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Elevated glucose is associated
with hemorrhagic transformation
after mechanical thrombectomy
Iin acute ischemic stroke patients
with severe pretreatment
hypoperfusion
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Several pretreatment variables such as elevated glucose and hypoperfusion severity are related to
brain hemorrhage after endovascular treatment of acute stroke. We evaluated whether elevated
glucose and severe hypoperfusion have synergistic effects in the promotion of parenchymal
hemorrhage (PH) after mechanical thrombectomy (MT). We included 258 patients MT-treated who had
a pretreatment computed tomography perfusion (CTP) and a post-treatment follow-up MRI. Severe
hypoperfusion was defined as regions with cerebral blood volume (CBV) values < 2.5% of normal brain
[very-low CBV (VLCBV)-regions]. Median baseline glucose levels were 119 (IQR =105-141) mg/dL.
Thirty-nine (15%) patients had pretreatment VLCBV-regions, and 42 (16%) developed a PH after MT.
In adjusted models, pretreatment glucose levels interacted significantly with VLCBV on the prediction
of PH (p-interaction =0.011). In patients with VLCBV-regions, higher glucose was significantly
associated with PH (adjusted-OR=3.15; 95% Cl =1.08-9.19, p=0.036), whereas this association was
not significant in patients without VLCBV-regions. CBV values measured at pretreatment CTP in
coregistered regions that developed PH or infarct at follow-up were not correlated with pretreatment
glucose levels, thus suggesting the existence of alternative deleterious mechanisms other than

direct glucose-driven hemodynamic impairments. Overall, these results suggest that both severe
hypoperfusion and glucose levels should be considered in the evaluation of adjunctive neuroprotective
strategies.

Mechanical thrombectomy (MT) is the most effective treatment for stroke patients with acute large-vessel occlu-
sions in the carotid territory"2. However, about half of MT-treated patients do not achieve an adequate clinical
recovery at follow-up even despite complete recanalization?. One of the pathophysiological processes that has
been implicated in the lack of response to recanalization therapies is the risk of hemorrhagic transformation
due to blood-brain barrier disruption®*. Indeed, among patients with anterior circulation stroke undergoing
endovascular therapy, the presence of hemorrhagic transformation in follow-up neuroimaging, especially in the
form of parenchymal hematomas (PH), has been associated with poor long term functional outcome®®.
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The presence of PH in post-treatment neuroimaging occurs in 5 to 16% of acute stroke patients treated
with MT and has been related with several pretreatment variables including severe hypoperfusion and
hyperglycemia”®. The presence of brain regions with very low cerebral blood volume (VLCBV) in pretreatment
computed tomography perfusion (CTP) has been consistently associated with the risk of hemorrhagic trans-
formation although the sensitivity and positive predictive values of risk estimations are relatively low compared
with its high specificity and negative predictive values’''. Accordingly, severe hypoperfusion might not be a
sufficient risk factor for the occurrence of hemorrhagic transformation and additional concurrent susceptibil-
ity conditions might be needed, such as pretreatment hyperglycemia. The presence of hyperglycemia at stroke
onset has been associated with a higher risk of hemorrhagic transformation after reperfusion therapies as well
as with significant reductions on the benefits of MT*'>!*. The potential mechanisms contributing to exacerbated
neurovascular injury and poor outcomes are multifactorial and include augmented oxidative and nitrosative
stress, tissue acidosis, mitochondrial dysfunction, thromboinflammation and impairment of cerebral perfusion,
among others'*!>. However, in preclinical models the interaction between hyperglycemia and reduced cerebral
blood volume or blood flow during ischemia and at reperfusion is controversial'-%.

Herein, we aimed to evaluate whether elevated glucose levels modify the association between severe hypop-
erfusion and hemorrhagic transformation after MT and to describe whether this association might be explained
by glucose-driven hemodynamic impairments before reperfusion.

