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a b s t r a c t 

The novel coronavirus disease (COVID-19) is a public health problem once according to the World Health 

Organization up to June 24th, 2020, more than 9.1 million people were infected, and more than 470 thou- 

sand have died worldwide. In the current scenario, the Brazil and the United States of America present 

a high daily incidence of new cases and deaths. Therefore, it is important to forecast the number of new 

cases in a time window of one week, once this can help the public health system developing strategic 

planning to deals with the COVID-19. The application of the forecasting artificial intelligence (AI) models 

has the potential of deal with dynamical behavior of time-series like of COVID-19. In this paper, Bayesian 

regression neural network, cubist regression, k -nearest neighbors, quantile random forest, and support 

vector regression, are used stand-alone, and coupled with the recent pre-processing variational mode de- 

composition (VMD) employed to decompose the time series into several intrinsic mode functions. All AI 

techniques are evaluated in the task of time-series forecasting with one, three, and six-days-ahead the 

cumulative COVID-19 cases in five Brazilian and American states, with a high number of cases up to April 

28th, 2020. Previous cumulative COVID-19 cases and exogenous variables as daily temperature and pre- 

cipitation were employed as inputs for all forecasting models. The models’ effectiveness are evaluated 

based on the performance criteria. In general, the hybridization of VMD outperformed single forecasting 

models regarding the accuracy, specifically when the horizon is six-days-ahead, the hybrid VMD–single 

models achieved better accuracy in 70% of the cases. Regarding the exogenous variables, the importance 

ranking as predictor variables is, from the upper to the lower, past cases, temperature, and precipitation. 

Therefore, due to the efficiency of evaluated models to forecasting cumulative COVID-19 cases up to six- 

days-ahead, the adopted models can be recommended as a promising models for forecasting and be used 

to assist in the development of public policies to mitigate the effects of COVID-19 outbreak. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

The new coronavirus disease (COVID-19) is a virus infectious

isease induced by severe acute respiratory syndrome coron-

virus 2 (SARS-CoV2). According to the World Health Organiza-

ion (WHO), most of the population will mild to moderate respi-

atory illness and recover without requiring special treatment [1] .
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owever, several studies are being developed, and preliminary re-

ults indicated that people with underlying medical problems like

ardiovascular disease, diabetes, chronic respiratory disease, obe-

ity, and cancer are more likely to develop serious injuries [2–7] .

lso, the COVID-19 can cause extensive and multiple lung injuries

8] , thus compromising the respiratory system of patients. In this

ontext, the demand for devices that assist in the performance of

reathing-related movements have increased. 

Due to the serious damage caused by COVID-19, according to

HO, up to June 24th 2020, more than 9.1 million people were

lready infected, as well as more than 470 thousand people world-

ide have now died with the coronavirus. Indeed, considering the
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S  
current scenario of the health system worldwide, the overcrowding

could be observed in some countries, like Italy, Spain and perhaps

Brazil. In Brazilian context, believed that the average of 3388 mu-

nicipalities could have a significant deficit in hospital beds. Espe-

cially, the deficit is projected to occur in Brazilian North and North-

east regions, which means exceeding health care capacity due to

the COVID-19 [9] . 

Considering the importance of knowing the difficult epidemi-

ological scenario for COVID-19 on a short-term horizon, to miti-

gate the effects of this pandemic, the development of efficient and

effective forecasting models also has a positive impact on prod-

uct reasonably accurate success rates forecasts the immediate fu-

ture. Also, these models allow health managers to develop strate-

gic planning and perform decision-making as assertively as pos-

sible. For this purpose, epidemiological models can be used, as it

has been widely adopted in [10,11] . Alternatively, linear forecast-

ing models [12–14] , artificial intelligence (AI) approaches [15,16] ,

as well as hybrid forecasting models [17,18] proved to be effective

tools to forecast COVID-19 cases. The advantages of AI approaches

for time series forecasting lie in the flexibility of dealing with dif-

ferent kinds of response variables, as well as to the ability of these

approaches to learning data dynamical behavior, complexity and

accommodate nonlinearities, such as the observed in epidemiolog-

ical data [19] . Besides, hybrid methodologies allow us to combine

several techniques such as pre-processing methods and single fore-

casting models. 

By the coupling of some methods, it is possible to use the spe-

cialty of each one to deal with different characteristics and there-

fore building an effective model. In context of the preprocess-

ing techniques, especially signal decomposition methods, the vari-

ational mode decomposition (VMD) [20] is an effective approach to

decompose a dimensional signal into an ensemble of band-limited

modes with specific bandwidth in a spectral domain applied in

several fields [21–23] , once can deal with nonlinearities, and non-

stationarity inherent to time series. Considering the intrinsic mode

function (IMF) obtained through VMD, it is hard to choose AI mod-

els to train and forecasting the VMD components. Therefore, based

on this understanding, some models are coupled with VMD and

are described in the following. 

Due to the necessity of understanding the COVID-19 outbreak,

and the associated factors, or exogenous variables, some studies

are being conducted considering the social environment, climatic

variables, pollution, and population density [24–28] . In this direc-

tion, in a general aspect, Sobral et al. [29] investigated the effects

of climatic variables in COVID-19 spread for 166 countries. The au-

thors argued that increasing the temperature reduced the COVID-

19 cases, and precipitation also has a positive correlation with

SARS-CoV2 cases. In the sequence, for Brazil, Auler et al. [30] eval-

uated how meteorological conditions such as temperature, humid-

ity, and rainfall can affect the spread of COVID-19 in five Brazilian

cities. The authors concluded that higher mean temperatures and

average relative humidity might support the COVID-19 transmis-

sion. Considering the United States of America (USA) weather as-

pects, especially for the New York state, Bashir et al. [31] inferred

that average and minimum temperature and air quality are sig-

nificantly associated with the COVID-19 pandemic. All previously

mentioned studies tried related the climatic variables with COVID-

19 but in those papers were not incorporated in time series models

to forecasting COVID-19 cases. However, we think that incorporat-

ing the exogenous climatic variables in forecasting models can help

to understand the data dynamic, and perhaps more efficient fore-

casting models could be obtained [32] . 

