic, not closed and a number is added to

he population every day. ( ̇ N (t) � = 0 ) 

Fig. 19 shows the number of changes in the total population

ize each day when there is no control over dynamic compared

ith the number of them under proposed optimal control. As

hown, we were able to keep more of the population alive with

e  
he controller compared with when the infection was spreading

ithout any control. Fig. 20 shows the absolute difference between

he whole population with and without the controller. The differ-

nce between them is a constant value (equal to 350), meaning the

ontroller has managed to keep 350 more people alive per unit of

ime. 

. Comparison with other Diseases and with Actual Data 

This section is divided into four sub-section, in the first and

econd sub-section (A and B, respectively), the results of the con-

roller applied to the impulsive epidemic model are compared for

wo different diseases (Ebola Virus Disease (EVD) and influenza). In

he following sub-section C, the simulation result for three types of

iseases (COVID-19, Ebola, and Influenza) are compared together.

inally, the comparison of simulation results with real data of

hina and Spain is also given in the last sub-section. The parame-

ers of each disease are represented in Table 3 . 

. Ebola Virus Disease (EVD) 

As it can be seen in Fig. 21 , the number of susceptible people is

educed in only 5 days when the controller is applied to the impul-

ive epidemic model. There is a big fall in the number of exposed

eople when the controller is applied to the dynamic and this re-

uction is acceptable for Ebola disease because the rate of ( κ) is

ow, that is, the exposed people, go to the infected and asymp-

omatic group at a lower rate. Also, since the population is consid-

red dynamic, some people are added every day (whether traveling
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Fig. 21. The Comparison between ( S ( t ), Q ( t ), E ( t ), I ( t ), A ( t ), R ( t )) with and without the controller in Ebola. 
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or migrating) and it prevents the population of groups from declin-

ing rapidly. Despite the Ebola virus disease is a severe, often fatal

illness in humans and its case fatality rate is 90% the controller

was still able to reduce the number of infected significantly. When

recovered people were controlled, the number of them is increased

by almost 550 people and reached to almost 1300 in 40 days. 

B. Influenza (H2N2) 

According to Fig. 22 and as stated in detail in the preceding

sections, the controller was able to properly control the suscepti-

ble individuals and move them to the quarantined people group.

Also, the number of infected and exposed people converged to

zero in only 10 days with the controller. The number of asymp-

tomatic people with the controller has also reached its lowest

level and the reason it takes longer to reach zero is that there

is no direct controller on it and zeroing of this is as a result

of zeroing of the other groups, which are discussed in detail in
emark 6 . Recovered people in the presence of controller are re-

uced compared to when there was no control over them because

hen there is no control over the disease, the number of infected

eople is higher, so the number of recovered will be more, also

he death rate in influenza is less than Ebola. In the end, the

umber of people in quarantine with controllers has reached its

eak. 

. Comparison of Three Types of Diseases (COVID-19, Ebola, 

nd Influenza) 

As it can be seen in Fig. 23. a, the controller was able to con-

rol the dynamic and the susceptible individuals are quarantined

n all three disease groups. In Fig. 23. b, the number of exposed

eople in both influenza and corona groups are converged to

ero by the controller in ten days. But the number of exposed

eople in the Ebola disease group is reached to zero later be-

ause the rate of κ in this disease is lower than the other group
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Fig. 22. The Comparison between ( S ( t ), Q ( t ), E ( t ), I ( t ), A ( t ), R ( t )) with and without the controller in Influenza. 
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nd prevents exposed individuals from joining groups A and I

apidly. In Remark 5 , it is proved that E eventually reaches zero.

ig. 23. c shows the number of infected people went down by

ontroller and according to Fig. 23. d in every three groups, the

umber of asymptomatic people converged to zero later because

here was no direct controller on them, but in the end, accord-

ng to the evidence in Remark 6 , they eventually got to zero.

ince exposed people have a higher rate of infection ( κ) in coro-

avirus (according to Table 3 ), so more of them get infected and

ventually more of them will be recovered, which is quite ev-

dent in Fig. 23. e. The number of recovered people in Ebola is

ower than the other two groups, this reduction is acceptable for

bola disease because the mortality rate ( f ) is very high there-

ore there are fewer infected people, as a result, fewer recovered

eople. Finally, in Fig. 23. f, the susceptible individuals are well

uarantined and the number of people in the quarantine group is
ncreased. T  
. Comparison of the Simulation Results with Actual Data of 

hina and Spain 

In this sub-section, divided into two prats (1 and 2), the accu-

acy of the designed controller is examined by the actual data of

hina. Then, the controller, whose parameters were estimated us-

ng actual data of China, is applied to the actual data of Spain to

how the applicability of quarantine and treatment policies in both

ountries. 

hina 

To evaluate the SQEIAR epidemic model, we need to study a

uccessful model of this type of operation (quarantine and treat-

ent). China has been one of those countries involved with the

irus that has been able to control and eventually eradicate it.

herefore, in this part, the results of this study are compared to the
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Fig. 23. The comparison between different groups of people in one community against three types of disease like Influenza, Coronavirus, and Ebola 

( S ( t ), Q ( t ), E ( t ), I ( t ), A ( t ), R ( t )). 
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actual data from China, to find out the efficiency of the designed

controller. If we look at the total population of cities infected with

coronavirus in China, they are approximately 80,0 0 0,0 0 0 people.

