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A deep learning methodology 
for improved breast cancer 
diagnosis using multiparametric 
MRI
Qiyuan Hu1*, Heather M. Whitney1,2 & Maryellen L. Giger1

Multiparametric magnetic resonance imaging (mpMRI) has been shown to improve radiologists’ 
performance in the clinical diagnosis of breast cancer. This machine learning study develops a deep 
transfer learning computer-aided diagnosis (CADx) methodology to diagnose breast cancer using 
mpMRI. The retrospective study included clinical MR images of 927 unique lesions from 616 women. 
Each MR study included a dynamic contrast-enhanced (DCE)-MRI sequence and a T2-weighted (T2w) 
MRI sequence. A pretrained convolutional neural network (CNN) was used to extract features from 
the DCE and T2w sequences, and support vector machine classifiers were trained on the CNN features 
to distinguish between benign and malignant lesions. Three methods that integrate the sequences at 
different levels (image fusion, feature fusion, and classifier fusion) were investigated. Classification 
performance was evaluated using the receiver operating characteristic (ROC) curve and compared 
using the DeLong test. The single-sequence classifiers yielded areas under the ROC curves (AUCs) [95% 
confidence intervals] of AUC​DCE = 0.85 [0.82, 0.88] and AUC​T2w = 0.78 [0.75, 0.81]. The multiparametric 
schemes yielded AUC​ImageFusion = 0.85 [0.82, 0.88], AUC​FeatureFusion = 0.87 [0.84, 0.89], and AUC​
ClassifierFusion = 0.86 [0.83, 0.88]. The feature fusion method statistically significantly outperformed using 
DCE alone (P < 0.001). In conclusion, the proposed deep transfer learning CADx method for mpMRI 
may improve diagnostic performance by reducing the false positive rate and improving the positive 
predictive value in breast imaging interpretation.

Breast magnetic resonance imaging (MRI) has been reported to be a highly sensitive imaging modality for 
breast cancer detection and characterization1. Dynamic contrast-enhanced (DCE)-MRI offers morphological 
and functional lesion information with excellent sensitivity and variable specificity for breast cancer diagnosis2. 
Moderate specificity may lead to unnecessary subsequent patient work-up and biopsies, which may contribute 
to anxiety in patients awaiting biopsy results that indicate benignity. To overcome this limitation and assess 
more functional data, approaches to examining other MRI sequences alongside DCE-MRI images have been 
implemented in the routine clinical interpretation of breast MRI exams over recent decades2, 3. This approach is 
defined as multiparametric MRI (mpMRI), in which T2-weighted (T2w) MRI is a commonly used additional 
sequence. Studies have shown that the incorporation of T2w sequence during interpretation is useful in the dif-
ferential diagnosis of benign and malignant lesions4–6. For example, fibroadenomas, a type of benign lesions that 
can exhibit similar contrast agent enhancement to that of malignant lesions on T1-weighted DCE-MRI, usually 
have high signal intensity on T2w images compared with malignant lesions4.

In order to assist radiologists in the interpretation of diagnostic imaging, computer-aided diagnosis (CADx) 
systems continue to be developed with artificial intelligence (AI) techniques to potentially improve the accuracy 
of evaluating suspicious breast lesions7. Multiparametric CADx schemes using multiple MRI protocols have 
also started to be explored as MRI technology advances8–11. In this study, we propose and evaluate the perfor-
mance of three AI-integrated multiparametric CADx methods that incorporate the complementary information 
provided in DCE and T2w MRI protocols in the task of distinguishing between benign and malignant breast 
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lesions. In addition, we compare them with the performances of the two single-sequence-based methods, i.e., 
DCE and T2w.

We employ a deep transfer learning methodology that extracts and pools low- to mid-level features using 
a pretrained convolutional neural network (CNN) and perform classification using a support vector machine 
(SVM). We explore integrating the information from the DCE and T2w MRI sequences at three different levels 
of the classification framework, namely via (i) input of the multiparametric images directly to the CNN (image 
level), (ii) input of the CNN features extracted from DCE and T2w into a multiparametric classifier (feature level), 
and (iii) aggregation of the outputs of the DCE SVM and T2w SVM (classifier output level). We believe that this 
is the first comprehensive study of mpMRI schemes, and our methodologies demonstrate strong potential in 
utilizing information from mpMRI to estimate the probability of breast lesion malignancy without the need for 
preprocessing, image registration, large datasets, or long training times.

