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Abstract

Purpose: Currently, <50% of high-risk pediatric solid tumors like neuroblastoma can be cured, 

and many survivors experience serious or life-threatening toxicities, so more effective, less toxic 

therapy is needed. One approach is to target drugs to tumors using nanoparticles, which take 

advantage of the enhanced permeability of tumor vasculature.

Experimental Design: SN38, the active metabolite of irinotecan (CPT-11), is a potent 

therapeutic agent that is readily encapsulated in polymeric nanoparticles. Tocopherol oxyacetate 

(TOA) is a hydrophobic mitocan that was linked to SN38 to significantly increase hydrophobicity 

and enhance nanoparticle retention. We treated neuroblastomas with SN38-TOA nanoparticles and 

compared the efficacy with the parent prodrug CPT-11 using a mouse xenograft model.
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Results: Nanoparticle treatment induced prolonged event-free survival (EFS) in most mice, 

compared with CPT-11. This was shown for both SH-SY5Y and IMR-32 neuroblastoma 

xenografts. Enhanced efficacy was likely due to increased and sustained drug levels of SN38 in the 

tumor compared with conventional CPT-11 delivery. Interestingly, when recurrent CPT-11-treated 

tumors were re-treated with SN38-TOA nanoparticles, the tumors transformed from 

undifferentiated neuroblastomas to maturing ganglioneuroblastomas. Furthermore, these tumors 

were infiltrated with Schwann cells of mouse origin, which may have contributed to the 

differentiated histology.

Conclusions: Nanoparticle delivery of SN38-TOA produced increased drug delivery and 

prolonged EFS compared to conventional delivery of CPT-11. Also, lower total dose and drug 

entrapment in nanoparticles during circulation should decrease toxicity. We propose that 

nanoparticle-based delivery of a rationally designed prodrug is an attractive approach to enhance 

chemotherapeutic efficacy in pediatric and adult tumors.

Introduction

Neuroblastoma is a cancer of the sympathetic nervous system. It accounts for about 8% of 

all childhood cancers and 12% of childhood deaths from cancer (1). In some instances, 

neuroblastomas may regress spontaneously, especially in infants, or mature into benign 

ganglioneuromas in older patients. However, over half of all patients have advanced stages 

of disease that frequently recur or are resistant to very intensive, multimodality treatment, 

and the 5-year survival rate for high-risk neuroblastoma is only 40% to 50% (2). 

Furthermore, many survivors experience significant and even life-threatening short- and 

long-term toxicities, including second malignancies (3–5). Therefore, more effective and 

less toxic therapy is needed for these patients.

Generally, less than 1% of chemotherapeutic agents reach the tumor using conventional 

delivery of drugs by mouth or injection (6, 7). Therefore, one approach is to deliver more 

drug to the tumor using nanoparticles, taking advantage of the leaky capillaries that are 

found in many rapidly growing tumors. Nanoparticles can accumulate in tumors by the 

enhanced permeability and retention (EPR) effect (8), while bypassing most normal tissues. 

This approach can increase drug delivery to the tumor by many fold, so greater antitumor 

efficacy can be achieved while dramatically reducing patient toxicity. Thus, less total drug 

can be delivered with far greater effect, and the drug is entrapped in nanoparticles while it 

circulates, which also reduces systemic exposure.

Irinotecan (CPT-11), a derivative of camptothecin, is a commercially available 

topoisomerase I inhibitor used to treat a variety of pediatric and adult solid tumors. It is a 

water-soluble prodrug that is hydrolyzed by liver enzymes to the hydrophobic but active 

metabolite SN38. This chemotherapeutic is cell cycle (S-phase) dependent and is effective at 

killing rapidly proliferating cells. Previously, we formulated SN38 as a tocopherol succinate 

conjugate (SN38-TS) in polylactic acid-polyethylene glycol (PLA-PEG) nanoparticles to 

treat neuroblastomas in a xenograft model (9, 10). The tocopheryl moiety not only increased 

the hydrophobicity of the therapeutic agent, but also may have increased overall antitumor 
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efficacy by acting as a mitocan (11–13). This therapy was both extremely effective and 

nontoxic.