Methods

Patients. Patients were part of a prospectively collected clinical registry of acute ischemic stroke patients
treated with reperfusion therapies in a single Comprehensive Stroke Center. The study population included
consecutive patients with occlusions in the carotid territory treated with endovascular recanalization therapy
between March 2010 and December 2017. Additional inclusion criteria for this analysis were: 1/the availability
of a technically adequate pretreatment whole-brain CTP scan, and 2/the availability of a post-treatment follow-
up MRI for evaluating the development of hemorrhagic transformation. A total of 258 patients fulfilled these
criteria and were finally included in the study (Supplementary Fig. S1 online). MT was performed according to
contemporary guidelines in patients with a proximal artery occlusion on CT angiography and a pretreatment
ASPECTS equal or higher than 6, as previously reported"". Final vessel patency was graded on digital subtrac-
tion angiography (DSA) at the end of MT according to the modified Thrombolysis in Cerebral Infarction (TICI)
score and successful recanalization was defined as a grade 2b-3. The study protocol was approved by the local
Clinical Research Ethics Committee of Hospital Clinic de Barcelona (registration number HCB/2019/0805)
under the requirements of Spanish legislation in the field of biomedical research, the protection of personal data
(15/1999) and the standards of Good Clinical Practice, as well as with the 1964 Helsinki declaration and its later
amendments or comparable ethical standards. Participants in the study consented for storage of their data in
a local database for the purpose of research that was declared into a Web-based registry that satisfied all legal
requirements for protection of personal data, for monitoring by the Catalan Health Department.

Patients were admitted into a Stroke Unit and the Trial of Org 10,172 in Acute Stroke Treatment (TOAST) cri-
teria was used to classify all qualifying strokes after diagnostic workup. Clinical data was prospectively collected
including: demographics, laboratory tests, risk factors, concomitant therapies, neuroimaging, clinical course
and functional outcome. Neurological status was monitored with the National Institutes of Health Stroke Scale
(NTIHSS) score and functional outcome was quantified using the modified Rankin Scale (mRS) score at 3 months®.

CTP imaging analysis. Patients were scanned using a SIEMENS Somatom Definition Flash 128-section
dual-source multidetector scanner (Siemens Healthineers, Erlangen, Germany), with a 98 mm z-coverage and
a total acquisition time of 60 s (31 time points), as previously described'!. The imaging protocol included a
baseline multimodal whole-brain CT scan, which included a Non-Contrast CT (NCCT), a CT angiography
and a CTP. Pretreatment ASPECTS was assessed on NCCT, and good collaterals were defined as collateral sup-
ply filling>50% of the occluded arterial territory?*. CTP maps were calculated by commercial software MIStar
(Apollo Medical Imaging Technology, Melbourne, Australia) using a model-free singular value decomposition
algorithm with a delay and dispersion correction. The software generates cerebral blood flow (CBF), cerebral
blood volume (CBV), mean transit time (MTT) and Delay Time (DT) maps. An image processing pipeline using
in-house fully-automated software running in Matlab (v.2017b, Mathworks, Natick, MA) was developed in order
to extract perfusion volumes. An absolute threshold of 3 s was selected on the DT map to obtain the hypoper-
fused tissue (perfusion lesion)'!. Ischemic core was extracted on CBF maps after applying a threshold of relative
CBF<30%. VLCBV was defined as values on CBV maps lower than 2.5% of normal brain in the contralateral
hemisphere with a volume of at least 1.5 mL"".

Follow-up MRI. After MT, a follow-up MRI was performed within a median of 41 h (IQR 26-69 h) of
hospital admission. The MRI included diffusion-weighted images and Gradient-Echo T2*-weighted sequences.
The bleeding complications were scored on follow-up Gradient-Echo T2*-weighted sequences by 2 experienced
stroke neurologists (A.R. and S.A.) according to the European Cooperative Acute Stroke Study criteria as hem-
orrhagic infarction (HI) and PH type 1 and type 2%. In brief, PH1 was defined as bleeding <30% of the infarcted
area with mild space-occupying effect, and PH2 as bleeding>30% of the infarcted area, with space-occupying
effect. Symptomatic intracranial hemorrhage was defined as any PHs associated with an increment of at least 4
points in the NIHSS score. Investigators blinded to clinical data and baseline CTP analysis evaluated in consen-
sus the post-treatment imaging studies. To perform a CTP-MRI regions of interest analysis each CTP map was
coregistered to the corresponding follow-up DWTI using a rigid coregistration protocol (6-degrees of freedom)
implemented with statistical parametric mapping (SPM12, Functional Imaging Laboratory, University College
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London, London, UK). An extended description of the imaging methods can be found in the Suplementary
methods.