Methods
Study participants.  The study was approved by the Institutional Review Board (IRB) of the University 
of Chicago and followed Health Insurance Portability and Accountability Act (HIPAA)-compliant protocols. 
The database was retrospectively collected under the above-mentioned protocols, and all procedures were 
conducted in accordance with relevant guidelines and regulations. The requirement for informed consent was 
waived because all clinical information and images in this study were de-identified to the investigators. The MRI 
exams in the database were consecutively acquired over the span of eight years, from 2005 to 2013, imaged at a 
single institution. Exclusion criteria included MRI studies that did not exhibit a visible lesion, lesions that did 
not have validation of the final diagnosis, or lesions that could not be clearly allocated to either the benign or 
malignant category. A total of 927 unique breast lesions from 616 women (mean age 55.0 ± 12.8 years; age range 
23–89 years) were ultimately included in this study.

Of all lesions, 199 were benign (21%) and 728 were malignant (79%). For all lesions clinically categorized at 
MRI as Breast Imaging Reporting and Data System (BI-RADS) category 4, 5, or 6, malignant/benign status was 
confirmed by histopathology. For all lesions clinically categorized at MRI as BI-RADS category 2 or 3, benign 
diagnosis was confirmed by MRI follow-up of at least 24 months. Lesions were thus labeled as either benign or 
malignant based on pathology and radiology reports. Images in the database were using either 1.5 T or 3 T Philips 
Achieva scanners with a T1-weighted spoiled gradient sequence and a T2-weighted turbo spin echo sequence 
without fat suppression. Therefore, each MR study contained a DCE-MRI sequence and a T2w MRI sequence 
acquired during the same exam. The temporal resolution for each dynamic acquisition in the DCE sequence 
was 60 s. Image slice thickness varied across the dataset and across the two sequences. The slice thickness was 
consistent across the two sequences (i.e., DCE and T2w) in 96% of the exams, while the in-plane resolution was 
consistent across the two sequences in 46% of the exams. Figure 1 shows the distribution of slice thickness and 
in-plane resolution of images in this dataset. Clinical characteristics of the dataset are detailed in Table 1.

Single‑sequence methods.  Figure 2 schematically shows the machine learning classification and evalua-
tion process for both single-sequence and mpMRI schemes.

Lesions were segmented using a fuzzy C-means method requiring only the manual indication of a seed-
point12. Lesion segmentations were not directly used as input to the CNN, but enabled automatic region of 
interest (ROI) construction described below. To capture the 4D (volumetric and temporal) characteristics of the 
lesions from the DCE sequence, maximum intensity projection (MIP) images of the second postcontrast subtrac-
tion DCE-MRI series were used as the input to a deep learning network13. The second post-contrast timepoint 
was chosen because the BI-RADS atlas defines the initial phase of enhancement as the first two minutes after 

Figure 1.   Distribution of slice thickness and in-plane resolution of the dynamic contrast-enhance (DCE) 
sequences and T2-weighted (T2w) sequences in the multiparametric MRI database.
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contrast administration, which has diagnostic utility for distinguishing benign and malignant breast lesions14. 
From the T2w sequence of each lesion, the slice that contained the largest lesion area according to the automatic 
lesion segmentation was selected as the representative center slice, which was used as the input to a deep learn-
ing network. The T2w center slice was rescaled using bicubic interpolation to match the in-plane resolution of 
its corresponding DCE sequence. To avoid confounding contributions from distant voxels, a ROI around each 
lesion was cropped from the image to use in the subsequent classification process. The ROI size was chosen 
based on the maximum dimension of each lesion and was held constant across sequences. A small part of the 
parenchyma, three pixels wide around the lesion, was included in each ROI. Appropriate shifts in the coordinates 
were applied to ensure that the DCE and T2w ROIs were cropped from the same location relative to the lesion.

