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Quantifying molecular bias in DNA data storage
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DNA has recently emerged as an attractive medium for archival data storage. Recent work

has demonstrated proof-of-principle prototype systems; however, very uneven (biased)

sequencing coverage has been reported, which indicates inefficiencies in the storage process.

Deviations from the average coverage in the sequence copy distribution can either cause

wasteful provisioning in sequencing or excessive number of missing sequences. Here, we

use millions of unique sequences from a DNA-based digital data archival system to study the

oligonucleotide copy unevenness problem and show that the two paramount sources of bias

are the synthesis and amplification (PCR) processes. Based on these findings, we develop a

statistical model for each molecular process as well as the overall process. We further use

our model to explore the trade-offs between synthesis bias, storage physical density, logical

redundancy, and sequencing redundancy, providing insights for engineering efficient, robust

DNA data storage systems.
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Storing data in DNA is attractive due to its information
density of petabytes of data per gram, and excellent dur-
ability1. Relative to other forms of molecular-level or

atomic-level data storage, DNA is unique because of the ease of
copying DNA (i.e., using PCR) and its eternal relevance (people
will always be interested in sequencing DNA)2. High-throughput
(HT) sequencing and synthesis technologies3,4 have evolved and
made storing information in synthetic DNA an increasingly
realistic alternative to traditional long-term storage methods5–8.
However, the sequencing coverage (number of read counts of a
unique sequence) of an oligonucleotide (henceforth referred to
simply as “oligo”) was found to be very uneven, requiring modern
error correction codes capable of handling sequence dropout7–12.
Current methods typically require either trial-and-error of
experimental protocols or brute-force use of hundreds to thou-
sands of sequencing reads per sequence to capture under-
represented sequences. This inefficiency stems from lack of
understanding about bias in oligo copy distribution, as well as
how it changes as the oligos are manipulated in DNA data storage
systems.

In more recent work, errors and bias were studied using
sequencing data from DNA storage systems13. However, direct
PCR and sequencing in a DNA storage system cannot distinguish
bias created by DNA synthesis from bias caused by PCR and
sequencing. As our first foray in separating bias effects stemming
from DNA synthesis versus PCR, we tag an arbitrarily chosen
DNA archival file with over 400,000 sequences using unique
molecular identifiers (UMI), random barcodes to label each
molecule14. UMI labeling allow us to decouple synthesis bias from
PCR bias, and we find significant bias from DNA synthesis. To
corroborate this finding, we order from Twist Bioscience a care-
fully designed ready-to-sequence pool with 1,536,168 sequences,
each of which unique, and already containing necessary segments
of DNA to be sequenced. This ready-to-sequence pool can be
sequenced using an Illumina sequencer directly, with no need for
intermediate PCR or DNA ligation steps required for sequencing
library preparation. Thus we can quantify synthesis oligo dis-
tribution without any interference from molecular processes. To
the best of our knowledge, this is the first time an oligo pool from
array-based synthesis is characterized in this way. We find that
synthesis bias is highly related to spatial location of oligos on a
synthesis chip.

After quantifying synthesis bias, we study PCR bias from two
sources—guanine/cytosine (GC) content and PCR stochasticity.
GC content of individual sequences were previously found to
affect PCR amplification efficiency in biological DNA15–17. In
DNA storage, the GC content of each strand is determined by a
data-to-DNA sequence encoder. We test GC bias using two dif-
ferent oligo pools: one pool is encoded to avoid all homopolymers
(non-homopolymer pool); in contrast, the other is encoded
without homopolymer avoidance steps (homopolymer pool).
Even though these two encoding strategies lead to different GC
distributions, we find no practically important association
between GC content and PCR bias. Instead, we find that PCR
stochasticity widens oligo copy distributions of our test DNA
archival file and, based on our observations, seems to be a
dominant factor in PCR bias. PCR is an exponential process, so
small random variations early on in amplification can have a large
impact on distribution18–24.