To further improve the design of the prodrug, and to exclude side reactions potentially 

reducing recovery of pharmacologically active SN38, we reformulated our prodrug 

nanoparticles with SN38 hydrophobized with a tocopherol moiety attached via an oxyacetate 

linkage (SN38-TOA). The optimized formulation addresses essential requirements with 

regard to sterility, stability, and cryopreservation capacity for use in human patients and 

clinical trials. We tested this new formulation in our neuroblastoma xenograft preclinical 

model to determine its toxicity and efficacy in chemo-naive and CPT-11–pretreated animals, 

which in turn should indicate its potential utility to treat aggressive disease that cannot be 

managed effectively using standard chemotherapy.

Materials and Methods

Compounds

Irinotecan (CPT-11; 20 mg/mL; Camptosar, Pfizer) was obtained from the pharmacy at The 

Children’s Hospital of Philadelphia (CHOP, Philadelphia, PA) and was diluted in 0.9% 

normal saline before being administered intravenously.

Nanoparticle formulation

D-α-Tocopheryloxyacetic acid (TOA) was prepared as described previously (14). The 

SN38-TOA conjugate was synthesized with a 95% yield from SN38 (AK Scientific), and 

TOA was added by direct coupling according to a standard procedure using 1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide hydrochloride (EDC) as an activator and N,N-

dimethylaminopyridine tosylate (DPTS) as a catalyst (9). SN38-TOA–loaded nanoparticles 

were formulated by nanoprecipitation using poly(D,L-lactide)-block-poly(ethylene glycol; 

5,000:5,000; JenKem Technology USA) and Pluronic F-68 (Sigma-Aldrich) as the particle-

forming polymer and stabilizer, respectively. The particle size was analyzed by dynamic 

light scattering, and the drug loading was determined by UV-Vis spectrophotometry after 

SN38-TOA extraction in sec-butanol.

Cell lines

We used SH-SY5Y cells stably transfected with NTRK2 (clone BR6) and IMR-32 cells for 

all in vitro and in vivo studies (15–18). We tested the integrity and authenticity of these cell 

lines for endotoxins, mycoplasmas, bacterial, and other viral contaminations as well as 

genetic variations by multiplex PCR techniques. These tests were performed on an annual 

basis at the cell center services facility of University of Pennsylvania (Philadelphia, PA). 

Cells were grown in RPMI1640 medium (Gibco) containing 10% FBS (CellGro) and 

maintained in 150 cm3 culture flasks (Corning) in a humidified atmosphere of 95% air and 

5% CO2. Transfected cells were maintained in media containing 0.3 mg/mL G418 sulfate 

(stock solution: 20 mg/mL; Corning). Cells were harvested using 0.02% tetrasodium EDTA 

in PBS.
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In vitro experiments

Sulforhodamine B (SRB) assays were performed to determine cell number and the effect of 

SN38-TOA nanoparticles on the survival and growth of the BR6 neuroblastoma cells. We 

plated 8 × 103 cells per well in 96-well plates and exposed cells to the formulation at 

different concentrations (1, 2, 4, 8, 16, 32 nmol/L), and harvested at 24, 48, 72, and 96 

hours. The plates were processed for cell viability using standard SRB assay protocol (19) 

and read at 520 nm. All in vitro experiments were performed in quintuplicate and repeated at 

least three times.

Mice

We obtained 6-week-old Foxn1nu/Foxn1nu (JAXstock #007850) mice from The Jackson 

Laboratory. Mice were maintained under humidity- and temperature-controlled conditions in 

a light/dark cycle that was set at 12-hour intervals. The Institutional Animals Care and Use 

Committee of the CHOP Research Institute approved the mouse xenograft studies described 

in this report.

