Skip to main content
. 2020 Jun 30;35(3):290–304. doi: 10.1007/s12250-020-00252-z

Table 2.

Animal models of SARS-CoV.

Sr. No Animal model Disease induction (strain & route) Clinical signs Advantages Disadvantages References
1 Rhesus macaques SARS-CoV, Tor2, 107 PFU, IV/IT Significant viral titer in the lungs Useful for therapeutic evaluation and vaccines immunogenicity In SARS study limited use Rowe et al. (2004)
2 Rhesus macaques SARS-CoV, Urbani, 106 PFU, IT/ IN Could not show any clinical sign Used for Therapeutic evaluation and vaccines immunogenicity Clinical illness was not present McAuliffea et al. (2004)
3 Rhesus macaques SARS-CoV, PUMC01, 105 PFU, IN Pulmonary changes were observed on 5–60 dpi; All macaques reported fever 2–3 dpi Immunological and pathological similarity with clinical condition The symptoms are less severe as comparison of clinical scenario Qin et al. (2005)
4 Cynomolgus monkeys SARS-CoV, 103 and 106 TCID50, IN/IT Interstitial pneumonia, alveolar macrophages and neutrophils, diffuse alveolar damage Helpful for the study of SARS pathogenesis and can be used for therapeutic and vaccine studies Availability and cost Fouchier et al. (2003)
5 Cynomolgus monkeys SARS-CoV, 1 × 106 TCID50, IT/ IN, Symptoms appeared as difficulty in respiration; more diffuse alveolar damage, type 2 pneumocyte hyperplasia and alveolar macrophages are present in alveolar lumina Useful for vaccine and therapeutic drug evaluation There is issue with availability, housing cost; early clearance of virus and pneumonitis occurred Kuiken et al. (2003)
6 Cynomolgus monkeys SARS-CoV, Tor2, 107 PFU, IT Mild cough; a few scattered pleural adhesions Presentation of critical disease Symptoms cleared quickly and animals becomes asymptomatic from 8 to 10 days Rowe et al. (2004)
7 Cynomolgus monkeys SARS-CoV, Urbani, 3 × 106.3 PFU, IB/ IN, Reported nasal congestion, mild respiration distress; animals become lethargic; pulmonary related disease Helpful in immunogenicity of vaccines and therapeutics studies Lack of apparent clinical illness McAuliffe et al. (2004)
8 African green monkey SARS-CoV, Urbani, 106.3 TCID50, IB /IN, Virologic data and histopathologic findings, focal interstitial pneumonitis was noticed in some African green monkey Useful for evaluation of vaccine efficacy against infection Rapid clearance of virus and pneumonitis in African green monkey McAuliffe et al. (2004)
9 Marmoset SARS-CoV, Urbani, 106 PFU, IT Marmoset reported there is elevation of temperature, interstitial pneumonitis, multifocal lymphocytic hepatitis and diffuse interstitial colitis Can be used in Pathogenesis, therapeutics and vaccine efficacy studies This model is not able to explain the viral antigen/viral RNA within hepatic tissues Greenough et al. (2005)
10 BALB/c mice

4–6 week aged SARS-CoV, Urbani,

105 TCID50, IN

High viral load in respiratory tract Useful for immunological studies No overt clinical sign was present Subbarao et al. (2004)
11 BALB/c mice 12–14 month aged SARS-CoV, Urbani, 105 TCID50, IN Old aged mice observed significant loss of weight, mild dehydration and alveolar damage; Also reported intra-alveolar edema, perivascular infiltrates Useful for vaccine evaluation There is need of further characterization and immune senescence Vogel et al. (2007)
12 129SvEv /STAT 1-/- mice SARS-CoV, Tor2, 6 × 106 PFU/30 µL, IN Viral replication, morbidity, mortality and pneumonitis STAT 1-/- exhibited innate immunity Defect in innate immunity Hogan et al. (2004)
13 129SvEv /STAT 1-/- mice SARS-CoV, Urbani, 105 PFU, IN Reported severity of disease in this study, high virus replication and severe pulmonary lesions Viral replication, histopathology similar to clinical conditions Lack of a normal innate immune did not enhance virus pathogenesis Frieman et al. (2010)
14 C57BL/6 mice SARS-CoV, Urbani 1 × 104 TCID50, IN Virus infected the respiratory tract (bronchial and bronchiolar epithelium); failure to thrive and also observed infection reached to the brain Useful for immunological studies Fail to show clinical signs of disease Glass et al. (2004)
15 Transgenic hACE2 mice SARS-CoV, PUMC01 105 TCID50, IN Transgenic mice showed severe lung damage, systemic inflammatory reactions, degeneration, and necrosis in many extra-pulmonary organs More susceptible to infection as comparison to wild type mice, and more closely resemblance to human pathology of SARS Tissue distribution was limited, decreased expression of hACE2 and lack of lethality Yang et al. (2007)
16 Golden Syrian hamster 5-week aged, SARS-CoV, Urbani, 103TCID50, IN Increased viral replication in lungs, related interstitial pneumonitis, diffuse alveolar damage Reproducibility, increased viral replication in lungs which makes it suitable for immunoprophylaxis and immunotherapy and vaccines studies As virus is cleared rapidly from 7 to 10 dpi, there was no overt clinical illness Roberts et al. (2005)
17 Ferret and domestic cat SARS-CoV, 106 TCID50, IT Lethargy and mortality in ferrets; histopathological changes including pulmonary consolidation was reported in both animals Useful for vaccines, immunotherapy and therapeutic studies Availability; vulnerability to other respiratory viruses Martina et al. (2003)

SARS, Severe acute respiratory syndrome; IN, intranasal inoculation; IT, intratracheal inoculation; IV, intravenous inoculation; IB, intrabronchial inoculation; TCID50, 50% Median Tissue Culture Infectious Dose; PFU, Plaque forming units.