Based on these observations, we construct a computational
model for predicting molecular bias in a DNA data storage sys-
tem (Fig. 1). We observe strong association between the bias
predicted from this model and from our experimental data.
Furthermore, we use our model to investigate the tradeoffs
between synthesis bias, physical redundancy for storing DNA
(i.e., oligo copy number), logical redundancy (additional infor-
mation to aid error correction and mitigate missing sequences),
and sequencing redundancy (i.e., sequencing coverage). A system
model can be very useful to determine the best parameters for a
given DNA storage system.

Results
DNA synthesis is a prominent source of sequence bias.
Determining the source of bias in DNA data storage, and more
generally in arbitrary DNA pools, is complicated because synth-
esis bias and PCR bias are typically coupled. To decouple them,
we applied UMI, barcodes to individually identify each molecule
of an initial pool, in our case an arbitrarily chosen DNA file with
over 400,000 sequences (Fig. 2a and Supplementary Fig. 1).
Synthetic DNA pools include multiple copies of each sequence,
and UMI labeling ensures with high probability that each mole-
cule will include a tag different from any other. The UMI-labeled
oligos were sequenced, and the resulting reads were aligned to the
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Fig. 1 A DNA storage system model. aWorkflow of DNA data storage. Digital information is first encoded into oligonucleotide (oligo) sequences, resulting
in multiple 150-base DNA fragments synthesized using array-based DNA synthesis technology, which are then stored. To read back the stored data, target
DNA oligos can be selectively (random-) accessed using polymer chain reaction (PCR), then sequenced via next generation sequencing (NGS), and
decoded back to digital information. b The computational model approximates each molecular process in the DNA storage system: it uses a normal
distribution for modeling sequence copy numbers from synthesis, a stochastic branching process for PCR, and random sampling for sequencing. The
computational model makes predictions for oligo copy distribution to help researchers estimate statistics such as sequence dropout rate.
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file sequences in two manners. First, these reads were aligned to
individual sequences in the file using Burrows-Wheeler Aligner
(BWA)25, independent from UMI, and their respective counts
(coverage) are reported in Fig. 2c. Second, the same reads were
aligned to sequences in the file, then further filtered by UMI label
(Fig. 2b), and finally reported in Fig. 2d. The UMI-filtered results
are a proxy for the oligo distribution after DNA synthesis, and the
copy number is clearly variable, indicating that the old synthesis
process is far more skewed (there have since been process
improvements, discussed in the next section). This distribution is
also very similar in shape to the distribution after PCR, indicating
that PCR does not significantly increase bias overall. Nevertheless,
PCR still has an impact on individual sequence counts, so we
decided to study the amplification ratio of each sequence as a
function of the number of initial molecules representing it. We
define the amplification ratio to be the ratio of total reads after
PCR to UMI count (i.e., oligo count before PCR) for each
sequence. Figure 2e shows that regardless of the initial oligo copy
number, the average amplification ratio remains constant. On the
other hand, the amplification ratio was observed to have high
variation when oligos had very low copy numbers, indicating that
the amplification ratio was affected by stochastic effects at these
low copy numbers. Indeed, since a PCR process is composed of
successive rounds of binomially distributed copying (each mole-
cule has some probability of being copied), we would expect the
standard deviation (s.d.) of the amplification ratio to be inversely
proportional to the square root of the initial number of strands.
Additionally, since observation takes a sequencing reaction

(another binomial process) we would expect a constant amount
of added deviation. These observations lead us to the model:

σα ¼
affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

UMI count
p þ b ð1Þ

where σα is the s.d. of the amplification ratio, and a and b are
constants. Our experimental data was fitted using Eq. (1) and
shown in Fig. 2f.