Flank xenograft experiments

Mice were injected subcutaneously in the right flank with 1 × 107 TrkB-expressing SY5Y 

(BR6) cells suspended in 0.1 mL of Matrigel (Corning). Tumors were measured manually 

twice per week in 2 dimensions (mm) using a caliper. The volume (cm3) was calculated as 

follows: [(0.523 × L × W2)/1,000)] where L >W. Body weights were obtained twice per 

week, and treatment doses adjusted if there was a >10% change in body weight.

All mice (n = 10/arm) were treated with either CPT-11 or SN38-TOA nanoparticles 

intravenously via tail vein injections twice per week for 4 weeks once tumor volumes 

reached 0.2 cm3. This schedule was based on a prior published study (10). SN38-TOA 

nanoparticles and CPT-11 were given at doses equivalent to 10 and 25 mg/kg drug, 

respectively. The nanoparticle drug dose was lower because CPT-11 is a prodrug that 

requires conversion to the active SN38 metabolite by the liver. Blank nanoparticles (vehicle 

only) and saline (no treatment) were used as negative controls. Mice were removed from 

study when tumor volumes reached 3.0 cm3. A subset of mice treated with CPT-11 was 

removed when the tumor volume reached 2.0 cm3 for a subsequent study. These mice (n = 4/

arm) were re-treated with either SN38-TOA nanoparticles (10 mg/kg) or CPT-11 (25 mg/kg) 

twice per week for 4 weeks intravenously via tail vein and monitored in a similar fashion.

Histologic evaluation of tumors

Endpoint tumors were excised and fixed in 4% paraformaldehyde and delivered for 

processing and histochemical staining to the CHOP Pathology Core. Stains used included 

hematoxylin and eosin (H&E), Ki-67 for proliferation, SOX10 as a neural crest marker, p75/

NGFR as a neural marker, S100 as a Schwann cell marker, and ab190710 (Abcam) as a 

human-specific nucleolar marker.
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Pharmacokinetics analysis of SN38 and CPT-11 in mouse blood and tissues

Mice (n = 3/arm, per time point) with flank xenografts were given a single dose of either 

SN38-TOA nanoparticles (10 mg/kg) or CPT-11 (25 mg/kg) intravenously via tail vein. 

Blood was obtained via retro-orbital and terminal bleeds and collected into 2 mL collection 

tubes containing sodium heparin (BD). Tissues (tumor, lung, liver, spleen, kidney) were 

collected postsacrifice at 4, 24, and 72 hours after heart perfusion with cold saline. Plasma 

was separated from the blood by centrifugation for 15 minutes at 2,000 × g at 4°C and stored 

separately. All samples were stored in −80°C until analyzed by the CHOP Pharmacology 

Core. Total SN38 and CPT-11 levels were analyzed in mouse blood (1:1 diluted with water) 

and tissue homogenates by UPLC-MS/MS, as described previously (10, 20) with some 

modifications.

Tissues were homogenized using a Biologics Inc., Model 3000 ultrasonic homogenizer. We 

added 20:80 methanol:water with 1% formic acid to a known weight of tissue to obtain a 

ratio of 4 mL/g sample. Samples were homogenized on ice and frozen until analysis. SN38 

prodrug–spiked mouse plasma and tissue homogenate were hydrolyzed using sodium 

hydroxide (1 mol/L, 15 μL) and incubated for 15 minutes at 37°C in a Thermo electron 

incubator. The reaction was stopped by adding 98% formic acid (10 μL). Analysis confirmed 

complete hydrolysis of SN38 prodrug under these conditions. Standards were prepared in 

CD-1 mouse plasma containing sodium heparin as an anticoagulant. A nine-point calibration 

curve was prepared at different concentrations by spiking a working stock. Plasma and tissue 

homogenate samples were extracted via acetonitrile precipitation in a 96-well format. 