Through transfer learning, CNN features were extracted separately from the ROIs of the DCE subtrac-
tion MIPs and the ROIs of the T2w center slices using the publicly available VGG19 model15, pretrained on 

Table 1.   Clinical characteristics of the dataset. Numbers in parentheses are percentages. Patient age is 
summarized on a patient basis, and lesion information (malignancy status and subtypes) is summarized 
on a lesion basis. For some subjects, only the decade of age was available (e.g., “60 s”) as part of the patient 
information deidentification process. In these situations, the middle of the decade was used for the calculation 
of the mean subject age. Lesion size is measured by the effective diameter, i.e., the greatest dimension of a 
sphere with the same volume as the lesion. IDC invasive ductal carcinoma, DCIS Ductal carcinoma in situ, ILC 
invasive lobular carcinoma, HER-2 human epidermal growth factor receptor 2.

Benign/malignant prevalence
Benign: 199 (21.5)

Malignant: 728 (78.5)

Age (years): mean ± standard deviation
55.0 ± 12.8

Unknown: 97

Benign lesion characteristics

Lesion size (mm)

Mean: 8.86

Median: 7.33

Range: 3.38–42.8

Lesion subtypes

Fibroadenoma: 60 (30.2)

Columnar change: 15 (7.5)

Papilloma: 13 (6.5)

Parenchyma tissue: 12 (6.0)

Fibrotic tissue: 10 (5.0)

Hyperplasia: 8 (4.0)

Cystic change: 6 (3.0)

Fat necrosis: 5 (2.5)

Other: 27 (13.6)

Unknown: 43 (21.6)

Malignant lesion characteristics

Lesion size (mm)

Mean: 17.9

Median: 14.9

Range: 3.37–73.7

Lesion subtypes

IDC: 147 (20.2)

DCIS: 120 (16.5)

IDC + DCIS: 359 (49.3)

ILC: 31 (4.3)

ILC mixed: 26 (3.6)

Other: 33 (4.5)

Unknown: 12 (1.6)

Estrogen receptor status

Positive: 410 (56.3)

Negative: 128 (17.6)

Unknown: 190 (26.1)

Progesterone receptor status

Positive: 352 (48.4)

Negative: 184 (25.3)

Unknown: 192 (26.4)

HER-2 status

Positive: 87 (12.0)

Negative: 404 (55.5)

Equivocal: 5 (0.7)

Unknown: 232 (31.9)
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ImageNet16. The pretrained VGG19 network, which takes three-channel (red, green, and blue, or RGB) input 
images, has previously been shown to be useful in transfer learning for breast lesion analyses13,17,18. For the single-
sequence DCE and T2w image datasets, the ROIs were grayscale and were duplicated across the three channels. 
Feature vectors were extracted at various network depths from the five max-pooling layers of the VGGNet. These 
features were then average-pooled along the spatial dimensions and normalized with Euclidian distance. The 
pooled features were then concatenated to form a CNN feature vector of 1,472 features for a given lesion17,18.

Nonlinear SVM classifiers with Gaussian radial basis function kernel were trained on the CNN features to 
differentiate between benign and malignant lesions (Python Version 3.4.2, Python Software Foundation)19. 
SVM was chosen over other classification methods due to its ability to handle sparse high-dimensional data, 
which is an attribute of the CNN features. To address the problem of class imbalance (i.e., due to the 79% cancer 

Figure 2.   Lesion classification pipeline based on diagnostic images. Information from dynamic contrast-
enhanced (DCE) and T2-weighted (T2w) MRI sequences are incorporated in three different ways: image 
fusion—fusing DCE and T2w images to create RGB composite image, feature fusion—merging convolutional 
neural network features extracted from DCE and T2w as the support vector machine (SVM) classifier input, and 
classifier fusion—aggregating the probability of malignancy output from the DCE and T2w classifiers via soft 
voting. MIP maximum intensity projection, ROI region of interest, ROC receiver operating characteristic.
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prevalence), a misclassification penalty for cases in the malignant (or benign) class was assigned to be inversely 
proportional to the malignant (or benign) class prevalence in the training data.