Bias is related to the spatial location on the synthesis chip. To
further understand the synthesis bias, we ordered a carefully
designed a ready-to-sequence pool with 1,536,168 unique DNA
sequences from Twist Bioscience. Oligos in this pool already
contain universal Illumina adapters and Illumina sequencing
primers on both the 5′ and 3′ ends, allowing us to sequence it
without any sequencing library preparation such as PCR or
ligation. By mapping the sequencing reads of each sequence back
to its corresponding location on the synthesis chip, a distinct
pattern can be observed (Fig. 3a), indicating that synthesis bias
was related to the spatial location on the synthesis chip. After
further discussion with Twist Bioscience, their synthesis process
was improved, and the oligo counts on the synthesis chip became
much more even (Fig. 3c). Interestingly, the oligo distribution
before the synthesis process improvement did not follow a nor-
mal distribution, but the oligo distribution using the improved
synthesis process is now well fitted to a normal distribution
(Fig. 3b, d).
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Fig. 2 Estimating oligonucleotide bias using unique molecule identifiers (UMIs). a Overview of tagging each single DNA molecule with UMIs. Each oligo
sequence (e.g., represented in black, beige) in a pool has multiple copies and each copy is labeled with a UMI (represented in different colors) and universal
Illumina sequencing adapters (represented in gray). After UMI labeling, oligos are PCR-amplified and sequenced. b Hypothetical examples of UMI
counting. The UMI count of each sequence is a proxy for the oligo copy number from DNA synthesis. The total number of reads containing the same UMI
is a proxy for the number of copies of a DNA molecule created by PCR. c The distribution of number of reads for each sequence, normalized to 83.0 mean
coverage. Read counts are normalized to form a probability density (y-axis); the integral of the probability density is 1 (see “Methods” section). d The
distribution of UMI counts for each sequence, normalized to 7.7 mean coverage. The biased UMI count distribution indicates that pools are already biased
immediately after DNA synthesis, before any PCR is performed. e Amplification ratio versus UMI count. The average amplification ratio is roughly constant
across UMI counts, but oligos with low initial copy numbers show higher variation. The error bars indicate standard deviation (s.d.) of amplification ratio.
f Standard deviation (s.d.) of amplification ratio versus UMI count. The experimental data agree with Eq. (1). The number of unique sequences (sample
size) is 457,772. Source data are available in the Source Data file.
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Oligo synthesis quality lives within a select set of parameters
broadly defined as dosage, where we define dosage as: {time,
temperature, and concentration}. The boundaries of this quality
window define a dosage tolerance relevant to the particular
application, in this case oligonucleotides used for data storage.
Initial data used in this paper were produced with a process that
allowed process excursions outside of the dosage tolerance
window. To address these spatial gradients in quality, Twist
Bioscience increased the dosage tolerance window with proprie-
tary chemical modifications to the phosphoramidite chemistry,
making the additive synthesis process less susceptible to process
dosage excursions. Twist Bioscience also introduced engineering
changes to the hardware and chemical process parameters to
ensure more uniform evacuation of chemical reagents in the
flowcell process with enhanced temporal control. The combina-
tion of these changes has resulted in dramatically decreased error
rates and more robust molecules in subsequent processes.

Population fraction change for quantifying PCR bias. We now
turn to studying the PCR bias by creating metrics to quantify it at
the sequence level. We begin by defining the population fraction
of a sequence i after k 2 fZ≥ 0g cycles of PCR as

xðkÞi :¼ N kð Þ
iP
jN

ðkÞ
j

ð2Þ

where N kð Þ
i is the number of reads of sequence i after k PCR

cycles. Here j is across all sequences. We then define the popu-
lation fraction change for sequence i to be

Qi ¼ QðkÞ
i :¼ x kð Þ

i

x 0ð Þ
i

: ð3Þ

We consider a PCR process to be unbiased when E½Qijxð0Þi > 0� ¼
1 for all sequences, that is, no sequence becomes over or
underrepresented after a PCR, whereas we consider a PCR pro-

cess to be biased when E½Qijxð0Þi > 0�≠ 1 for any sequence i. We
then can say that experiments with higher standard deviation

over the population fraction change, s:d:½Q :¼ fQijxð0Þi > 0g�,
show more bias when all other conditions are equivalent. It is
worth noting that even an unbiased process will have s:d: Q½ �> 0
for finite sample sizes. Furthermore, s:d:½Q� should asymptotically
decrease with the total number of reads.