Statistics. Continuous variables were reported as mean (standard deviation, SD) or median (interquartile
range, IQR) and were compared with the Student t test, ANOVA, Mann-Whitney, or Kruskal-Wallis tests as
appropriate. Categorical variables were compared with the x? and Fisher exact tests. Univariate logistic regres-
sion models were used to assess the association between VLCBV-regions, glucose levels and their interaction
on the risk of PH and with other predefined clinical endpoints. Multivariate logistic regression models were
used to adjust the estimations for the effect of confounders based on exploratory analysis (p <0.05 on univari-
ate analysis) and avoidance of collinearity. A backwards-stepwise procedure was implemented to reach the final
models constructed for assessing the role of pretreatment glucose levels on the risk of PH in subgroups defined
by VLCBV regions in order to avoid overfitting. The Hosmer-Lemeshow goodness-of-fit statistic was used to
assess final model fit. Receiver-operating characteristic (ROC) curve analysis was performed to determine the
most accurate cutoff point (Youden’s index) of pretreatment glucose levels for the prediction of PH. To evaluate
the relationship between glucose levels and CBV values a set of regression models were used including linear,
logarithmic, quadratic and cubic curve estimations. The analyses were performed using SPSS Version 22.0 and
the level of significance was established at the 0.05 level (2-sided).

Results

Baseline traits of the included population according to PH occurrence. Overall, 258 patients
with a median (IQR) NIHSS 17 (10-20) at admission and treated with MT within a median (IQR) of 231
(161-334) minutes from stroke onset were included in the study. Median (IQR) baseline glucose levels were
119 (105-141) mg/dL (6.6 mmol/L [5.8-7.8] mmol/L). Thirty-nine (15%) patients had pretreatment VLCBV-
regions, and 42 (16%) developed a PH in follow-up neuroimaging [30 (12%) had PH1 and 12 (5%) had PH2].
Histograms showing the distribution of pretreatment glucose levels and the volume of regions with VLCBV are
shown in the Supplementary Figure S2 online, and the baseline traits of the population according to the presence
of VLCBV regions are shown in Supplementary Table 1. Table 1 provides descriptive data on baseline clinical
and radiological variables associated with the occurrence of PH. In univariate analysis, PH was associated with a
higher baseline stroke severity (NIHSS and ASPECTS score), a larger volume of ischemic tissue with VLCBV, a
higher proportion of VLCBYV regions, cardioembolic stroke etiology, as well as longer times from stroke onset to
CTP acquisition, MT onset and successful recanalization. The presence of PH at follow-up was associated with
increased odds for shifting to worse mRS score categories (OR 1.89, 95% CI 1.08-3.30, p=0.025).

Predictors of PH in the whole population: multivariate analysis. In multivariate analyses, both
the volume of ischemic tissue with VLCBV values and the presence of VLCBV regions were associated with an
increased risk of PH (Table 2). Overall, the sensitivity, specificity, positive predictive value and negative predic-
tive value of the presence of VLCBV regions for predicting the occurrence of PH were 31%, 88%, 33% and 87%,
respectively. Additional variables that remained associated with PH were successful recanalization beyond 4.5 h
from stroke onset and cardioembolic stroke etiology.

Glucose, VLCBYV and risk of PH. In the whole population, glucose levels were not associated with the
presence of PH. However, pretreatment glucose levels interacted significantly with VLCBV for the prediction of
PH (p=0.011). In patients with VLCBV-regions (see Supplementary Table 2 for subgroup descriptive variables),
glucose levels were associated with an increased risk of PH (OR =2.18 per IQR increase in glucose levels; 95%
CI=1.13-4.200, p=0.020), whereas this association was not significant in patients without VLCBV-regions. The
direction of these observations remained unchanged in multivariate models adjusted for the effect of confound-
ers (Fig. 1). Neither glucose nor VLCBYV interacted significantly with mTICI score at the end of MT (p=0.622
and p=0.389, respectively) or with time from stroke onset to successful recanalization on the prediction of PH
(p=0.202 and p=0.777, respectively).