In this respect, for forecasting of cumulative cases of COVID-

19, the objective of this paper is to explore and compare the pre-

dictive capacity of Bayesian regression neural network (BRNN), cu-

bist regression (CUBIST), k -nearest neighbors (KNN), quantile ran-
om forest (QRF), and support vector regression (SVR) when are

sed stand-alone, and a hybrid framework composed by VMD cou-

led with previously mentioned models. In this study were used as

atasets the number about the cumulative cases of COVID-19 from

ve Brazilian states (Amazonas - AM, Ceara - CE, Pernambuco - PE,

io de Janeiro - RJ, and Sao Paulo - SP), the first state from north

egion, the second and third states from northeast region, and the

ther two states from southeast region. Also were considered five

merican states (California - CA, Illinois - IL, Massachusetts - MA,

ew Jersey - NJ, and New York - NY). The choice of these states

as made through the largest number of new cases of COVID-19

p to April 28th 2020. 

In the task of forecasting horizons of the time series one, three,

nd six-days-ahead of cumulative COVID-19 cases are adopted to

valuates the forecasting efficiency of the different models. Addi-

ionally, previous COVID-19 cases, and exogenous variables such

s daily temperature (maximum and minimum), and precipitation

re employed as inputs for each evaluated model. The output-of-

ample forecasting accuracy of each model is compared by per-

ormance metrics such as the improvement percentage (IP) index,

ymmetric mean absolute percentage error (sMAPE), and relative

oot mean squared error (RRMSE). Also, the importance of each in-

ut variable is presented for each country. 

Forecasting models are impacted by the small dataset effect and

he prediction of cases of COVID-19 a challenging task. The choice

f the forecasting and pre-processing approaches is due to the fact

hat even that non-linear and AI models need large datasets to

roperly learn the data pattern, the use of exogenous variables (cli-

ate variables) and past values of the response variable overcomes

his drawback. 

VMD decomposes a time series into its intrinsic mode functions

daptively and non-recursively obtaining a set of sub-series with

ifferent f eatures from low-frequency to high-frequency. The adop-

ion of VMD with modes in conjunction with nonlinear prediction

odels of machine learning is a powerful framework to approach

mall datasets in forecasting task. In addition, BRNN and SVR ap-

roaches are capable of handling small samples, which makes

hem attractive for this study. 

The contributions of this paper can be summarized as follows: 

• The first contribution is related to the proposal of two frame-

works, non-decomposed and decomposed models, applied in

the task of forecasting the new cumulative cases of COVID-19

in five Brazilian and American states. It is expected that these

evaluated models can be used as most accurate approaches

to perform decision-making to structure the health system to

avoid overcrowding in hospitals, and preventing new deaths. 
• The second contribution, we can highlight the use of a dis-

tinct set of AI models based on machine learning approaches

regarding learning structure, even as the recent effective pre-

processing VMD to forecasting the Brazilian and American

COVID-19 new cumulative cases. The forecasting models BRNN,

CUBIST, KNN, QRF, SVR, and pre-processing VMD method were

chosen once that have reached success into several fields of re-

gression and time series forecasting [33–36] ; 
• Also, this paper evaluates AI models in a multi-day-ahead fore-

casting strategy coupled with climatic exogenous inputs. The

range of the forecasting time horizon allows us to verify the

effectiveness of the predicting models in different scenarios,

associated with inputs such as previous COVID-19 cumulative

cases, temperature, and precipitation, allowing that the models

achieve high forecasting accuracy. Finally, their results can help

in planning actions to improve the health system to contain the

COVID-19 deaths. 

The remainder of this paper is organized as follows:

ection 2.1 a brief description of the dataset adopted in this
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aper is presented. The forecasting models applied in this study

re described in Section 2.2 . Section 3 details the procedures

pplied in the research methodology. Results obtained and related

iscussion about models forecasting performance are mentioned

n Section 4 . Finally, Section 5 concludes this study with consider-

tions and some directions for future research proposals. 

. Material and methods 

This section presents a description of the material analyzed

 Section 2.1 ), as well as the models description applied in this pa-

er ( Section 2.2 ). 

.1. Dataset description 

The collected dataset refers to the COVID-19 cumulative cases

hat occurred in five states of the Brazil and the USA until April

8th, 2020. For the Brazilian context, the dataset was collected

rom an API (Application Program Interface) [37] that retrieves the

aily information about COVID-19 cases from all 27 Brazilian State

ealth Offices, assembles and makes them publicly available. And

or USA context, the dataset was collected from “COVID-19 Data

epository” on Github provided by the Center for Systems Science

nd Engineering (CSSE) at Johns Hopkins University [38] . The cu-

ulative confirmed cases and deaths of each state, and the period

rom the first and last reports, are illustrated in Table 1 . 