PCR bias is not correlated with GC content. Although previous
studies observed PCR bias in genomic biological sample ampli-
fication15–17, it remained unclear whether such bias is significant
in DNA data storage. To assess this, we used the 1.5 million-
sequence ready-to-sequence pool and compared its distribution
before PCR and after PCR. The ready-to-sequence pool was
sequenced in two ways: (1) directly from the synthesized pool and
(2) after one 6-cycle plus five 5-cycle PCR processes, for a total of

ba

c d

Fig. 3 Oligo copy distribution on the synthesis chip. a The sequencing coverage of each oligo from the first ready-to-sequence pool was mapped back to
its corresponding location on the synthesis chip. Coverages are normalized to the median. b The histogram of normalized sequencing coverage of the first
ready-to-sequence pool (blue). The distribution does not fit a normal distribution (dashed line). c The sequencing coverage of each oligo from the second
ready-to-sequence pool, mapped back to its corresponding location on the synthesis chip. Coverages are normalized to the median. d The histogram of
normalized sequencing coverage of the second ready-to-sequence pool (blue). The second ready-to-sequence pool showed much more even oligo copy
distribution and fits a normal distribution (dashed line) much more closely than then first. The unique number of sequences (sample size) is 1,536,168.
Source data are available in the Source Data file.
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31 cycles. Each PCR process was limited to no more than 6 cycles
to prevent resource exhaustion (i.e., there was always an excess of
primer and other reagents). Sequencing data (Fig. 4a) shows
qualitatively little change in the coefficient of variation (c.v.) of
oligo copy distribution before and after PCR (0.41 and 0.45,
respectively, when both are subsampled to 20× coverage). The
two datasets were then compared at a sequence level by observing
population fraction changes with respect to the overall available
pre-PCR pool coverage, 60× (Fig. 4b). The distribution before
PCR shows the effect of subsampling on population fraction, and
the distribution after PCR shows the effect of PCR itself. The
latter showed much higher standard deviation. The standard
deviations of population fraction changes were 0.24 and 0.37
before PCR and after PCR, respectively, and these two numbers
were statistically different (p < 0.005, computed by bootstrapping
n= 1000). This indicates that PCR increased bias relative to a
random sampling process.

We then asked whether population fraction changes were
caused by GC content. We first examined the ready-to-sequence
pool, which was encoded to avoid homopolymers6 (Fig. 4c).
Although the association between population fraction changes
and GC content of this pool (between 40 and 60%) was found to
be statistically significant (P value < 0.05), the association between
the two was very small and practically unimportant (the slope of

the linear fit was <0.01). Additionally, we tested another 9
different DNA archival files with a total of 1,358,998 unique
sequences that allow random homopolymers (Fig. 4d; Supple-
mentary Fig. 2 shows experimental workflow details). These
homopolymer files had a wider range of GC content from 25 to
75%, but the association between GC content and the population
fraction changes was still very small and not practically important
(the slope of the linear fit was <0.01). The negligible bias impact
from GC content in our experimental data was likely because
these oligos were relatively short (150-nt), and the use of KAPA
HIFI polymerase also reduced the impact of GC bias26. Having
established that GC content was not the main effect being
observed, we turned to hypothesizing that PCR stochasticity was
the culprit.

PCR stochasticity can lead to significant bias. Because PCR is
not perfect (i.e., replication of an individual molecule has a
probability of less than one), even small random divergence in
early phases of amplification can create significant bias, which is
known as PCR stochastic bias. We have shown that PCR bias is
related to oligo copy number in the UMI quantification experi-
ment, especially for sequences with low copy numbers in the
initial pool (from a previous PCR process or from a biased

ba

c d

Fig. 4 PCR-induced Population Fraction Changes and Impact of GC content. a Histogram of sequencing coverages for optimized ready-to-sequence pool.
The ready-to-sequence pool was sequenced directly, without PCR (blue). The same pool was amplified using PCR for 31 cycles (green) and sequenced
separately. Both were randomly sampled to coverage of 20× for direct comparison, and they look quite similar (c.v.= 0.41 and c.v.= 0.45, respectively).
b The blue histogram shows the population fraction change Q distribution of the ready-to-sequence pool, before PCR, after being subsampled to 20x
coverage, with respect to its overall available coverage (60×). The green histogram shows the population fraction change Q distribution of the ready-to-
sequence pool, after PCR and after being subsampled to 20x coverage, with respect to the pre-PCR pool distribution at 60x coverage. The blue distribution
shows the effect of subsampling, while the further widening of the green curve with respect to the blue curve is attributed to stochastic bias in the PCR
process. The sample size (number of unique sequences) in a, b is 1,536,168. c, d The GC content is plotted against the log2 of the population fraction
change Q for the ready-to-sequence, non-homopolymer pool (c) and a homopolymer pool (d). The experimental data are shown as blue dots, and the
linear fit is shown as a red line. The histograms of GC content and log2 (Q) are shown at the top and right, respectively. The sample size (number of unique
sequences) in c, d is 1,536,168 and 1,358,998, respectively. Source data are available in the Source Data file.
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synthesis pool). Now we want to understand better how PCR
stochastic bias affects our DNA storage system.