Figure 2 shows the adjusted predicted probabilities of the occurrence of a PH according to pretreatment glu-
cose levels and VLCBV volume. In adjusted models, per IQR increase in glucose levels, the predicted probability
of PH increased in 75% in patients with VLCBV regions (aOR=3.07, 95% CI=1.04-9.10, p=0.043). According
to ROC analysis, in the subset of patients with VLCBV regions the cutoff of pretreatment glucose levels with
best accuracy for predicting the occurrence of PH was 116 mg/dL (6.4 mmol/L; sensitivity 69%, specificity 65%,
positive predictive value 50% and negative predictive value 81%). According to this categorization, a total of 18
patients from 39 of those with VLCBV regions had elevated glucose levels. The observed rate of PH increased
steadily from 13% (29 of 219) in patients without VLCBV regions, 19% (4 of 21) in those with VLCBV regions
and low glucose levels (< 116 mg/dL, < 6.4 mmol/L) and 50% (9 of 18) in patients with VLCBYV regions and high
glucose levels (> 116 mg/dL, > 6.4 mmol/L) (p for trend <0.001).

Hemodynamic correlates of PH according to pretreatment glucose levels: CTP-MRI coregis-
tered regions of interest analysis. As shown in Fig. 3A, brain regions that developed PH or infarct at
follow-up had lower CBV values in pretreatment CTP compared with mirror regions of the unaffected hemi-
sphere. In addition, CBV values measured at baseline in coregistered brain regions that developed PH or infarct
at follow-up were not correlated with pretreatment glucose levels and were similar in patients with levels higher
or lower than 116 mg/dL (6.4 mmol/L), as illustrated in Fig. 3B, C. Finally, the quality of reperfusion measured
with the mTICI score at the end of MT was not associated with pretreatment glucose levels (p=0.952).
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No PH PH
N=216 N=42

Age (years), median (IQR) 72 (61-80) 67 (59-79) 0.481
Males, n (%) 106 (49) 26 (62) 0.128
Hypertension, n (%) 121 (56) 26 (62) 0.481
Diabetes, n (%) 31 (14) 5(12) 0.675
Dyslipidemia, n (%) 83 (38) 5(36) 0.740
Atrial Fibrillation, n (%) 59 (27) 6(38) 0.159
Previous Antithrombotic treatment, n (%) 84 (39) 20 (48) 0.291
Baseline SBP (mmHg), median (IQR) 140 (125-158) 139 (125-158) 0.793
Glucose (mg/dL), median (IQR) 119 (105-141) 119 (107-143) 0.779
NIHSS at admission, median (IQR) 17 (10-20) 19 (14-21) 0.045
Ischemic core on CTP (mL), median (IQR) 19 (7-34) 18 (11-45) 0.273
Hypoperfused tissue on CTP (mL), median (IQR) 135 (98-186) 144 (99-198) 0.633
VLCBV (mL), median (IQR) 0.03 (0-0.31) | 0.34(0.03-2.07) 0.002
VLCBV regions, n (%) 26 (12) 13 (31) 0.002
Good collaterals, n (%) 158 (73) 27 (64) 0.243
Alteplase + MT, n (%) 116 (54) 25 (60) 0.488
Time to CTP (min), md (IQR) 148 (77-252) | 242 (141-339) 0.001
Time to MT onset (min), md (IQR) 231 (161-334) 327 (230-425) 0.001
Recanalization (yes), n (%) 170 (79) 34 (81) 0.743
Time to recanalization (min), median (IQR) 270 (202-375)| 359 (303-479) 0.001
Recanalization groups 0.002
Recanalization <4.5 h, n (%) 86 (40) 6 (14)
Recanalization >4.5 h, n (%) 84 (39) 28 (67)

No rec, n (%) 46 (21) 8(19)

Time to MRI (hours), md (IQR) 40 (26-65) 43 (24-69) 0.589
Cardioembolic origin, n (%) 103 (48) 27 (64) 0.049
Location of the occlusion 0.436
Tandem occlusions, n (%) 33 (15) 7 (17)

ICA-T or M1, n (%) 169 (78) 30(71)

M2, n (%) 14 (7) 5(12)

Follow-up clinical variables

Symptomatic ICH, n (%) 1(1) 7 (17) <0.001
mRS at 90 days, median (IQR) 2(1-3) 3(2-4) 0.019

Table 1. Demographics, baseline and procedure related variables according to the occurrence of parenchymal
hematoma. ASPECTS Alberta Stroke Program Early CT Score, CTP computed tomographic perfusion, ET
endovascular therapy, ICA-T internal carotid artery, ICH intracranial hemorrhage, mRS modified Rankin
Scale, MT mechanical thrombectomy, NIHSS National Institutes of Health Stroke Scale, PH parenchymal
hematoma, SBP systolic blood pressure, VLCBV very low cerebral blood volume.