Evaluation of single‑sequence methods.  Each SVM classifier was trained and evaluated using nested 
fivefold cross-validation, where the inner cross-validation was used for hyperparameter tuning and the outer 
cross-validation was used for training and testing, resulting in a 64%/16%/20% split into independent training, 
validation, and test sets, respectively. Class prevalence was held constant across the five cross-validation folds, 
and all lesions from the same patient were kept together in the same fold in order to eliminate the impact of using 
correlated lesions for both training and testing. The training set was standardized to zero mean and unit vari-
ance, and the test set was standardized using those statistics of the corresponding training set. Principal compo-
nent analysis fit on the training set was applied to both training and test sets to reduce feature dimensionality20.

Within each training/validation fold in the outer cross-validation loop, two SVM hyperparameters, namely 
the scaling parameter γ and the regularization parameter C, were optimized on a grid search with an internal 
fivefold cross-validation21. Prediction scores were transformed to posterior probabilities of malignancy (PMs) 
assuming a scaled prevalence of 50%22. The predictions on the five test folds were aggregated for classification 
performance evaluation.

Classifier performances were evaluated using receiver operating characteristic (ROC) curve analysis, with 
area under the ROC curve (AUC) serving as the figure of merit23,24. Standard errors and 95% confidence intervals 
(CIs) of the AUCs were calculated by bootstrapping the posterior PMs (2000 bootstrap samples)25. Other clinical 
metrics, including sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV), 
for each classifier were also reported. These metrics were calculated at the optimal operating point on the ROC 
curve determined by minimizing m = (1 − sensitivity)2 + (1 − specificity)211.

Multiparametric methods.  We explored integrating information from both the DCE and T2w MRI 
sequences at three different levels of the classification framework, as illustrated in Fig.  2. The three mpMRI 
schemes are referred to as image fusion, feature fusion, and classifier fusion.

For the input image fusion scheme, a three-channel RGB fusion image was constructed for each lesion by 
inputting the DCE MIP into the red channel, the T2w center slice into the green channel, and leaving the blue 
channel of the VGGNet blank. A composite ROI was cropped from the fusion image, which was then input into 
the pretrained VGG19 network for feature extraction. Figure 3 includes an example to illustrate the process of 
ROI extraction from MRI images and creating RGB fusion ROIs. The classifier training process then followed 
the single-sequence methods to predict PMs.

Figure 3.   Example input images. A dynamic contrast-enhanced (DCE)-MRI transverse second post-contrast 
subtraction maximum intensity projection (MIP) and a T2-weighted (T2w)-MRI transverse center slice 
are shown with their corresponding regions of interest (ROIs) extracted. The RGB fusion ROI is created by 
inputting the DCE ROI into the red channel and the T2w ROI into the green channel.
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For the feature fusion scheme, CNN features extracted from DCE and T2w separately were included into an 
ensemble of features, which was then input to an SVM classifier. The classifier training process then followed 
the single-sequence methods to yield PMs.

For the classifier fusion scheme, PM outputs from the DCE-based and from the T2w-based single-sequence 
SVM classifiers were aggregated via soft voting. That is, the DCE and T2w PM outputs were averaged to yield 
prediction scores.

In the evaluation of each mpMRI scheme, the same evaluation method was used as for the single-sequence 
classifiers.

Inter‑sequence image registration.  A preliminary study was performed to investigate whether image 
registration between DCE and T2w sequences would improve the performance of the proposed mpMRI classi-
fication schemes, especially the image fusion method. The T2w center slices were rescaled to match the in-plane 
resolution and then registered to the corresponding slice of the second post-contrast DCE image using a multi-
modality rigid registration method that consists of translation and rotation26, 27. The same five classification 
mechanisms were evaluated after image registration.

Statistical analysis.  The AUCs from the three mpMRI classification schemes were statistically compared 
with those from the two single sequence classifiers using the DeLong test28,29. Bonferroni–Holm corrections 
were used to account for multiple comparisons30, and a corrected P < 0.05 was considered to indicate a statisti-
cally significant difference in performance. Equivalence testing was performed to assess if image registration had 
any effect on the classification performances31. An equivalence margin of difference in AUC = 0.05 was chosen 
prima facie.

Finally, to assess the performance reproducibility of the method, the highest performing classifier of the three 
mpMRI methods was trained and evaluated 100 times using different random seeds for the cross-validation split, 
and the mean and standard error of AUC was calculated from all the runs.