To quantify PCR stochastic bias, we used an arbitrarily chosen
DNA pool with 7,373 sequences to perform a serial dilution-PCR
experiment (Fig. 5a). The master pool was diluted to different
average copy numbers ranging from 8 to 113 (the copy numbers
were quantified using qPCR). Then each sample was amplified
with 18 cycles of PCR using primers with Illumina sequencing
primer overhangs. Subsequently, a second step of PCR was
carried out to include the Illumina adapters where we adjusted
the number of cycles to equalize the final library concentration
(Supplementary Fig. 3 shows workflow details). The second PCR
was carried out at high copy number of the templates (over a
million oligo copies per sequence) to avoid introducing additional
bias. Our experimental results show that as average copy number
decreased, oligo distribution skewed further away from its mean
(Fig. 5c). We plot average copy number in a pre-PCR mix against
the coefficient of variation (c.v.) of sequencing coverage (Fig. 5d)
and standard deviation of population fraction change Q
(Supplementary Fig. 4). Both plots show that the lower oligo
copy numbers were, the greater the PCR stochastic bias was.

A computational model can predict molecular bias. After
characterizing the bias caused by synthesis and PCR sequencing

retrieval, we construct a DNA storage model that encompasses
the entire workflow of DNA storage, starting from synthesis→
aliquot into pre-PCR reaction→ PCR amplification with k
cycles→ sequencing with mean �nr reads (Fig. 5b). We model the
oligo copy distribution of synthesis as a normal distribution with
total number of sequences Nseq, mean copy number per sequence
�nsyn, and standard deviation of oligo copy number σ. The PCR
process is modeled as a stochastic branching process using the
following recursive equation:

njþ1 ¼ nj þ Bðnj; PÞ ð4Þ

where nj is the number of molecules in the j-th cycle; B(nj, P) is a
binomially distributed random variable with nj molecules, and P
is the probability of a successful amplification. Illumina sequen-
cing was previously observed to have bias on GC-extreme
sequences15,27,28, but GC content in our files did not show
practically significant bias in the PCR GC bias test. Therefore,
high-throughput sequencing and sample dilution are modeled
using random sampling. Note that for performance reasons our
model does not perform stochastic simulation for high copy
number PCR. PCR carried out at high copy number of templates
should obey the law of mass action and therefore be effectively
deterministic.

a

b

c d

Fig. 5 Dilution-PCR experiment. a The experimental workflow. A master DNA pool was diluted to different average copy numbers as indicated in the
drawing. Each dilution sample was PCR-amplified and sequenced using an Illumina NextSeq instrument, and the results sampled at 200x coverage. b A
computational model for the dilution-PCR experiments. The synthesis pool model used Nseq= 7,373 number of sequences, and normally distributed copy
numbers with mean �nsyn = 108, and standard deviation σ= 3.2 × 107. The c.v. of the synthesis pool in this simulation ð σ