The climatic exogenous variables were retrieved from the “Insti-

uto Nacional de Meteorologia ” (INMET) [39] for dataset from Brazil,

hile the USA climate dataset were taken into a count from the

aily global historical climatology network that was retrieved from

he National Centers for Environmental Information (NCEI) from

he National Oceanic and Atmospheric Administration [40] , by us-

ng rnoaa package [41] . For each state, considering the daily avail-

ble information, minimum and maximum temperature ( °C ), and

recipitation ( mm ) were select as climatic exogenous inputs to

ach forecasting model applied in this study. The measurement pe-

iod of each state is variable, this is due because the record of the

rst case of the disease may differ from state to state. The sum-

ary of the climatic variables used is described in Table 2 . 

The heat-map of the cumulative confirmed cases from the

razil and the USA in each of the five states analyzed are presented

n Fig. 1 . In that figure can be seen that the states with the highest

umber of COVID-19 cumulative cases are SP and NY, respectively,

n Brazil and the USA, the states with the highest demographic in-

ex in both countries. 

.2. Methodologies 

This section presents a summary of each model employed in

he data analysis. 
Table 1 

Summary of COVID-19 cases by country and state. 

Country State 

no. of observed 

days First reporte

Brazil 

AM 47 13/03/2020 

CE 44 16/03/2020 

PE 48 12/03/2020 

RJ 55 05/03/2020 

SP 64 25/02/2020 

USA CA 94 26/01/2020 

IL 96 24/01/2020 

MA 87 01/02/2020 

NJ 55 05/03/2020 

NY 58 02/03/2020 
• BRNN is a kind of feedforward artificial neural network, a two-

layer neural network, composed by one input and one hid-

den layer, which uses the Bayesian methods, such as empirical

Bayes, for parameter estimation, to avoid overfitting [42] . In the

BRNN formulation, the variances are regularization parameters,

in which the trade-off between goodness-of-fit and smoothing

can be controlled. Also, in this approach the method of [43] is

used to assign initial weights of neural network and the Gauss-

Newton training algorithm to perform the optimization. For the

datasets evaluated in this paper, the BRNN becomes attractive

once it can deal with small samples, as well as it has a lower

computational cost. 
• CUBIST is a rule-based algorithm used to build forecasting mod-

els (in the time series field) based on the analysis of input

data [44] . It estimates the target values by establishing re-

gression models with one or more rules (committee/ensemble

of rules) based on the input set. These rules are employed

based on a combination of conditions with a linear function

(in general linear regression). When the rule satisfies all con-

ditions defined in the learning process, this approach can ex-

ecute multiple rules once and find different linear functions

suitable to forecast COVID-19 cases. However, if the standard

deviation reduction value is smaller or equal to the expected

error for sub-tree, some leaves are pruned to avoid overfitting

[15] . 
• KNN is an instance-based learner model designed to solve clas-

sification and regression problems [45] . In fact, in the time se-

ries context, the KNN searches k nearest past similar values in

the input set (past COVID-19 values, and climatic variables), in

which these k values are namely nearest neighbors. In this con-

text, to find the nearest values, a similarity measure is adopted.

The k -nearest neighbors are those that similarity measure be-

tween past cases and new cases is the smallest. Considering

that the set of k -nearest neighbors are defined, the forecasting

of new COVID-19 cases is obtained through of average of past

similar values. In contrast to the simplicity of this supervised

learning, the computational cost may be a disadvantage [32] . 
• QRF approach is an extension of the random forests (RF) en-

semble learning model [46] . It provides information about the

full conditional distribution of the response variable, not only

about the conditional mean. In this approach, the use of condi-

tional quantile is to enhance the RF performance, which makes

this a consistent approach [47] . The main assumption about

QRF lies in that weighted observations can be used for estimat-

ing the conditional mean [48] . Additionally, while the RF ap-

proach keeps in the results information as regards the average

cases of COVID-19 of the leaves, the QRF keeps all COVID-19

cases contained in the leaves. 
• SVR is a type support vector machine that consists in determin-

ing support vectors close to a hyperplane, which maximizes the
d Last reported 

Cumulative 

cases 

Cumulative 

deaths 

28/04/2020 4337 351 

28/04/2020 6985 403 

28/04/2020 5724 508 

28/04/2020 8504 738 

28/04/2020 24,041 2049 

28/04/2020 46,164 1864 

28/04/2020 48,102 2125 

27/04/2020 56,462 3003 

28/04/2020 113,856 6442 

28/04/2020 295,106 22,912 
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Table 2 

Descriptive measures for climatic variables by country and state. 

