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Charles C. Vu1,2 | Zaid A. Siddiqui1,2 | Leonid Zamdborg1,2 | Andrew B. Thompson1,2 |

Thomas J. Quinn1,2 | Edward Castillo2 | Thomas M. Guerrero1,2

1Beaumont Artificial Intelligence Research

Laboratory, Beaumont Health System, Royal

Oak, MI, USA

2Department of Radiation Oncology,

Beaumont Health System, Royal Oak, MI,

USA

Author to whom correspondence should be

addressed. Thomas M. Guerrero

E‐mail: thomas.guerrero@beaumont.edu;

Telephone: 248‐551‐7058; Fax: 248‐551‐
0089.

Funding information

RSNA Research Resident Grants, Grant/

Award Number: RR1869, RR1971

Abstract

Purpose: Segmentation of organs‐at‐risk (OARs) is an essential component of the

radiation oncology workflow. Commonly segmented thoracic OARs include the

heart, esophagus, spinal cord, and lungs. This study evaluated a convolutional neural

network (CNN) for automatic segmentation of these OARs.

Methods: The dataset was created retrospectively from consecutive radiotherapy

plans containing all five OARs of interest, including 22,411 CT slices from 168

patients. Patients were divided into training, validation, and test datasets according

to a 66%/17%/17% split. We trained a modified U‐Net, applying transfer learning

from a VGG16 image classification model trained on ImageNet. The Dice coefficient

and 95% Hausdorff distance on the test set for each organ was compared to a com-

mercial atlas‐based segmentation model using the Wilcoxon signed‐rank test.

Results: On the test dataset, the median Dice coefficients for the CNN model vs. the

multi‐atlas model were 71% vs. 67% for the spinal cord, 96% vs. 94% for the right lung,

96%vs. 94% for the left lung, 91% vs. 85% for the heart, and 63% vs. 37% for the

esophagus. The median 95% Hausdorff distances were 9.5 mm vs. 25.3 mm, 5.1 mm

vs. 8.1 mm, 4.0 mm vs. 8.0 mm, 9.8 mm vs. 15.8 mm, and 9.2 mm vs. 20.0 mm for

the respective organs. The results all favored the CNN model (P < 0.05).

Conclusions: A 2D CNN can achieve superior results to commercial atlas‐based
software for OAR segmentation utilizing non‐domain transfer learning, which has

potential utility for quality assurance and expediting patient care.
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1 | INTRODUCTION

Accurate delineation of tumor volumes and organs‐at‐risk (OARs) is

an essential component of the radiation oncology workflow. In treat-

ment planning for thoracic malignancies, such as lung cancer, esoph-

agus cancer, or breast cancer, commonly segmented thoracic OARs

include the heart, esophagus, spinal cord, and lungs. Accurate delin-

eation of thoracic OARs is necessary to assess the dose to these

critical normal structures.

Numerous methods have been attempted for automatic segmen-

tation of thoracic organs, including atlas‐based methods, level‐set
methods, and morphological methods (see Sharp et al.1 for a detailed
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review). Deep convolutional neural networks (CNNs) have revolution-

ized numerous areas of medical image analysis. For image classification

problems, CNNs have achieved human‐level results in classification of

skin cancer and diabetic retinopathy.2,3 While CNNs initially achieved

state‐of‐the‐art results in image classification tasks, their use in seman-

tic segmentation was initially proposed by Long et al.4 Subsequently,

there have been a series of incremental improvements to the state‐of‐
the‐art in semantic segmentation. Subsequently, deep CNNs have also

achieved state‐of‐the‐art results in medical image segmentation prob-

lems, such as magnetic resonance imaging‐based segmentation of the

brain and prostate.5,6 The most widely used architecture for segmen-

tation tasks is the U‐net model. In this architecture, an image is pro-

cessed by successive convolutional layers down to a bottleneck layer,

similar to the design of a network for a classification task. Given that

the output of the image is required to be a segmentation map at input

resolution rather than merely a single classification, the bottleneck

layer is then up‐sampled back with deconvolutions until a pixel‐wise

classification is achieved at input resolution.

Previous studies attempting thoracic auto‐segmentation using

CNNs have used relatively small datasets for model development,7,8

but these small datasets are often not amenable to good perfor-

mance with deep learning models. As such, we attempted to utilize a

larger dataset obtained from routine clinical use to efficiently train a

2D model for the task of semantic segmentation. In order to further

improve model convergence, we hypothesized that utilizing transfer

learning from a model pre‐trained on the ImageNet classification task

would be beneficial.9 We therefore modified the classic U‐Net

model, replacing the downward convolutional path with the VGG16

network,9 which has a publically available model with weights pre‐
trained on ImageNet. We hypothesized that our methodology would

allow for convergence of a 2D neural network model with accept-

able accuracy, low GPU overhead, and fast inference times.