�nsyn
¼ 0:32Þ was set to be equal to the

c.v. of our ready-to-sequence pool sequenced at mean coverage 17. The dilution process was simulated using random sampling with a mean copy number
�n0, ranging from 8 to 113. PCR was simulated as a binomial process with a probability of successful amplification P= 0.95 and 18 PCR cycles. The simulated
sequencing result was obtained using random sampling with an average coverage �nr = 200. c Simulated post-PCR sequencing coverage histogram of each
dilution-PCR sample. The initial (pre-PCR) average copy number of each histogram is shown in the legend, ranging from 8 to 113. Coverage counts are
normalized to display a probability density. A Gaussian estimated density curve is added as an outline of each histogram to help with visualization.
d Sequencing coverage c.v. of the post-PCR mix versus average copy number in the pre-PCR mix. The model prediction (green) shows good agreement
with the experimental data (blue) with R2= 0.71. The error bars of experimental data indicate standard error of the mean calculated from triplicate
experiments. The error bars of model outputs indicate standard error of the mean calculated from 100 repeated simulations. Source data are available in
the Source data file.
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We then interrogated our computational model to determine
whether it can estimate the bias observed in the serial dilution-
PCR experiment. Despite not being able to observe the oligo
population directly after synthesis, our UMI experiment (Fig. 2)
has provided evidence that its population distribution is quite
similar to the distribution resulting from a PCR process that starts
from a large average copy count sample coming from that
synthesized pool. As such, the copy distribution of a synthesis
pool is modeled as a normal distribution with the same c.v. as the
experimental data from the (optimized) ready-to-sequence pool.
Then we used our system model to simulate the dilution-PCR
experiment. Figure 5d shows that our model prediction is in good
agreement with the c.v. of the experimental data (R2= 0.71). The
model also predicted the trend of standard deviation of
population fraction change Q: the lower starting copy number
in the PCR showed higher standard deviation (R2= 0.84;
Supplementary Fig. 4).

A computational model can help determine system parameters.
Taking it one step further, we used our computational model to
study a range of parameters associated with DNA storage: synthesis
bias, physical redundancy for storing DNA, logical redundancy,
and sequencing redundancy (Fig. 6a). In particular, we investigated
the impact of these parameters on sequence dropout rate, which is
critical for error-free decoding. Figure 6b plots sequence dropout
rates as a function of the c.v. of a synthesis pool and sequencing
reads. It shows that a biased synthesis pool (i.e., high c.v.) is the
dominant factor in sequence dropout and cannot be proportionally
compensated by additional sequencing reads. Sequence dropout is
caused by physical storage with a limited number of oligo copies
coupled with PCR stochastic bias. Figure 6c plots sequence dropout
rates as a function of the copy number of stored DNA and
sequencing reads. It shows that physical storage density is a more
important factor than sequencing reads in modulating sequence
dropout. Interestingly, our model estimates that it is possible to
store as few as 10 copies per oligo sequence (physical density of
9.3 EB per g - EB: exabytes; 1018 bytes), while achieving less

than 2% sequence dropout. This estimated physical density is over
10-fold higher than prior work by Erlich and Zielinski10 and is
aligned with what we have recently observed in practice29. The next
important question is how much logical redundancy is needed to
handle missing sequences. Take Reed-Solomon code in our pre-
vious work8 as an example, the maximum percentage of missing
strands that can be tolerated is R

100þR%, where R is the percentage of
logical redundancy. Figure 6d shows a simulation of how oligo
copy number affects the recovered oligo percentage (100% minus
oligo dropout) and the required logical redundancy to recover the
data. Interestingly, at the low end, a modest increase in logical
redundancy allows for a significant decrease in the required oligo
copy number and enables an almost proportional increase in
physical density. For example, at 30 copies, the required logical
redundancy for data recovery is 3% whereas at 10 copies the logical
redundancy grows to only 8%, nearly tripling physical density. It is
worth pointing out the example here ignores all other errors such
as insertions, deletions, and substitutions. These errors depend on
synthesis and sequencing technologies, and they should be taken
into account when determining the proper logical redundancy.
Finally, we give an example in Supplementary Figure 5 to show
how our system model can be used to optimize two important
parameters in a given DNA storage system: physical redundancy
(determining physical density) and sequencing redundancy
(determining sequencing cost).