Country State Variable Minimum Median Mean Maximum 

Brazil 

AM Minimum temperature ( °C ) 24.76 26.20 26.36 28.28 

Maximum temperature ( °C ) 25.29 27.05 27.24 29.55 

Precipitation ( mm ) 0.00 0.11 0.33 2.40 

CE Minimum temperature ( °C ) 25.14 26.62 26.60 27.90 

Maximum temperature ( °C ) 25.91 27.73 27.68 28.99 

Precipitation ( mm ) 0.00 0.12 0.25 1.31 

PE Minimum temperature ( °C ) 23.36 25.18 25.05 26.74 

Maximum temperature ( °C ) 24.27 26.30 26.10 27.96 

Precipitation ( mm ) 0.00 0.14 0.23 1.33 

RJ Minimum temperature ( °C ) 19.07 21.23 21.57 25.33 

Maximum temperature ( °C ) 19.69 22.16 22.56 26.49 

Precipitation ( mm ) 0.00 0.03 0.13 1.32 

SP Minimum temperature ( °C ) 17.60 19.99 20.09 23.40 

Maximum temperature ( °C ) 18.76 21.11 21.37 25.03 

Precipitation ( mm ) 0.00 0.00 0.12 1.19 

USA 

CA Minimum temperature ( °C ) -1.76 4.90 4.91 11.92 

Maximum temperature ( °C ) 10.60 18.33 18.54 28.59 

Precipitation ( mm ) 0.01 4.66 20.98 162.67 

IL Minimum temperature ( °C ) -19.42 -0.42 -0.75 14.63 

Maximum temperature ( °C ) -6.39 8.40 8.99 26.06 

Precipitation ( mm ) 0.00 4.29 23.30 196.47 

MA Minimum temperature ( °C ) -14.75 -0.86 -1.76 5.39 

Maximum temperature ( °C ) -2.77 8.32 8.16 18.70 

Precipitation ( mm ) 0.00 6.84 34.66 320.86 

NJ Minimum temperature ( °C ) -11.80 1.60 0.96 7.27 

Maximum temperature ( °C ) 0.54 10.78 11.22 22.02 

Precipitation ( mm ) 0.00 5.44 31.53 274.04 

NY Minimum temperature ( °C ) -20.48 -2.61 -3.75 4.60 

Maximum temperature ( °C ) -7.98 5.62 6.23 17.88 

Precipitation ( mm ) 0.00 9.94 27.61 167.94 

Fig. 1. Heatmap of the cumulative conïrmed cases to five states from Brazil and USA. 
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margin between two-point classes obtained from the difference

between the target value and a threshold. To deal with non-

linear problems SVR takes into account kernel functions, which

calculates the similarity between two observations through the

inner product. In this paper, the linear kernel is adopted. The

main advantage of the use of SVR lie in its capacity to cap-

ture the predictor non-linearity and then use it to improve the

forecasting cases. Also, it is advantageous to employ to forecast

COVID-19 cumulative cases, once the samples are small [15,49] .
• VMD is a pre-processing technique in the field of decomposi-

tion approaches, which decomposes a time series into a finite

and predefined k number of IMF or mode functions. In a gen-

eral way, VMD reproduces the decomposed signal with differ-

ent sparsity properties [20] . There are three main concepts re-

lated to VMD, which are Wiener filtering, Hilbert transform and

analytic signal, and frequency mixing and heterodyne demod-
 fi  
ulation. Sparsity prior of each mode is chosen as bandwidth

in the spectral domain and can be accessed by the following

scheme for each model: (i) compute associated analytic signal

utilizing the Hilbert transform to obtain a unilateral frequency

spectrum; (ii) shift frequency spectrum of mode to baseband by

mixing the exponential tune to the respective estimated center

frequency; and (iii) the bandwidth estimated through the Gaus-

sian smoothness of the demodulated signal [21] . 

. Proposed forecasting framework 

This section describes the main steps in the data analy-

is adopted by BRNN, CUBIST, KNN, QRF, SVR, and VMD based

odels. 

Step 1 : First, the dataset output variables are decomposed into

ve IMFs by performing VMD. The lag equal to 2 was chosen by
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Fig. 2. Proposed forecasting framework. 
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g  

f  

fi

rid-search, applied on the IMFs creating four inputs from the lags,

nd applied on the exogenous inputs as well. Further, the new

ata is split into training and test sets. The test set consists of the

ast six observations and the training set defined by the remaining

amples. In the training state, leave one-out-cross-validation with

ime slice was adopted, such as developed by [32] . 

Step 2 : Each IMF is trained with each model described in

ection 2.2 using time-slice validation approach. Next, the IMF

redictions were reconstructed by a simple summation-grouping

odel, in other words, the IMF is trained by the same model

nd is summed. Then, five predictions outputs were gener-

ted named VMD–BRNN, VMD–CUBIST, VMD–KNN, VMD–QRF, and

MD–SVR. 

Step 3 : A recursive strategy is employed to develop multi-days-

head COVID-19 cases forecasting [15] . Regarding this, one model

s fitted for one-day-ahead forecasting, then the recursive strat-

gy uses this forecasting result as an input for the same model

o forecast the next step, continuing until the desirable forecasting

orizon. In this study, the aim is to obtain the cases up to h next

ays, especially up to 1 (ODA, one-day-ahead), 3 (TDA, three-days-

head), and 6-days-ahead (SDA, six-days-ahead), respectively. The

ollowing forecasting structures are considered, 

ˆ 
 (t+ h ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

ˆ f 
{

y (t+ h −1) , y (t+ h −2) , X (t+ h −1) 

}
if h = 1 , 

ˆ f 
{

ˆ y (t+ h −1) , ˆ y (t+ h −2) , X (t+ h −3) 

}
if h = 3 , 

ˆ f 
{

ˆ y (t+ h −1) , ˆ y (t+ h −2) , X (t+ h −6) 

}
if h = 6 , 

(1) 

here ˆ f is a function that maps the cumulative COVID-19 cases,

ˆ  (t + h ) is the forecast of cumulative cases in horizon h = 1, 3 and

, y (t + h − 1) , y (t + h − 2) are the previous observed, ˆ y (t + h − 1) ,

ˆ  (t + h − 2) are the predicted cumulative cases, X (t + h − n x ) is the

xogenous inputs vector at the maximum lag of inputs ( n x = 1 if

 = 1 , n x = 3 if h = 3 , and n x = 6 if h = 6 ).The analyses are devel-

ped using R software [50] . All hyperparameters employed in this

tudy are presented in Tables B.1 and B.2 in Appendix B . 