Glucose, VLCBYV and clinical outcome. The association of pretreatment glucose levels, VLCBV regions
and their interactions with symptomatic hemorrhagic transformation, mRS at day 90 and mortality are shown
in Table 3. Of note, the interaction between pretreatment glucose levels and the presence of VLCBV regions on
the prediction of these clinical outcomes was not significant.

Discussion

In this study, we implemented a comprehensive CTP study to evaluate whether elevated glucose levels modified
the association between severe hypoperfusion and PH after MT. In this cohort, elevated pretreatment glucose
levels were associated with an increased risk of PH after M T in subjects with severe pretreatment hypoperfusion.
Moreover, glucose levels were not associated with reduced CBV at pretreatment CTP in coregistered brain regions
that developed PH or infarct at follow-up. Overall, these results suggest the existence of synergistic deleterious
effects of severe pretreatment hypoperfusion and elevated glucose and give support to their consideration in the
evaluation of adjunctive neuroprotective strategies.

In agreement with previous studies, the presence of regions with severe hypoperfusion was significantly asso-
ciated with an increased risk of PH at follow-up neuroimaging®-'"?-*. Beyond the severity of brain ischemia, a
number of additional variables have been also associated with an increased risk of hemorrhagic transformation
after MT, including an increased NIHSS score, poor collaterals, antiplatelet use, atrial fibrillation, older age or
pretreatment hyperglycemia, among others®. As a novel finding of this study, we found that pretreatment glucose
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OR (95% CI); p OR (95% CI); p
PH at follow-up MRI Model A Model B
VLCBV regions 2.816 (1.146-6.918), p=0.024 | 1.592 (1.133-2.237), p=0.007

Pretreatment glucose (per IQR)

1.049 (0.755-1.456), p=0.777

1.072 (0.771-1.491), p=0.678

Baseline NIHSS (per IQR)

1.337 (0.948-1.887), p=0.098

Rescue MT (vs primary)

1.395 (0.668-2.916), p=0.376

(
1.260 (0.885-1.795), p=0.200
1.415 (0.674-2.971), p=0.359

Recanalization status

>4'5 h from stroke onset (vs<4'5 h)

6.656 (2.444-18.130), p<0.001

7.552 (2.745-20.779), p<0.001

No recanalization (vs <4'5 h)

2.848 (0.867-9.351), p=0.084

2.810 (0.865-9.132), p=0.086

Cardioembolic etiology (vs no)

2.584 (1.197-5.577), p=0.016

2.812 (1.285-6.153), p=0.010

Sex (females vs males)

0.500 (0.228-1.097), p=0.084

0.522 (0.237-1.150), p=0.107

Good collaterals (vs poor)

1.256 (0.550-2.867), p=0.588

1.369 (0.599-3.129), p=0.456

Table 2. Predictors of parenchymal hematoma: multivariate analysis. Very low cerebral blood volume
(VLCBV) was included as a dichotomic variable (yes vs no) in model A, and as a continuous quantitative
variable (estimations per IQR of VLCBV increase) in model B. MT: Mechanical thrombectomy; NIHSS:
National Institutes of Health Stroke Scale; PH: parenchymal hematoma. The Hosmer-Lemeshow test showed
an adequate goodness-of-fit of the final models (Model A: X2 =4.028, p=0.855; Model B: X2=9.329, p=0.315),
and the models classified correctly a total of 84% (Model A) and 85% (Model B) of cases.