Discussion
In this work, we quantified molecular bias in a DNA storage
system, and we identified two significant bias sources: synthesis
bias and PCR stochastic bias. Synthesis bias was found to be
related to the spatial location on the synthesis chip, and this
observation was later used to inform and improve the synthesis
process. PCR stochastic bias was identified as the second main
driver of oligo copy variation. Indeed, prior work also found that
PCR copy data from a deeply diluted oligo pool resulted in
dramatic bias, which is less suitable for data recovery10.

a

b c d

Fig. 6 A computational model can help determine system parameters for DNA data storage. a A synthesis pool was generated with Nseq= 10,000 total
number of sequences, with normally distributed copy numbers with a mean of �nsyn = 108 and standard deviation σ= 3.2 × 107. The pool was simulated to
store an average copy number �n0 = 100, followed by 20 cycles of PCR amplification with P= 0.95, and high-throughput sequencing with average
sequencing coverage �nr = 200. Sequence dropout (i.e., coverage of 0 for a given sequence) rates were quantified. b Sequence dropout percentage as a
function of variable synthesis pool c.v. and variable mean sequencing coverage �nr . c Sequence dropout percentage as a function of variable mean copy
number n0 and variable mean sequencing coverage �nr . d Percentage of recovered oligo and logical redundancy as a function of average oligo copy number.
The mean sequencing coverage is 5. When a very low copy number of oligo is stored, more sequences drop out, and thus higher logical redundancy is
needed. The reported dropout percentage was the average of 100 repeated simulations.
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Another important contribution of this manuscript is the
construction of the first process-wide model that provides a
quantitative understanding of how oligo copy distribution is
skewed as it goes through a DNA storage system. Importantly,
such system model helps researchers rationally optimize the use
of DNA physical density, logical redundancy, and sequencing
redundancy for reliable data decoding without conducting hun-
dreds of experimental trials. We believe this is an important step
towards engineering robust, efficient DNA storage systems.

In this study, we found that oligos from unbiased synthesis and
sequencing processes can be well modeled as a normal distribu-
tion and random sampling, respectively. While the experiments
were tested using Twist Bioscience and Illumina sequencing, the
proposed system model can in principle be applied to other
synthesis and sequencing technologies. It is worth noting that
when applying our model to other technologies, additional
quantification and modeling is likely needed. For example, Ion
Torrent and Oxford Nanopore sequencing show limited ability to
accurately sequence long homopolymers, which is less significant
in Illumina sequencing. Different array-based synthesis technol-
ogies could also have their own unique dependent bias caused by
processes specific to them, such as uneven fluidic operation,
surface treatment, and other factors. Our system model was
experimentally tested by PCR-amplifying a single file without any
other non-targeted files in a pool. This experiment was designed
to avoid complexity from other files for proper quantification of
the impact of PCR stochastic bias. Next, we plan to investigate
whether PCR random access of a file from a complex pool with
additional files will lead to more bias. We suspect that amplifying
a very small file from a complex pool with relatively large number
of sequences will exhibit more copy number variation due to non-
specific binding of primers. New methods will probably be nee-
ded for such system.

Methods
Reagents. All DNA pools were synthesized by Twist Bioscience (San Francisco,
CA). All DNA pools were resuspended to 10 ng per µL in 1× TE buffer (pH 7.5).
All primers were purchased as desalted, unpurified DNA from Integrated DNA
Technologies (IDT; Coralville, IA). All primers were resuspended to 100 μM in 1×
TE buffer (pH 7.5). KAPA HIFI polymerase was purchased from Kapa Biosystems.
T4 ligase and T4 Polynucleotide Kinase (T4 PNK) were purchased from New
England Lab.

PCR protocol. In a 20 µL PCR reaction, 1 µL of 1 ng per µL of ssDNA pool was
mixed 1 µL of 10 μM of the forward primer and 1 µL of 10 μM of the reverse primer,
10 µL of 2× KAPA HIFI enzyme mix, and 7 µL of molecular biograde water. The
reaction followed a thermal protocol: (1) 95 °C for 3 min, (2) 98 °C for 20 s, (3) 62 °C
for 20 s, (4) 72 °C for 15 s. After PCR, the length of the PCR products was confirmed
using a Qiaxcel fragment analyzer, and the sample concentration was measured using
a Qubit 3.0 fluorometer. Primer sequences see Supplementary Table 2.

Sample preparation for sequencing. Before sequencing, the concentrations of all
samples were quantified using qPCR. The final sample was then prepared for
sequencing by following the NextSeq System Denature and Dilute Libraries Guide.
The final concentration of the loaded sample for our Illumina NextSeq is 1.3 pM,
and a 10–20% PhiX was spiked in as a control (PhiX is a genomic DNA sample
provided by Illumina).