Step 4 : To evaluate the effectiveness of adopted models, from

btained forecasts out-of-sample (test set), performance IP, sMAPE,
nd RRMSE criteria are computed as 

P = 100 × M c − M b 

M c 
, (2) 

MAPE = 

2 

n 

n ∑ 

i =1 

∣∣y i − ˆ y i 
∣∣

| y i | + 

∣∣ ˆ y i 
∣∣ , (3) 

RMSE = 

√ 

1 
n 

n ∑ 

i =1 

(
y i − ˆ y i 

)2 

1 
n 

n ∑ 

i =1 

y i 

, (4) 

here n is the number of observation, y i and ˆ y i are the i -th ob-

erved and predicted values, respectively. Also, the M c and M b rep-

esent the performance measure of compared and best models, re-

pectively. 

Fig. 2 presents the proposed forecasting framework. 

. Results 

This section describes the results of the developed experiments

n forecasting out-of-sample (test set). First, Section 4.1 compares

he results of evaluated models over ten datasets and three fore-

asting horizons adopted. In Tables A.1 and A.2 in Appendix A , the

est results regarding accuracy are presented in bold. Additionally,

igs. 3 and 4 illustrate the relation between observed and pre-

icted values achieved by models with the best set of performance

easures depicted in Tables A.1 and A.2 , as well as box-plots for

ut-of-sample errors, are illustrated in Fig. 5 . Also, Fig. 6 illustrates

he variable importance of each input (both lags and exogenous in-

uts) used in the models’ predictions. 

.1. Performance measures for compared models 

In this section, the main results achieved by the best model re-

arding sMAPE and RRMSE criteria are presented for short-term

orecasting multi-days-ahead of cumulative cases of COVID-19 from

ve Brazilian and five American states. 
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Fig. 3. Prediction versus observed COVID-19 cases for Brazilian States. 
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Fig. 4. Prediction versus observed COVID-19 cases for American States. 
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Fig. 5. Box-plot for absolute error according to model and state for COVID-19 forecasting for SDA. 

Fig. 6. Variable importance for Brazil and USA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

rion is obtained. 
Firstly, considering the results for the Brazil context, the main

results are highlighted as follows. 

• AM: In this state, VMD–BRNN could be considered to forecast-

ing COVID-19 cases, once the model outperformed all the sin-

gle and VMD models in both performance criteria in all fore-

casting horizons. The improvement in the sMAPE achieved by

VMD–BRNN ranges between 39.47% - 96-06%, 55.97% - 94.88%,

and 67.41% - 94.25%, for ODA, TDA, and SDA horizon respec-

tively. Regarding RRMSE analysis, the improvement ranges be-

tween 9.86% - 94.81%, 33.44% - 93.29%, and 56.66% - 93.89%,

respectively. 
• CE, RJ, and SP: For these states, in all forecasting horizons,

the VMD–CUBIST approach achieved better accuracy than other

models, for both sMAPE and RRMSE criteria in the multi-days-

ahead forecasting task of the confirmed number of COVID-19.
In fact, the improvement in sMAPE is ranged in 8.67% - 96.57%,

12.15% - 97.78%, and 59.37% - 97.09%, respectively, in ODA, TDA,

and SDA forecasting horizons. Moreover, the improvement in

RRMSE is ranged in 12.41% - 97.32%, 2.61% - 98.29%, and 49.99%

- 97.95%, respectively. 
• PE: In this state, CUBIST and SVR present better performance to

forecasting COVID-19 cases. For ODA and TDA, CUBIST outper-

forms models, while for SDA the SVR achieves better accuracy

regarding sMAPE and RRMSE than others. The improvement in

the sMAPE for ODA and TDA achieved by CUBIST ranges be-

tween 6.81% - 97.93%, and 24.94% - 98.23%, respectively. For

SDA, SVR outperforms other models, and this criterion is re-

duced in the range of 49.36% - 98.27%. Moreover, the same be-

havior is observed when the improvement in the RRMSE crite-
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Remark: In this experiment, regarding the Brazilian states, 150

cenarios (5 datasets, 3 forecasting horizons, and 10 models) were

valuated for the task of forecasting cumulative COVID-19 cases.

n an overview, the best models for each state, obtained sMAPE

anged between 1.14% - 3.05%, 1.06% - 2.79%, and 1.05% - 3.03%

or ODA, TDA, and SDA forecasting, respectively. In the Brazilian

ontext, the ranking of the model in all scenarios is VMD–CUBIST,

MD–BRNN, SVR, CUBIST, VMD–SVR, BRNN, VMD–QRF, QRF, VMD–

NN, and KNN. From a broader perspective, the efficiency of the

MD models is due to the capability of the approach to deal with

on-linearity and non-stationarity of the data. Moreover, the ef-

ciency of the CUBIST is due mainly to its ensemble learning of

ules, in which the approach takes advantage of each rule based on

he input set. On the other hand, the difficulty of the KNN model

o forecasting cumulative COVID-19 cases could be attributed to

he fact that this approach requires more observations to effec-

ively learn the data pattern, once the forecasting is obtained by

n average of past similar values. 

In the next, considering the results for the USA context, the

ain results are highlighted as follows. 