Electrospray ionization in the positive ion mode was utilized for the tandem mass 

spectrometric detection of SN38-TOA (m/z 393.2→349.0 and m/z 393.2→249.1) and 

CPT-11 (m/z 587.3→124.2) using AB Sciex 4000 mass spectrometer. Separation was 

accomplished utilizing Kinetex PFP (50.4.1 mm id, 2.6 μm) column with Shimadzu LC 

20AD HPLC system with a run time of 4.5 minutes. Assay was linear over the range of 1 to 

1,000 ng/mL for both SN38 and CPT-11 in mouse plasma. The matrix factors of the mouse 

tissues (tumor, kidney, spleen, and liver) obtained using tissue homogenates spiked with 100 

ng of SN38 prodrug per mL (n = 3) against mouse plasma calibration curves were applied in 

the drug assay calculations (10).

Statistical analysis

Cell growth inhibition was compared using two-way ANOVA and Bonferroni multiple 

comparisons tests. Event-free survival (EFS) curves were estimated using the Kaplan–Meier 

method and compared using a log-rank (Mantel–Cox) test.

Results

Effect of SN38-TOA nanoparticles on growth of neuroblastoma cells in vitro

We assessed the efficacy of SN38-TOA compared with free SN38 in vitro by performing a 

growth inhibition assay of neuroblastoma cells. Free SN38 had a mild inhibitory effect at the 

1 nmol/L concentration (P = 0.0007). However, strong inhibition was observed at and above 

2 nmol/L (P < 0.0001), and effectiveness increased as the concentration increased (Fig. 1, 

Supplementary Fig. S1). The effect of SN38-TOA nanoparticles on cell growth was delayed 
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in comparison with free SN38, increasing toward 96 hours and presumably reflecting the 

gradual release of SN38 from the nanoparticles over time (Fig. 1, Supplementary Fig. S1), 

with no statistically significant difference in efficacy (P > 0.9999).

Effect of SN38-TOA nanoparticles on growth of neuroblastoma flank xenografts

We performed mouse flank xenograft experiments (n = 10/arm) with BR6 neuroblastoma 

cells to examine the effect of SN38-TOA in vivo. Thirty days after treatment initiation, all of 

the mice that received either blank nanoparticle (vehicle only) or saline (no treatment) 

reached the endpoint tumor volume (3.0 cm3). CPT-11 was able to extend survival time by 

approximately 45 days (Fig. 2A). Tumor growth was suppressed by CPT-11 during the 

course of the treatment, but many tumors began to grow immediately after cessation of 

treatment, reaching a volume of over 3.0 cm3 in 15 days. Mice that received SN38-TOA 

nanoparticles had nearly undetectable tumors for at least 60 days, with 100% survival at 110 

days, and 60% survival 180 days post-initiation of treatment (P < 0.0001; Fig. 2B). Of the 

remaining 6 surviving mice, half did not have detectable tumors, and half had stable tumors 

that were less than 0.5 cm3.

Biodistribution of SN38-TOA nanoparticles

To measure SN38 levels in blood, tumor, and other tissues from mice (n = 3/arm, per time 

point) given a single dose of either CPT-11 (25 mg/kg) or SN38-TOA nanoparticles (10 mg/

kg), we performed biodistribution studies. SN38 levels were measured at 4, 24, and 72 hours 

in blood, tumor, liver, spleen, lung, and kidney (Table 1). At 4 hours, the level of SN38 in 

blood was over 400 times higher in mice treated with SN38-TOA nanoparticles compared 

with those treated with CPT-11, suggesting that this nanoparticle formulation results in 

prolonged retention, which allows for both continued accumulation in the tumor and 

decreased systemic exposure. The level of SN38 in the tumor was 3-fold higher at 4 hours in 

the nanoparticle-treated mice (Fig. 3). More importantly, intratumoral SN38 remained high 

in the nanoparticle-treated mice for a protracted period of time (about 50% of the 4-hour 

level at 24 hours, and 25% of the 4-hour level at 72 hours). In contrast, SN38 levels were 

virtually undetectable at 24 and 72 hours in tumors from mice treated with CPT-11 (Table 1, 

Fig. 3). As expected, there was substantial accumulation of SN38 in the liver and spleen, 

presumably reflecting sequestration of nanoparticles in macrophages. However, no hepatic 

or other toxicity was seen in the nanoparticle-treated mice.