Protocols of UMI labeling. The general workflow for UMI labeling of a single-
stranded DNA pool is divided into 5 steps (Supplementary Fig. 1; sequences see
Supplementary Table 1): (1) phosphorylation of a ssDNA pool and Illumina P7
adapters, (2) assembly of a ssDNA pool with Illumina adapters with DNA staples
by heat annealing, (3) ligation of Illumina adapters to the ssDNA pool, (4)
extraction of the ligated sample using denaturing polyacrylamide gel electro-
phoresis (D-PAGE), and finally (5) PCR enrichment of the full length product.

The phosphorylation of ssDNA was performed using the following recipe: 5 pmole
of the single-stranded DNA pool, 20 units of T4 Polynucleotide Kinase (T4 PNK),
1 µL of 10× T4 ligase buffer and 1 µL of 10× T4 PNK buffer were mixed in a 10 µL
total volume reaction. 500 pmole of single-stranded Illumina P7 adapter, 200 units of
T4 PNK, 5 µL of 10× T4 ligase buffer and 5 µL of 10× T4 PNK buffer were mixed in a
50 µL total volume reaction. The mixtures were incubated for 30min at 37 °C.

The assembly of the single-stranded DNA pool with adapters were performed
with the following recipe: In a 25 µL reaction, 15 pmole of single-stranded DNA
pool, 30 pmole of DNA staples and 45 pmole of Illumina P5 and P7 adapters were
mixed. The mixture was heated up to 95 °C for 2 min, and then cooled down to
25 °C at a rate of 1 degree per minute.

Ligation of DNA was performed with a 15 µL reaction in which 10 µL of the
assembled DNA mixture, 2 µL of the T4 ligase (10 units per µL), 1.5 µL of T4 ligase
buffer and 1.5 µL of molecular water were mixed. The ligation mixture was incubated
at room temperature for 30min, followed by heat inactivation at 65 °C for 10min.

A 10% D-PAGE gel was made by mixing 2.5 mL of 19:1 40% acrylamide/bus,
1.2 mL of 10× TBE, 5.04 g of urea and deionized water to 12 mL. Then 72 µL APS
and 4.8 µL of TEMED were added to help polymerization. DNA sample was mixed
with 2× TBE/Urea denaturing loading buffer (Bio-Rad). Gels were run at 200 V for
55 min at 55 °C. The extracted band was incubated with 1× TE buffer overnight at
room temperature for elution.

The eluted single-stranded DNA was PCR-amplified using the end primers of
Illumina adapters. The PCR reaction used 1 µL of the eluted single-stranded DNA,
10 pmole of the forward and reverse primers, 10 µL of 2× KAPA HIFI polymerase
and 8 µL of molecular water. The thermal protocol is as follows: (1) 95 °C for 3 min,
(2) 98 °C for 20 s, (3) 60 °C for 20 s, (4) 72 °C for 15 s.

Sequence alignment using Burrows-Wheeler Aligner (BWA). We used BWA to
align our expected, short references against reads from a sequencer. We then used
the alignment counts for each reference sequence produced by BWA to generate
distribution plots.

Density histogram plots. The y-axis of a density histogram shows probability
density, and the area (or integral) under the histogram is 1. The probability density
di is calculated by dividing the count by the sample size times its bin width (see the
following equation).

di ¼
NiP

jNj

� �
*Wi

ð5Þ

where Ni is the count of the i-th bar, and Wi is the bin width of the i-th bar.
Displaying the y-axis as probability density makes it possible to compare dis-
tributions. In Fig. 5c, a Gaussian estimated curve is added to help visualize each
histogram.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The sequencing coverage data underlying Figs. 2c–f, 3b, d, 4a, b, and 5 are available in the
Source Data file and are on GitHub at this URL: https://github.com/uwmisl/storage-
biasing-ncomms20. Any additional data will be made available upon reasonable
request. Source data are provided with this paper.

Code availability
The analysis code that supports the findings of this study is available upon request/is on
GitHub at this URL: https://github.com/uwmisl/storage-biasing-ncomms20. The code
simulates the whole molecular process and was used to demonstrate how synthesis bias,
physical redundancy, and sequencing redundancy affect the sequence dropout rate.
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