• CA: In CA state, BRNN outperformed other models, in all fore-

casting horizons, for both sMAPE and RRMSE criteria. In this

aspect, the improvement in sMAPE ranges between 29.98% -

97.86%, 4.64% - 97.71%, and 48.56% - 97.99%, for ODA, TDA, and

SDA, respectively. Regarding RRMSE, the improvement ranges in

24.00% - 97.67%, 6.57% - 97.78%, and 48.62% - 98.11%, respec-

tively. 
• IL, MA, and NJ: For both performance criteria, CUBIST outper-

formed other models in ODA, for IL and NJ states, and TDA, for

IL. BRNN presented better accuracy than other models, for MA

state in ODA and TDA. Moreover, VMD–CUBIST outperformed

other models in SDA for these three states. In fact, the improve-

ment in sMAPE is ranged in 6.63% - 98.76%, 31.89% - 98.09%,

and 3.76% - 97.98%, respectively, in ODA, TDA, and SDA fore-

casting horizons. Moreover, regarding the RRMSE, the improve-

ment ranges between 7.54% - 98.48%, 0.83% - 98.25%, and 3.25%

- 98.11%, respectively. 
• NY: For NY state, in both performance criteria, VMD–CUBIST

presented better accuracy than other model in ODA forecast-

ing, while SVR outperformed the other models in TDA and SDA

forecasting. Regarding sMAPE, the improvement ranges 17.86% -

95.44%, 16.12% - 95.69%, and 42.39% - 92.71%, for ODA, SDA, and

TDA, respectively. For RRMSE, the improvement ranges 25.78% -

96.09%, 7.78% - 95.43%, and 43.76% - 93.45%, respectively. 

Remark: In this experiment, regarding the American states, 150

cenarios (5 datasets, 3 forecasting horizons, and 10 models) were

valuated for the task of forecasting cumulative COVID-19 cases.

n an overview, the best models for each state, obtained sMAPE

anged between 0.54% - 1.90%, 0.55% - 1.59%, and 0.62% - 3.08%

or ODA, TDA, and SDA forecasting, respectively. In the American

ontext, the ranking of the models in all scenarios is VMD–CUBIST,

RNN, CUBIST, SVR, VMD–BRNN, VMD–SVR, VMD–QRF, QRF, KNN,

nd VMD–KNN. The same behavior presented in Brazilian cases is

resented in the American, which the VMD–CUBIST in overall had

etter average performance compared to the other models. 

According to the information depicted in Figs. 3 and 4 it is pos-

ible to identify that the behavior of the data is learned by the

valuated models, which can forecasting compatible cases with the

bserved values. In most states, the good performance presented in

he training stage persists in the test phase. In Figs. 3 a, 3 c, 4 a, and

 e the models presented some difficulties to capture the behavior

f the data in the training stage, however in test phase the models

ould perform accurately presenting low errors. 

Furthermore, Fig. 5 presents the box-plots of test set forecast-

ng errors in the SDA horizon for each model and each state.
ue to the recursive strategy adopted, the SDA horizon was cho-

en to the analysis, once the errors tend to grow as the forecast

orizon increases. The box diagram depicts the variation of ab-

olute errors for each model, which reflects the stability of each

odel. In this context, the dots out of boxes are considered outliers

rrors. 

Analyzing the box-plot, models with lower variation in the er-

ors are indicated by the boxes with a smaller size. Fig. 5 corrob-

rates the results presented in Tables A.1 and A.2 . Models with

ower errors achieve better stability, which means that the most

ppropriate model for each state can maintain a learning pattern,

btaining homogeneous forecasting errors. 

The variable importance is an overall quantification of the rela-

ionship between the predictor variables (inputs) and the predicted

alue. Finally, Fig. 6 is presented the variable importance of each

nput used to fit and train the models. As expected, the lag in-

uts present high importance due to their high correlation to the

utput. However, it is important to notice that climate data indeed

resented some influence in predicting COVID-19 cumulative cases,

specially in the Brazilian context, that the variance of the Temper-

ture data reaches up to 50% of importance. In other words, the

limatic exogenous inputs are in some level relevant to the pre-

iction of cumulative cases of COVID-19 in both Brazil’s and USA’s

ontext for the five evaluated states. 

. Conclusion and future research 

In this paper, machine learning approaches named BRNN, CU-

IST, KNN, QRF, and SVR, as well as VMD approach, were em-

loyed in the task of forecasting one, three, and six-days-ahead

he COVID-19 cumulative confirmed cases in five Brazilian states

nd five American states with a high daily incidence. The COVID-

9 cumulative confirmed cases for AM, CE, PE, RJ, and SP states,

s well as CA, IL, MA, NJ, and NY were used. The IP, sMAPE and

RMSE criteria were adopted to evaluate the performance of the

ompared approaches. The stability of out-of-sample errors was

valuated through box-plots. Further, the variable importance of

he lag and climatic exogenous inputs were analyzed. 

In respect of obtained results, it is possible to infer that CU-

IST coupled with the VMD model are suitable tools to fore-

ast COVID-19 cases for most of the adopted states, once that

hese approaches were able to learn the non-linearities inher-

nt to the evaluated epidemiological time series. Also, BRNN and

VR models deserve attention for the development of this task as

ell. Therefore, the ranking of models in all scenarios for Brazil-

an states is VMD–CUBIST, VMD–BRNN, SVR, CUBIST, VMD–SVR,

RNN, VMD–QRF, QRF, VMD–KNN, and KNN, and for USA states is

MD–CUBIST, BRNN, CUBIST, SVR, VMD–BRNN, VMD–SVR, VMD–

RF, QRF, KNN, and VMD–KNN. Also, looking for COVID-19 fore-

asts six-days-ahead, hybrid models are more suitable tools than

on-decomposed models. Further, it was observed that climatic

ariables, such as temperature and precipitation indeed influence

ncreasing the accuracy when predicting COVID-19 cases, wherein

ome cases climate inputs reached up to 50% of importance in the

orecasting model. 