Pretreatment glucose levels and risk of PH Odds Ratio (95% ClI) p value

Unadjusted analysis
Whole population (n=258) —e— 1.01(0.75 to 1.36) 0.938
VLCBV regions p; 0.0t
VLCBV-(n=219) +oH 0.82 (0.58 to 1.17) 0.280
VLCBV+ (n=39) —e— 2,18 (1.13 to 4.20) 0.020
Adjusted analysis
Whole population (n=258) 9 0.97 (0.71t01.32) 0.834
VLCBV regions p, 0.006
VLCBV-(n=219) +oH 0.80 (0.55 to 1.16) 0.244
VLCBV+ (n=39) —_— 3.15 (1.08 t0 9.19) 0.036
A A A
0.1 1 10
< >

< >

decreasedrisk of PH  increased risk of PH

Figure 1. Binary regression models for predicting the occurrence of parenchymal hematoma (PH) in follow-up
MRI. Pi is the p value for the interaction between pretreatment glucose levels and the presence of very low
cerebral blood volume (VLCBV) regions for the prediction of PH. Data are OR and 95% CI per IQR increase in
glucose levels obtained by unadjusted models and in models adjusted for pretreatment NIHSS, recanalization
and cardioembolic stroke etiology (see Supplemental Table 3 for full models).

levels interacted significantly with severe hypoperfusion on the prediction of PH. Thus, in patients with regions
of VLCBYV, higher pretreatment glucose levels increased significantly the risk of PH, while this association was
not significant in patients without VLCBV regions. Indeed, about 1 in 5 patients with VLCBV regions and low
pretreatment glucose levels at baseline developed a PH in follow-up neuroimaging, whereas this rate increased
to 1in 2 patients with concurrent high glucose levels. The consideration of pretreatment glucose in addition to
the presence of VLCBYV regions resulted in higher positive predictive value for the prediction of PH in compari-
son with VLCBYV alone. From a practical point of view, the combination of these biomarkers could be useful in
the evaluation of strategies aimed to protect the blood-brain barrier in this patient population as patients with
regions of severe ischemia and elevated pretreatment glucose levels may represent a target population for the early
implementation of preventive strategies. These strategies could theoretically include a tighter control of blood
pressure, the avoidance of early post-treatment aggressive antithrombotic therapy or the addition of adjunctive
neuroprotective or vasculoprotective therapies. Of these potential treatments, the implementation of strategies
focused in lowering glucose concentrations and achieving a tight glucose control in the early acute phase have
been repeatedly unsuccessful in humans regardless of preventing lactic acidosis**-*2. Contrarily, preliminary
data from preclinical and clinical studies support that the enhancement of antioxidant exposure in combination
with reperfusion therapies could minimize the toxicity of hyperglycemia®. Importantly, given the strong clini-
cal benefits of MT, the presence of regions of severe reductions of CBV in CTP and concurrent hyperglycemia
should not preclude the treatment of patients otherwise eligible for receiving endovascular reperfusion therapies.

In experimental models of brain ischemia, hyperglycemia exacerbates ischemic brain injury by increasing
infarct size, brain swelling and blood-brain barrier disruption®*-*’. Several preclinical studies have shown a direct
association between induced hyperglycemia and poorer perfusion metrics during ischemia and after reperfusion
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Figure 2. Predicted probability of parenchymal hematoma (PH) at follow-up MRI. Predicted probability of
parenchymal hematoma (PH) at follow-up MRI by pretreatment glucose levels according to subgroups defined
by the presence or absence of very low cerebral blood volume (VLCBV) regions. Dashed lines show the 95% CIL.
For graphical purposes, pretreatment glucose was analyzed as a continuous variable. The predicted probabilities
were obtained in models adjusted for baseline NIHSS, reperfusion treatment modality, recanalization and stroke
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Figure 3. Cerebral blood volume values measured at pretreatment CTP in coregistered brain regions that
developed PH or infarct at follow-up. (a) Box-whisker plots of cerebral blood volume (CBV) values extracted
from pretreatment computed tomographic perfusion (CTP) in coregistered regions that developed infarct

or parenchymal hematoma (PH) at follow-up according to the presence or absence of pretreatment glucose
levels higher than 116 mg/dL (6.4 mmol/L). (b, ¢) Association between baseline glucose levels and CBV values
extracted from pretreatment CTP in coregistered regions that developed infarct (b) or PH (c) at follow-up MRI.
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Pretreatment glucose VLCBYV regions