Results
Classification performance.  Figure 4 presents the ROC curves for the five classification schemes without 
image registration, and Table 2 summarizes the classification performances as measured by AUC, sensitivity, 
specificity, PPV, and NPV. Note that the mpMRI classifiers achieved improvements in terms of all these met-
rics for classification performance. Table 3 shows the p-values and the 95% CIs for the comparisons of AUCs 
between the mpMRI and single-sequence classifiers. Among the three mpMRI classification schemes, while all 
of them yielded statistically significantly higher AUCs than using T2w alone, only the feature fusion method sig-
nificantly outperformed using DCE alone in terms of AUC, and the other two methods, image fusion and clas-
sifier fusion, failed to demonstrate a statistically significant difference in AUCs compared with using DCE alone.

In assessing performance reproducibility, the mean and standard error of AUCs from 100 runs for the feature 
fusion classifier was 0.864 ± 0.003, indicating that the classification performance was very stable regardless of 
the random seed chosen.

Figures 5 and 6 illustrate the comparison between the PMs predicted by the single-sequence classifiers using 
DCE and T2w. Figure 5 also shows example lesions on which these two classifiers agree or disagree. While 
the majority of benign and malignant lesions are separated from the other class, there appears to be moderate 
disagreement between the two classifiers, suggesting that a fusion technique could likely improve the predictive 
performance. 

Inter‑sequence image registration.  Performing inter-sequence rigid image registration did not have 
a significant effect on the classification performances of any classification scheme. Namely, the four classifiers 
affected by the registration (i.e., use information from T2w images) yielded AUC values of AUC​T2w = 0.79 ± 0.02 
(95% CI [0.76, 0.82]), AUC​ImageFusion = 0.84 ± 0.01 (95% CI [0.81, 0.87]), AUC​FeatureFusion = 0.87 ± 0.01 (95% CI [0.84, 
0.89]), and AUC​ClassifierFusion = 0.86 ± 0.01 (95% CI [0.83, 0.88]). Just as when T2w was not registered to DCE, 
while all three mpMRI classification schemes significantly outperformed using T2w alone, only feature fusion 
significantly outperformed using DCE alone. According to the 95% CIs of the difference in AUCs (∆AUCs) 
between performing inter-sequence image registration or not, image registration between T2w and DCE failed 
to show a statistically significant effect on the performance of any classifiers examined. In addition, equivalence 
testing demonstrated that whether image registration was performed or not yielded equivalent performance 
with an equivalence margin of ∆AUC = 0.05, chosen prima facie. Thus, all findings held regardless of whether 
image registration was employed or not, indicating that registration did not lead to a change in the performance 
of the mpMRI schemes.

Discussion
The proposed convolutional neural network (CNN)-based multiparametric magnetic resonance imaging 
(mpMRI) computer-aided diagnosis (CADx) methods that take advantage of the complimentary information 
provided by dynamic contrast-enhanced (DCE) and T2-weighted (T2w) MRI protocols demonstrated potential to 
improve the performance of current CADx schemes in the task of distinguishing between benign and malignant 
breast lesions. Among the three mpMRI methods examined, the feature fusion method, i.e., using CNN features 
extracted from both DCE and T2w as the classifier input, significantly outperformed using DCE-MRI alone as 
in currently available CADx systems. The image fusion method, i.e., fusing the DCE and T2w images into one 
RGB image prior to input to the VGGNet, and the classifier fusion method, i.e., aggregating the probability of 
malignancy output from the DCE and T2w classifiers via soft voting, failed to show a statistically significant 
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Figure 4.   Fitted binomial receiver operating characteristic (ROC) curves for two single-sequence and three 
mpMRI classifiers using (i) convolutional neural network (CNN) features extracted from dynamic contrast-
enhanced (DCE) subtraction maximum intensity projections (MIPs), (ii) CNN features extracted from 
T2-weighted (T2w) center slices, (iii) CNN features extracted from DCE and T2w fusion images, (iv) ensemble 
of features extracted from DCE and T2w images, and (v) probability of malignancy outputs from the DCE 
MIP and T2w classifiers aggregated via soft voting. The legend gives the area under the ROC curve (AUC) with 
standard error (SE) for each classifier scheme. T2w images were rescaled to match the in-plane resolution of 
their corresponding DCE sequences, but image registration was not performed.