For future works, it is intended to adopt (i) deep learning

pproaches, (ii) different decomposition approaches, (iii) multi-

bjective optimization to tune hyperparameters of forecasting

odels, and (iv) more climatic data and demographic features. 
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ppendix A. Performance Measures 

Tables A.1 and A.2 present the performance measures for each

odel in each state and forecasting horizon. 

ppendix B. Hyperparameters 

Tables B.1 and B.2 present the hyperparameters obtained by

rid-search for the models employed in this paper. 
Model 

SVR 

VMD–

BRNN 

VMD–

CUBIST VMD–KNN VMD–QRF VMD–SVR 

% 5.40% 2.00% 3.31% 38.17% 20.32% 4.30% 

% 5.59% 3.83% 4.25% 50.10% 23.55% 5.11% 

% 7.65% 2.68% 6.09% 51.73% 24.93% 9.58% 

% 9.20% 5.18% 7.77% 75.87% 30.25% 11.99% 

% 14.48% 3.67% 11.26% 63.53% 38.35% 18.68% 

% 16.62% 6.29% 14.50% 102.53% 52.68% 24.83% 

% 5.49% 2.55% 1.83% 40.75% 17.82% 3.26% 

% 5.52% 3.52% 2.09% 56.19% 20.56% 3.85% 

% 8.46% 3.46% 1.23% 52.98% 22.64% 8.03% 

% 8.85% 5.35% 1.41% 79.73% 26.70% 9.57% 

% 14.36% 5.08% 1.82% 62.54% 35.71% 16.20% 

% 16.85% 7.71% 2.08% 101.64% 49.40% 22.04% 

% 1.22% 2.54% 2.09% 37.56% 26.69% 1.96% 

% 1.86% 3.32% 2.39% 51.61% 32.54% 2.65% 

% 1.42% 3.30% 1.78% 44.05% 30.83% 6.11% 

% 2.33% 4.37% 2.11% 62.59% 40.21% 7.94% 

% 1.05% 3.28% 2.16% 48.27% 39.07% 12.76% 

% 1.81% 4.15% 3.08% 71.19% 55.22% 17.24% 

% 3.54% 3.61% 3.05% 16.88% 15.87% 3.80% 

% 4.62% 5.32% 3.60% 21.62% 19.64% 5.24% 

% 5.34% 5.58% 2.73% 18.69% 20.51% 7.67% 

% 6.72% 9.02% 3.30% 23.93% 25.51% 9.88% 

% 7.57% 7.67% 3.02% 21.92% 28.10% 14.24% 

% 9.83% 12.35% 3.95% 28.99% 37.48% 19.27% 

% 2.81% 3.73% 2.57% 32.58% 20.39% 3.91% 

% 4.22% 5.85% 4.22% 43.82% 27.35% 5.06% 

% 3.17% 6.14% 2.79% 37.21% 21.95% 6.65% 

% 4.74% 10.04% 4.62% 52.39% 29.47% 8.73% 

% 5.95% 8.71% 2.42% 40.67% 23.02% 11.82% 

% 8.19% 13.68% 4.10% 58.44% 31.18% 15.78% 
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Table A.2 

Performance measures for each evaluated model for American states. 