2 | MATERIALS AND METHODS

2.A | Training dataset

A data preprocessing system was engineered to automatically import

treatment plans from a clinically deployed Pinnacle (Philips, Amster-

dam) treatment planning system (TPS). This preprocessing pipeline

converted the TPS contour format to industry‐standard DICOM

RTSTRUCT format. A region‐of‐interest vocabulary (right lung, left

lung, heart, spinal cord, and esophagus) and synonym lists (e.g.,

R_lung, lung_R, etc as valid names for right lung) were developed in

coordination with dosimetry staff to ensure consistency between

patient plans. No registration was performed on input images. All

contours were used as part of clinical treatment planning and were

assumed to represent the ground truth. The contours were not

adjusted or changed for this study. The resulting dataset consisted

of axial CT slices and corresponding pixel label maps.

The training set is comprised of the volumetric CT images and

corresponding contour information used for radiation therapy

F I G . 1 . Convolutional Neural Network Structure (modified U‐Net, adapted from Ronneberger et al. [15]). The input CT slice is down‐sampled
due to GPU memory limitations. The downward path is the VGG16 model from keras trained on ImageNet with locked weights. The upward
path mirrors the VGG16 path with some modifications to enable faster convergence. Activation functions not shown for clarity. The output of
then neural network is then up‐sampled for the full resolution prediction. Up‐sampling and down‐sampling is done with 2:1 nearest neighbor
resizing (both for pre/post‐processing and within the GPU neural network flow).
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simulation and treatment planning for 168 patients. The data were

extracted as part of an Institutional Review Board‐approved retro-

spective study (patient consent waived due to minimal risk). The

dataset was split into training, validation, and test sets, with all slices

from a patient’s CT scan belonging exclusively to one of the three

groups.

OAR contours were rasterized as label images using region‐filling
techniques. Pixel‐wise classification of images was used, such that

no overlapping ROIs were permitted. CT slice data were down‐sam-

pled to half‐resolution (256 x 256) due to GPU capacity limitations.

As the model then produced pixel‐wise classifications at half‐resolu-
tion (256 x 256 pixels), we up‐sampled the output from the GPU to

full resolution (512 x 512 pixels) using nearest‐neighbor interpolation
for statistical analysis. The training data was normalized to mean

value zero and the validation and test datasets were subtracted by

the mean pixel value of the training dataset prior to inference.

2.B | Convolutional neural network structure

We used a modified U‐Net, adapted from the original U‐Net struc-

ture from Ronneberger et al.10 Implementation was done using Ten-

sorflow and Keras. The model architecture is shown in Fig. 1. For

the encoder section of the U‐net (the downward path), the unmodi-

fied VGG16 network was used from Keras. We applied transfer

learning by using locking the weights from a VGG16 image classifica-

tion model trained on ImageNet9 available from the Keras API. Utiliz-

ing the same model without locked pre‐learned weights resulted in

failure to converge (data not shown). For the upward path, we mir-

rored the downward path with up‐sampling kernels and deconvolu-

tion kernels, but unlike the downward path we modified the

activation function to be a leaky rectified linear units (leaky ReLU)

activation. In addition, after every leaky ReLU activation layer, we

utilized a batch normalization layer11 and a dropout layer,12 with a

dropout coefficient of 0.25. These changes were made to regularize

the network and allow faster convergence without overfitting.

The model was trained end‐to‐end online on four NVIDIA K80

GPUs, utilizing the ADAM optimizer with an initial learning rate of

0.5 to minimize the categorical cross‐entropy loss function.13 Data

augmentation was not utilized in our model. No post‐processing or

ensemble training was utilized.

2.C | Evaluation metrics

To assess the accuracy of contours, the Dice similarity coefficient

and average Hausdorff distance were calculated for each contour in

the test dataset.14,15 The SlicerRT extension of the 3D Slicer pro-

gram (http://www.slicer.org) was utilized to calculate evaluation met-

rics on the test dataset.16 Box plots were generated using R Studio

(version 1.2.1335) to measure the patient‐level variability in Dice

coefficients between subjects in the test dataset.

We also compared our contours to commercial automatic seg-

mentation software. The atlas segmentation module of MIM version

6.7 (MIM Software, Cleveland, OH, USA) was used to generate

thoracic OAR contours on the test dataset. The atlas was comprised

of the same patients in the training dataset used to develop our

deep learning model. As in our CNN model, no post‐processing was

performed on the atlas‐based contours. The Dice similarity coeffi-

cient and 95% Hausdorff distances for each model was compared

with the two‐tailed Wilcoxon signed‐rank test.