Retreatment of recurrent tumors in CPT-11–treated mice

Tumors in mice initially treated with CPT-11 were re-treated with either SN38-TOA 

nanoparticles (n = 4) or CPT-11 (n = 4) when their recurrent tumor volumes reached 2.0 cm3 

(Fig. 4A). Retreatment with CPT-11 was only able to slow the rate of tumor progression 

modestly, and most of the mice were removed from the study before receiving the full 

retreatment course. Mice retreated with SN38-TOA nanoparticles responded immediately, 

evidenced by tumor regression after initiation of treatment. Overall, the tumors decreased in 

volume by over 50% after 14 days. After cessation of treatment, the tumors began to regrow, 

but in a very slow and protracted manner. Interestingly, 100% of the mice were surviving 

with slowly growing tumors at 120 days postretreatment (P = 0.0067; Fig. 4A), so we 

investigated the histology of these tumors.
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Histologic evaluation of tumors

Tumors that were untreated, treated initially with CPT-11 or SN38-TOA nanoparticles, or 

treated and re-treated with CPT-11 had similar histology. They all appeared as 

undifferentiated small, round, blue cells with focal necrosis, no neuropil (Fig. 5A and B), 

and high proliferative index (>30%), as demonstrated by Ki-67 index (Supplementary Fig. 

S2A). However, tumors retreated with SN38-TOA nanoparticles had a dramatically different 

appearance, both grossly and microscopically. Tumors were composed mostly of cells that 

were large and differentiated, resembling ganglion cells (Fig. 5C). There was abundant 

neuropil, and the proliferative index was extremely low (<1%), as demonstrated by Ki-67 

index (Supplementary Fig. S2B). There were also fields of Schwann cells (Fig. 5D) positive 

for SOX-10 staining around the ganglionic cells (Fig. 5E), and these cells were negative for 

a human nucleolar-specific antibody (Fig. 5F), suggesting that these were infiltrating mouse 

cells.

Confirmation of SN38-TOA nanoparticle efficacy in the IMR-32 neuroblastoma line

To demonstrate that the therapeutic response to SN38-TOA nanoparticles could be extended 

to MYCN-amplified tumors, which are a very aggressive subset of high-risk 

neuroblastomas, we also tested the nanoparticles against xenografts established using the 

IMR-32 neuroblastoma line. Cells were implanted subcutaneously in the flank of each 

mouse. Mice (n = 4/arm) were treated intravenously via tail vein injections with SN38-TOA 

nanoparticles (10 mg/kg) twice per week for 4 weeks when tumors reached a volume of 1.5 

cm3, substantially larger than the BR6-treated tumors described above. Mice were removed 

from the study when the tumor volumes reached 3.0 cm3. SN38-TOA nanoparticles caused 

the tumors to completely regress in all of the mice, and so far, there have been no 

recurrences after more than 180 days (P = 0.0101; Fig. 6).

Discussion

There is a compelling need to develop more effective, less toxic therapy for children and 

adults with high-risk cancers. Clinically used and experimental strategies include cellular or 

humoral immunotherapy that selectively targets specific antigens, as well as drugs that 

selectively target a particular gene, protein, or pathway that represents an oncogenic driver 

and tumor vulnerability. Each of these approaches can benefit from enhancing its on-target 

effect while limiting systemic exposure and toxicity, resulting in safer and more effective 

therapies. Improving tumor-specific delivery of conventional as well as targeted agents using 

nanoparticles permits enhanced accumulation and retention in the tumor, and it offers a 

strategy for making a therapeutically effective response achievable at well-tolerated drug 

doses.