Country State 

Forecasting 

Horizon Criterion 

Model 

BRNN CUBIST KNN QRF SVR 

VMD–

BRNN 

VMD–

CUBIST VMD–KNN VMD–QRF VMD–SVR 

USA 

CA 

ODA 
sMAPE 0.56% 0.90% 26.37% 19.05% 1.80% 2.19% 0.80% 24.23% 11.44% 3.60% 

RRMSE 0.73% 0.96% 31.31% 22.12% 1.96% 2.63% 1.07% 28.42% 12.87% 3.76% 

TDA 
sMAPE 0.66% 1.10% 28.87% 19.05% 2.40% 4.66% 0.69% 25.63% 13.07% 6.11% 

RRMSE 0.78% 1.22% 35.11% 22.12% 2.97% 6.08% 0.84% 30.44% 14.62% 6.74% 

SDA 
sMAPE 0.62% 1.87% 30.85% 19.05% 2.41% 8.20% 1.21% 26.23% 15.89% 10.75% 

RRMSE 0.72% 2.18% 38.04% 22.12% 3.01% 10.86% 1.40% 31.31% 18.44% 12.38% 

IL 

ODA 
sMAPE 1.07% 0.54% 34.26% 25.04% 3.05% 3.16% 1.83% 43.71% 17.74% 3.80% 

RRMSE 1.24% 0.92% 44.21% 31.31% 3.13% 4.43% 2.63% 60.63% 21.50% 4.49% 

TDA 
sMAPE 1.84% 1.05% 36.63% 25.04% 4.73% 6.33% 1.55% 49.22% 19.41% 6.98% 

RRMSE 2.39% 1.51% 47.86% 31.31% 5.18% 8.95% 2.07% 70.55% 23.08% 8.53% 

SDA 
sMAPE 2.89% 2.58% 52.64% 25.04% 8.10% 11.03% 1.42% 67.54% 23.61% 12.43% 

RRMSE 3.78% 3.00% 78.46% 31.31% 9.53% 15.66% 2.04% 107.77% 29.59% 16.27% 

MA 

ODA 
sMAPE 1.90% 2.45% 30.79% 28.07% 3.01% 4.51% 2.65% 26.67% 17.49% 3.91% 

RRMSE 2.42% 3.46% 39.30% 35.70% 3.59% 5.39% 2.69% 33.79% 21.69% 4.77% 

TDA 
sMAPE 1.59% 3.41% 31.52% 28.07% 3.35% 8.25% 2.34% 31.47% 19.83% 7.12% 

RRMSE 2.39% 5.34% 40.65% 35.70% 4.58% 10.86% 2.41% 40.87% 24.21% 8.82% 

SDA 
sMAPE 4.38% 8.98% 32.54% 28.07% 6.92% 14.65% 3.08% 35.52% 22.66% 13.85% 

RRMSE 5.33% 10.98% 42.30% 35.70% 8.18% 20.17% 3.16% 47.50% 28.56% 18.13% 

NJ 

ODA 
sMAPE 0.97% 0.88% 21.41% 17.87% 0.94% 1.63% 0.99% 25.40% 9.88% 3.78% 

RRMSE 1.01% 0.93% 24.93% 20.38% 1.03% 2.18% 1.32% 30.87% 10.99% 3.92% 

TDA 
sMAPE 0.55% 1.25% 22.03% 18.20% 1.09% 3.52% 0.83% 28.62% 11.17% 6.75% 

RRMSE 0.62% 1.48% 25.81% 20.82% 1.17% 4.74% 1.21% 35.63% 12.36% 7.47% 

SDA 
sMAPE 1.02% 1.99% 23.76% 18.20% 0.94% 6.54% 0.91% 35.12% 13.20% 12.35% 

RRMSE 1.27% 2.40% 28.32% 20.82% 1.14% 8.95% 1.23% 45.47% 15.09% 14.70% 

NY 

ODA 
sMAPE 3.26% 1.26% 16.81% 12.09% 1.02% 1.46% 0.84% 18.44% 5.51% 3.27% 

RRMSE 3.63% 1.43% 19.88% 13.64% 1.23% 1.64% 0.92% 23.44% 6.30% 3.38% 

TDA 
sMAPE 5.40% 2.20% 18.23% 12.09% 0.92% 2.76% 1.10% 21.34% 6.39% 5.85% 

RRMSE 6.43% 2.69% 22.36% 13.64% 1.27% 3.31% 1.38% 27.91% 7.28% 6.62% 

SDA 
sMAPE 7.64% 4.54% 21.02% 12.09% 1.75% 5.23% 3.05% 24.06% 7.96% 10.97% 

RRMSE 9.37% 5.30% 26.69% 13.64% 2.05% 6.65% 3.65% 31.38% 9.32% 12.93% 

Table B.1 

Hyperparameters selected by grid-search for each evaluated model for Brazilian states. 

Country State Component 

BRNN CUBIST KNN QRF SVR 

no. of Neurons no. of Committees no. of Instances no. of Neighbors 

no. of Randomly 

Selected Predictors Cost 

Brazil 

AM 

IMF 1 4 1 0 9 5 1 

IMF 2 5 20 5 5 5 1 

IMF 3 3 20 0 5 5 1 

IMF 4 5 10 0 7 5 1 

IMF 5 4 1 5 5 5 1 

Non-decomposed 3 1 5 5 4 1 

CE 

IMF 1 3 1 5 13 2 1 

IMF 2 5 20 5 5 5 1 

IMF 3 5 10 9 13 5 1 

IMF 4 5 10 9 5 5 1 

IMF 5 5 10 0 5 5 1 

Non-decomposed 1 1 9 5 4 1 

PE 

IMF 1 2 10 0 13 3 1 

IMF 2 5 20 5 5 3 1 

IMF 3 1 20 5 13 3 1 

IMF 4 5 1 9 5 3 1 

IMF 5 5 10 9 11 5 1 

Non-decomposed 5 10 0 5 4 1 

RJ 

IMF 1 3 10 0 5 5 1 

IMF 2 1 1 0 5 4 1 

IMF 3 4 20 5 5 5 1 

IMF 4 5 1 5 5 5 1 

IMF 5 5 1 5 5 5 1 

Non-decomposed 1 20 5 5 4 1 

SP 

IMF 1 2 10 0 11 4 1 

IMF 2 5 1 9 5 4 1 

IMF 3 5 10 5 13 4 1 

IMF 4 5 20 0 5 5 1 

IMF 5 1 10 5 5 5 1 

Non-decomposed 1 10 0 5 5 1 
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Table B.2 

Hyperparameters selected by grid-search for each evaluated model for American states. 

Country State Component 

BRNN CUBIST KNN QRF SVR 

no. of Neurons no. of Committees no. of Instances no. of Neighbors 

no. of Randomly 

Selected Predictors Cost 

USA 

CA 

IMF 1 1 1 9 5 4 1 

IMF 2 1 1 0 5 4 1 

IMF 3 4 1 9 11 3 1 

IMF 4 5 20 0 9 5 1 

IMF 5 5 1 5 5 5 1 

Non-decomposed 1 20 5 5 4 1 

IL 

IMF 1 5 20 5 5 5 1 

IMF 2 1 20 5 5 4 1 

IMF 3 5 20 5 5 3 1 

IMF 4 5 20 9 5 5 1 

IMF 5 5 10 0 5 5 1 

Non-decomposed 1 20 5 5 4 1 

MA 

IMF 1 3 1 5 5 5 1 

IMF 2 1 20 5 5 4 1 

IMF 3 4 20 5 5 4 1 

IMF 4 4 20 5 13 5 1 

IMF 5 5 1 0 5 5 1 

Non-decomposed 1 20 5 5 5 1 

NJ 

IMF 1 1 10 0 5 5 1 

IMF 2 5 20 5 5 4 1 

IMF 3 5 10 9 5 4 1 

IMF 4 4 10 9 13 5 1 

IMF 5 5 1 0 5 5 1 

Non-decomposed 1 20 5 5 5 1 

NY 

IMF 1 1 1 0 13 5 1 

IMF 2 5 20 5 5 5 1 

IMF 3 5 1 0 5 5 1 

IMF 4 3 10 5 9 5 1 

IMF 5 5 1 5 5 5 1 

Non-decomposed 5 20 0 5 4 1 
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