Table 2.   Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and area 
under the receiver operating characteristic curve (AUC) along with the 95% confidence interval (CI) for AUC 
for each classifier. Sensitivity and specificity presented are for the optimal operating point determined using a 
metric for cut-off value that minimizes m = (1 − sensitivity)2 + (1 − specificity)2.

Classifier DCE T2w Image fusion Feature fusion Classifier fusion

AUC [95% CI] 0.85 [0.82, 0.88] 0.78 [0.75, 0.81] 0.85 [0.82, 0.88] 0.87 [0.84, 0.89] 0.86 [0.83, 0.88]

Sensitivity (%) 75.9 69.8 76.5 77.9 77.6

Specificity (%) 76.5 72.7 77.1 78.5 77.1

PPV (%) 89.7 87.3 90.0 90.7 90.1

NPV (%) 54.2 47.3 55.0 56.9 56.2

Table 3.   Performance comparison for the five classifiers. The classifier names are shown in the first row 
(single-parametric) and first column (multiparametric). P-value and 95% confidence interval (CI) of the 
difference in area under the receiver operating characteristic curves (AUCs) for each comparison are presented 
in the table, where each multiparametric classifier was compared with each single-parametric classifier using 
the DeLong test. P-values were corrected for multiple comparisons using Bonferroni–Holm corrections. 
Asterisks denote significance (P < 0.05) after accounting for multiple comparisons.

Classifier DCE MIP T2w center slice

Image fusion P = 0.73
95% CI ∆AUC = [− 0.01, 0.02]

P < 0.001*
95% CI ∆AUC = [0.05, 0.09]

Feature fusion P < 0.001*
95% CI ∆AUC = [0.01, 0.03]

P < 0.001*
95% CI ∆AUC = [0.06, 0.11]

Classifier fusion P = 0.28
95% CI ∆AUC = [− 0.00, 0.02]

P < 0.001*
95% CI ∆AUC = [0.06, 0.09]



8

Vol:.(1234567890)

Scientific Reports |        (2020) 10:10536  | https://doi.org/10.1038/s41598-020-67441-4

www.nature.com/scientificreports/

difference in performance compared with using DCE alone. All three mpMRI schemes statistically significantly 
outperformed using T2w alone. Furthermore, we demonstrated that image registration of the DCE and T2w 
images did not affect the classification performances when applied in addition to image resolution matching.

Training CNNs from scratch typically relies on massive datasets for training and is thus often intractable 
for medical research due to data scarcity. It has been shown that standard transfer learning techniques like 
fine-tuning or feature extraction based on ImageNet-trained CNNs can be used for CADx32,33. As a result, deep 
learning techniques have exhibited strong predictive performances on CADx tasks without requiring massive 
datasets17,18,34–36. Previous studies have investigated mpMRI CADx in distinguishing between malignant and 
benign lesions using human-engineered radiomic features8,9,37. However, to the best of our knowledge, few 
CADx studies have explored mpMRI analysis using deep learning. Dalmis et al. reported an approach of train-
ing a 3D CNN from scratch using three MRI protocols and patient information which yielded an AUC of 0.831 
[0.791–0.867]10, while our study explored transfer learning and achieved better performance. Truhn et al. fine-
tuned a pretrained residual neural network and achieved an AUC of 0.8811, whereas our study exploited feature 
extraction which is less computationally expensive and more suitable for small medical datasets. Note that the 
CNN input that yielded the best performance in Truhn et al. only contained information from DCE. Nonetheless, 
their approach was similar to the image fusion method in our study, which is not the optimal mpMRI scheme 
according to our results. Although additional information would be needed to statistically compare these results 
from the literature and ours, our approach demonstrated comparable and, in some cases, higher performance 
than others. We believe that our study is the first comprehensive study that investigated three different deep 
transfer learning schemes of exploiting multiparametric MRI information for lesion classification. The findings 
demonstrated superiority of one method, which can potentially inform future research in this field.