(per IQR increase) (yes vs no) Pi
mRS shift at 90 days 1.310 (1.091-1.587), p=0.006 1.587 (0.887-2.838), p=0.120 0.562
Symptomatic ICH 0.804 (0.424-1.525), p=0.504 0.797 (0.095-6.663), p=0.834 0.998
Mortality at 90 days 0.990 (0.612-1.603), p=0.968 0.932 (0.200-4.338), p=0.929 0.751

Table 3. Association of pretreatment glucose levels and VLCBV with clinical endpoints. Odds ratios, 95%
confidence intervals and p values per IQR increase in pretreatment glucose levels (second column) and
according to the presence of very low cerebral blood volume (VLCBV) regions (third column) obtained
through unadjusted logistic regression analysis. Pi values (fourth column) are the p values for the interaction
between pretreatment glucose levels and the presence of VLCBV regions on each of the evaluated clinical
outcomes. ICH intracranial hemorrhage, mRS modified Rankin Scale.

whereas others were not able to identify such relationship'®-**. In this study, pretreatment CBV values were not
correlated with pretreatment glucose levels and were similar in patients with levels higher or lower than 116 mg/
dL (6.4 mmol/L), regardless of the presence of successful recanalization. In addition, the quality of reperfusion
obtained at the end of MT was not associated with pretreatment glucose levels, in agreement with findings from a
recent meta-analysis that included pooled-data of the pivotal thrombectomy trials'?. Overall, our results support
the relevance of additional pathophysiological mechanisms beyond hyperacute glucose-driven disturbances in
cerebral perfusion to explain the association between hyperglycemia and severe hypoperfusion with the risk of
PH, such as enhanced thromboinflammatory mechanisms, increased blood-brain barrier disruption and worse
cytotoxic injury, among others!*¢%,

The main strength of the study was the use of whole-brain CTP that allowed obtaining perfusion measures
of most of the affected brain tissue. Moreover, patients were collected consecutively and managed following a
homogeneous therapeutic protocol. The management of hyperglycemia in the acute phase followed the recom-
mendations of contemporary guidelines recommending the administration of insulin in patients with glucose
concentrations > 140 mg/dL (7.8 mmol/L). Furthermore, although the sensitivity of MRI to detect hemorrhagic
transformation is higher than CT, we do not think this is likely to have significantly affected our result because
the imaging modality used for the attribution of the main outcome variable (PH) was identical (gradient-recall
echo MRI sequence) in all the study population thus avoiding biases related to the use of different modalities (CT
or MRI). Nonetheless, the study has several limitations. First, the assessment of perfusion with dynamic CT in
acute stroke is a static evaluation of a multifaceted and time-dependent process. Secondly, perfusion measures
may be affected by multiple factors, including acquisition protocols, brain coverage and post-processing plat-
forms, and therefore our results may apply to the protocol of acquisition and analysis that were employed in these
series and may not be generalizable to other methodologies. In this study, we used the European Cooperative
Acute Stroke Study criteria for qualifying the type of hemorrhagic transformations to allow direct comparisons
with previously reported studies on the same matter. Further validation of these results using the new Heidel-
berg Bleeding Classification specially for assessing the effect of hyperglycemia and severe hypoperfusion on
the risk of symptomatic hemorrhagic transformation is warranted®. An additional limitation includes the lack
of information on the longitudinal course of glucose at follow up and the undocumented use of blood glucose
lowering drugs. Finally, the results were not controlled by type of stroke onset (witnessed versus unwitnessed)
or pre-stroke fasting status, as those variables were not registered. Of note, given the retrospective nature of the
study no causality assumptions can be inferred from the obtained data.

Conclusions

In summary, this study shows that elevated pretreatment glucose levels were associated with an increased risk of
parenchymal hematoma after endovascular reperfusion therapy of acute ischemic stroke in patients with severe
pretreatment hypoperfusion. Moreover, the link between pretreatment glucose levels and severe hypoperfusion
was not explained by an association of glucose with reduced CBV during ischemia and prior to reperfusion, thus
suggesting alternative deleterious mechanisms other than direct glucose-driven hemodynamic impairment. These
two factors should be considered in the evaluation of adjunctive neuroprotective strategies aimed to protect the
blood-brain barrier in addition to early and complete recanalization.

Data availability
The datasets analyzed during the current study are available from the corresponding author on reasonable
request.
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