3 | RESULTS

In total, 22,411 CT slices from 168 patients were included in this

study. Patients were divided into training, validation, and test data-

sets according a 66%/17%/17% split (n = 112/28/28). Model training

lasted approximately 2.5 days. Inference time after training was

approximately 15 s per patient.

See Fig. 2 for a plot of the loss and accuracy for the training and

validation datasets. The training accuracy is lower than the validation

accuracy and the training loss is higher than the validation loss

because of the use of dropout and batch normalization as regulariza-

tion procedures to protect against overfitting during model training.

Figure 3 shows a sample segmentation from our model showing all

five organs‐at‐risk: right lung, left lung, heart, esophagus, an spinal

cord.

On the test dataset, our model (CNN) was compared to the com-

mercial multi‐atlas model algorithm with the same training dataset as

F I G . 2 . Training and Validation Dataset Loss (a) and Accuracy (b)
during Model Training. Panel A shows the loss function (categorical
cross‐entropy) decreasing with each epoch of training. Panel B
shows the accuracy (Dice) improving with each epoch.
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input. The mean Dice coefficient of the CNN vs. multi‐atlas model

was 75% vs. 63% for the spinal cord (P = 0.01), 97% vs. 93% for the

right lung (P = 0.005), 97% vs. 91% for the left lung (P < 0.001),

90% vs. 83% for the heart (P < 0.001), and 64% vs. 39% for the

esophagus (P < 0.001).

The median 95% Hausdorff distances were 9.5 mm vs. 25.3 mm

for the spinal cord (P = 0.002), 5.1 mm vs. 8.1 mm for the right lung

(P = 0.002), 4.0 mm vs. 8.0 mm for the left lung (P < 0.001), 9.8 mm

vs. 15.8 mm for the heart (P < 0.001), and 9.2 mm vs. 20.0 mm for

the esophagus (P < 0.001).

The distribution of results on the test dataset demonstrates

lower variability with the CNN model (See Fig. 4 for boxplot repre-

sentation).

4 | DISCUSSION

This paper presents a deep CNN trained on a large dataset of rou-

tinely contoured patients. With this model, we were able to achieve

superior segmentation results to a commercial atlas‐based algorithm

for all five thoracic OARs evaluated in this study. This suggests that

utilization of this algorithm would assist in faster contouring,

although we did not explicitly test this hypothesis due to concern

that differences in user edits could wash out a difference between

the underlying algorithms.

Classically, neural networks have required both large computation

clusters and large datasets to efficiently train. We were able to get

around the first limitation using a 2D model – thereby enabling the

use of a consumer‐level GPU. The second limitation was circum-

vented by utilizing transfer learning from a model that achieved

state‐of‐the‐art results on a public image challenge (ImageNet).

Despite the original task being unrelated to medical imaging (or even

segmentation), this approach allowed our model to reach a high accu-

racy. A pre‐trained 2D model may mirror human contouring practices

more accurately than a 3D model, even if with unlimited GPU capac-

ity, as humans usually contour axially. In addition, most scanners

standardize the input dimensions in the x‐y plane (512 x 512 pixels

on most modern scanners), but the z‐dimension fields of view and

pixel size vary depending on manufacturer and application.

One of the potential benefits of a robust automatic segmentation

algorithm is a reduction in contouring time by clinicians. Lustberg

et al. evaluated whether atlas and/or deep learning‐based automatic

contouring algorithms could reduce the time spent contouring lung

cancer OARs[13]. Using 20 patients for training and validation, deep

learning contours reduced manual contouring of the spinal cord,

lungs, heart, mediastinum, and esophagus from 20 to 10 min. In

F I G . 3 . Example Segmentation From Test Dataset Using Convolutional Neural Network Model. Counter‐clockwise from top left: axial view,
sagittal view, coronal view, and 3D reconstruction of the five OARs trained (Right lung, left lung, heart, esophagus, and spinal cord).
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addition to reducing the time for contouring, utilizing a model for

OARs may improve variation in reporting of dose to these organs

and thereby improve reporting of dosimety on clinical trials.

As with all studies, the strengths of our work should be weighed

against its limitations. First, because the data was obtained from nor-

mal clinical operations, the ground‐truth labels were generated by

multiple different radiation oncologists leading to intra‐observer vari-
ation of the “ground‐truth” labels. Additionally, the borders of the

spinal cord were not consistent between patients, likely making it

difficult for the model to learn an appropriate representation of this

structure. Finally, all patients in this study were treated at a single

center on the same CT simulator and it remains to be seen whether

such an approach is generalizable to all centers.

In conclusion, we demonstrate that accurate segmentation OARs

may be achieved with a 2D U‐ net model with the use of non‐domain

transfer learning. Future work will be required to validate the utility of

this model in generating OARs robust enough for treatment planning.
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