Figure 5.   A diagonal classifier agreement plot between the T2-weighted (T2w) and dynamic contrast-enhanced 
(DCE) single-sequence classifiers. The x-axis and y-axis denote the probability of malignancy (PM) scores 
predicted by the DCE classifier and the T2w classifier, respectively. Each point represents a lesion for which 
predictions were made. Points along or near the diagonal from bottom left to top right indicate high classifier 
agreement; points far from the diagonal indicate low agreement. Examples of lesions on which the two classifiers 
were in extreme agreement/disagreement are also included.
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Our method extracts CNN features from the five max-pooling layers at the end of each convolutional block, 
average-pools, normalizes, and then concatenates to form CNN feature vectors17,18. Even though a more common 
way of applying a pretrained CNN to medical images is to extract features from fully connected layers at the end 
of the entire network architecture, the method requires image preprocessing to transform the images to a fixed 
size. Our method allows for using images of various sizes that correspond to enclosed lesion sizes and takes full 
advantage of the low- to mid-level features learned by the network.

When performing inter-sequence image registration, we chose to use multi-modality rigid registration that 
consists of translation and rotation. Scaling, shearing, or deformable registration was not employed because 
it was not desirable for quantitative image analysis to alter the geometry of and the texture within the lesions. 
More in-depth registration optimizations can be explored in future studies. Image registration can be computa-
tionally expensive and time-consuming. Given that all classifier performances were equivalent with or without 
image registration, we suggest that image registration might not be a necessary step in this proposed method of 
distinguishing between benign and malignant breast lesions using mpMRI.

A limitation of this study was the selection of the equivalence margin. The margin in equivalence testing 
is ideally a predetermined clinically meaningful limit. However, due to complexities and impracticalities in 
applying the statistical principles of equivalence testing to diagnostic performance studies, there is currently no 
widely used standard procedure to establish this margin31. Nonetheless, we were able to demonstrate equivalence 
between all classifier pairs using a rather conservative margin of 5% for ∆AUC. Furthermore, the pretrained CNN 
network requires 2D input, which limited the inclusion of the high-dimensional information contained in breast 
MRI exams. We chose to capture part of the 4D information in DCE-MRI by using second post-contrast MIP 
images in this study, and future work will include investigating the optimal approach to include high-dimensional 
information in medical images in deep transfer learning frameworks. Moreover, while not necessarily a limita-
tion, we reported cross-validation performance scores instead of using a single training/validation/test split. 
Although a single split would be preferred if the data were abundant, we chose fivefold cross-validation to use 
the available data more efficiently and obtain high statistical power. It is important to note that the nested cross-
validation scheme resulted in a 64%/16%/20% split into independent training, validation, and test sets within one 
partition in the outer cross-validation loop, and thus overfitting due to data leakage did not occur. In addition, the 
dataset for this study was moderately sized and was from a single institution, and therefore the model optimized 
on our dataset might not be the best solution on a different dataset from a different institution or population. 
The variation in image acquisition parameters in our dataset might also have impacted the results, but we believe 
that it positively contributed to the generalizability of the method to images acquired under different protocols.

In conclusion, our study proposed a mpMRI approach that significantly outperformed the CADx benchmark 
that uses DCE alone in the task of distinguishing between benign and malignant breast lesions. Our methodol-
ogy is computationally efficient and does not require intensive image preprocessing. Future work will expand 
the analysis to include other valuable MRI sequences, such as diffusion-weighted imaging. In addition, while 
this study focused on the computational aspect of improving the performance of a CAD system, we would like 
to perform reader studies in the future to assess our system’s clinical significance when used as a secondary or 
concurrent reader for radiologists. Furthermore, by increasing the size of our database, the performance could 

Figure 6.   Bland–Altman plot illustrating classifier agreement between the dynamic contrast-enhanced (DCE) 
maximum intensity projection and T2-weighted (T2w)-based single-sequence classifiers. The y-axis shows the 
difference between the support vector machine output scores (predicted posterior probabilities of malignancy) 
of the two classifiers; the x-axis shows the mean of two classifiers’ outputs, which is also the probability of 
malignancy scores calculated in the classifier fusion method.
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potentially improve with a fine-tuned CNN and a standard training/validation/test split of the data instead of 
fivefold cross-validation. Finally, we intend to perform validation on independent datasets from other institutions 
in order to investigate the robustness of the methodology relative to imaging manufacturers, facility protocols, 
and patient populations.
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