The number of those who have tested positive for the coronavirus

and recovered people given by the National Health Commission of

the People’s Republic of China (from 22 January 2020 to 22 March

2020) [28] shown in Fig. 24 respectively. According to [29] , about

20% of those who have tested positive for the coronavirus have no

symptoms of the disease (asymptomatic people) and the rest of

them are infected. 

Using this real data, the number of other states can be esti-

mated. Since R (Basic Reproduction Number [ 3 , 30 ]) equal to 2
0 
hen the value of E ( t ) can be calculated as E(t) ≈ 2 I(t) + 2 A (t) ,

hat is, each person whether asymptomatic or infected can in-

ect two other people and by assuming 98% of people are quar-

ntined, the number of susceptible people can easily be calculated

s S(t) = N(t) − Q(t) − E(t) − I(t) − A (t) − R (t) . 

If the model output is considered as the total num-

er of quarantined and recovered people, therefore, the pa-

ameters of the system can be identified by actual data

iven from [27] . For this purpose, we consider y (t) =
 0 1 0 0 0 1 ] [ S(t) Q(t) E(t) I(t) A (t) R (t) ] T 

hich implies y (t) = Q(t) + R (t) . By using Eq. ( 2 − b ) ,
˙ 
 (t) = λ(t ) S(t ) that is equivalent to dQ(t) 

dt 
= λ(t ) S(t ) and then
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Fig. 24. The number of people who has tested positive for the virus and recovered people in China. 
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Q(t) = λ(t ) S(t ) dt and 

t 
∫ 
0 

dQ(t ) = 

t 
∫ 
0 
λ(t ) S(t ) dt . By assuming

is stationary, then Q(t) − Q(0) = λ
t 
∫ 
0 

S(t ) dt . Since Q(0) = 0

hen finally Q(t) = λ
t 
∫ 
0 

S(t ) dt . In the same way and by assum-

ng U is stationary, since ˙ R (t) = zηA(t) + ( fα + U ) I(t) then

 (t) = zη
t 
∫ 
0 

A (t) dt + ( fα + U ) 
t 
∫ 
0 

I(t ) dt . Since the actual data used

eported daily, then the model is changed to a discrete-time

odel. By this fact it can be deduced 

 k = zη
k ∑ 

i =0 

A i + ( fα + U ) 

k ∑ 

i =0 

I i + λ
k ∑ 

i =0 

S i (31) 

here y k is the output of k th day, therefore: 

 k = 

[
k ∑ 

i =0 

A i 

k ∑ 

i =0 

I i 
k ∑ 

i =0 

S i 

][ 

zη
fα + U 

λ

] 

(32) 

Define the parameter vectors θ , and the information vec-

ors ϕk as θ = [ θ1 θ2 θ3 ] 
T = [ zη fα + U λ] T and ϕ k =

 ϕ 1 ϕ 2 ϕ 3 ] 
T = [ 

k ∑ 

i =0 

A i 

k ∑ 

i =0 

I i 
k ∑ 

i =0 

S i ] 
T , respectively. We ob- 

ain the following evaluations: 

 k = ϕ 

T 
k θ (33) 

efine a quadratic criterion function: 

 ( θ ) = 

ℵ ∑ 

k =0 

[ e k ] 
2 = 

ℵ ∑ 

k =0 

[
y i − ϕ k 

T θ
]2 = ( Y k − �k θ ) 

T 
( Y k − �k θ ) 

(34) 

here ℵ is the total number of samples and the vector Y k and the

atrix �k are defined as Y = [ 

y 1 
y 2 
. 
. 
. 

y ℵ 

] ∈ R 

ℵ and � = [ 

ϕ 1 
T 

ϕ 2 
T 

. 

. 

. 

ϕ ℵ T 

] ∈ R 

ℵ × 3 . By

inimizing the criterion function J , the least-squares estimate of θ
s obtained as: 

= 

(
�T �

)−1 
�T Y (35) 
However, since � and Y are known, it is possible to calculate

he parameter estimation vector θ via the above equation directly.

eplacing the obtained parameters in the model of this study and

omparing the responses, the following results are obtained. If new

ata is added to the system while system is estimating at the same

ime, it should be used recursive Identification as described in de-

ail [31] . 

As seen in Fig. 25 , the results of applying the controller on the

riginal model are compared to a model whose parameters are es-

imated using real data, and the total number is scaled for a pop-

lation of 10,0 0 0. In part ( a ), when the controller is applied to the

odel using the identified parameters, the rate of reduction of the

usceptible individuals is lower than before (when the controller

s applied to the original model), which is also justified in reality

ut ultimately achieved zero. Part ( b ) shows the diagram of the ex-

osed people, when the model parameters were identified by us-

ng real data, initially had a peak, but the controller converged it

o zero in about twenty days. Part ( c ) of Fig. 25 shows that unlike

uarantine and treatment in the real-world, the peak in the num-

er of infected people does not show up in modeling, but eventu-

lly converges to zero. In part ( d ), similar to part ( c ), the diagrams

f the asymptomatic population have a higher peak than people

n the modeling, and have growth about 1800 in population, but

ave finally become zero by the 30th day. A valid point can be

ound in part ( e ) is the reduction in the population of recovered

eople (with real data) and the reason for this is that the recov-

ry time is actually longer and more delayed in real-world society.

art ( f ) shows the quarantine of individuals at a rate of 98 percent,

hich is equal in both cases, and 98 percent of the total popula-

ion (10,0 0 0) are quarantined successfully. As can be seen from the

esults of these studies and since China, where the virus originated

rom, have implemented quarantines and got good results and also

uarantine is by far one of the most effective ways to prevent the

pread of the disease like coronavirus that there is still no vaccine

or them. So, it is concluded that without the quarantine, the dis-

ase spreads very rapidly and will be highly fatal and catastrophic.

pain 

In this part, similar to part 1 process, the results obtained from

pplying the desired controller to the disease and the actual data

re compared. In part 1, unknown parameters are estimated us-

ng real data from China. In Fig. 26 , 2 diagrams are compared. The
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Fig. 25. The comparison between different groups of people in one community with proposed control and actual data ( S ( t ), Q ( t ), E ( t ), I ( t ), A ( t ), R ( t )). 

 

 

 

 

 

 

 

 

 

 

 

 

 

i  

t  

f  

c  

f  

o  

e  

H  

q  

r  

d  

p  

months. 
diagram in blue shows the number of confirmed cases in Spain,

which is based on actual data, extracted from the Health Alert and

Emergency Coordination center (from 24 Feb to 29 May 2020) [32] .

The red graph shows the number of declining trends in the num-

ber of infected people when the controller is applied. The con-

troller parameters are estimated by the actual data from China.

As it is known, if Spain had taken the process of controlling the

COVID-19, it could have controlled the disease well and within

about 20 days. In the case that the desired controller applied to the

model, the number of infected people has finally reached approx-

imately 62,500, but in the case without the controller, the num-

ber of infected people has reached 10 0,0 0 0 and has an upward

trend after 85 days, which has reached zero in the shortest time
n the controlled case. It is essential to note that the evidence in

his paper, given from modeling studies, proves how quarantine af-

ects the COVID-19 outbreak. Putting quarantine in place early and

ombining it with medical treatment is critical if it is to be ef-

ective to control the spread of COVID-19. Also, the quarantining

f travelers from a country involved with COVID-19 reduces dis-

ase transmission and deaths and also makes greater cost-savings.

owever, if the government enact strict laws to ban rallies and

uarantine and other different ways to getting people away from

allies like: Isolation, social distancing, community containment,

riving ban and etc., in the shortest possible time, it can be ex-

ected that the COVID-19 prevalence will decline in the next few
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Fig. 26. The comparison between the number of infected people in Spain with and without proposed controller. 
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. Conclusion 

In this paper, the SEIAR dynamic epidemic model was improved

ith a new group of people called quarantined people (SQEIAR).

he goal of this article was to eradicate the infection by decreasing

he number of infected, exposed, and asymptomatic and quarantin-

ng the susceptible people with optimal control that applied to the

QEIAR model. Two control actions are employed to achieve this

bjective: quarantine and treatment of infected individuals. The

ontryagin’s maximum principle was used to describe the optimal

ontrols and the optimal final time. Also, an impulsive epidemic

odel was considered to indicate the sudden growth in popula-

ion and that model was controlled by optimal control strategy.

he presented approach is suitable to describe models for infec-

ious diseases caused by a group of viruses called coronavirus for

hich there is no vaccine yet. Thus, the theoretical results were

llustrated for the case of COVID-19. Our simulation results of the

OVID-19 were compared with Ebola and Influenza. Also, numeri-

al simulation corroborated our theoretical results. Then, the sys-

em parameters were identified using actual data of China. Even-

ually, the process of quarantine and treatment of China and Spain

as compared by applying the controller with the estimated pa-

ameters using actual data of China. 
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