We chose SN38 as the anticancer agent to deliver in nanoparticles for several reasons. It has 

poor solubility, which makes it unsuitable for conventional delivery but enhances its 

retention in nanoparticles. Also, SN38 is a very potent and active agent, whereas CPT-11 is a 

prodrug that requires activation by the liver, which is an inefficient process. SN38 is an S-

phase–specific agent that is both selective for rapidly proliferating cells and is highly 

effective at killing them, while sparing normal, quiescent cells. Thus, it should have limited 
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toxicity in other organs where nanoparticles typically accumulate, such as the liver and 

spleen. In addition, a reduced amount of CPT-11 and SN38 was administered in these 

studies. During each experiment, no weight loss was observed, and there was a steady 

increase in body weight over the course of the treatment. On the basis of these observations, 

it was decided that gastrointestinal toxicity was minimal, and no specific pharmacokinetic 

study of the gastrointestinal tract was performed, as luminal drug would account for any 

toxicity.

We reversibly hydrophobized SN38 with tocopheryl oxyacetate using a linkage that is 

readily hydrolyzed in a nonenzymatic manner in an aqueous environment. In addition, 

tocopheryl oxyacetate is a mitocan that targets the mitochondria by the generation of 

reactive oxygen species, leading to apoptosis, so it is essentially a codrug that acts on tumor 

cells by an independent mechanism (11–13).

We are using polymeric nanoparticles of 50 to 70 nm that have been size-optimized to be 

long-circulating, as well as for tumor penetration, retention and payload delivery. Our 

nanoparticles composed of PEGylated polylactic acid chains are highly biocompatible and 

fully biodegradable, so there is no accumulation of toxic elements with repeated exposure. 

This matrix is suitable for entrapment and delivery of a variety of cell cycle–specific 

hydrophobic agents to solid tumors, taking advantage of the leaky blood vessels commonly 

found in rapidly growing tumors.

As expected, the entrapped SN38 in nanoparticles was not freely available to cells in vitro, 

so free SN38 is more potent (Fig. 1). However, the advantage of nanoparticle drug delivery 

was readily evident in our in vivo xenograft studies. There was dramatic tumor shrinkage 

and prolongation of EFS in mice with BR6 xenografts compared with the CPT-11–treated 

mice, with half the mice surviving disease free for over 180 days (Fig. 2). This effect was 

even more dramatic in the IMR-32 xenografts, with 100% of the mice surviving disease free 

at 180 days (Fig. 6). This is especially important, given the negative prognostic impact of 

MYCN amplification in neuroblastomas (21, 22). Thus, SN38-TOA nanoparticles clearly 

outperformed CPT-11, even though the dose of drug in the nanoparticles was significantly 

less (10 vs. 25 mg/kg).

The improved outcome with nanoparticle prodrug delivery is likely due to the much higher 

drug levels we were able to achieve in the tumor, especially at later time points (Fig. 3, Table 

1). The nanoparticles are long-circulating, allowing continued accumulation over time in 

tumors due to the EPR effect. Thus, we were able to have greater efficacy while 

administering less total drug compared with conventional delivery of CPT-11. The 

entrapment of SN38 in nanoparticles may contribute to further reducing systemic exposure 

and toxicity. Thus, the delivery of a reduced amount of SN38 as a reversibly hydrophobized 

prodrug encased in nanoparticles achieved increased antitumor efficacy, while theoretically 

minimizing the potential for toxicity.

Others have used PEGylated SN38 (EZN-2208) to treat neuroblastoma xenografts, and it 

was also shown to be superior to CPT-11 in terms of drug penetration and tumor control 

(23–25). However, the results from a phase I clinical trial in neuroblastomas were 
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disappointing (26). Another group used nano-liposomal CPT-11 (MM-398) to treat pediatric 

solid tumors as xenografts (27). There was substantial efficacy and prolongation of survival 

in Ewing family tumor xenografts, but the results were not as good with neuroblastoma and 

with rhabdomyosarcoma xenografts. This agent is in clinical trials in adult solid tumors, and 

it demonstrates moderate antitumor activity, with a manageable side effect profile (28, 29). 

These results support the advantages of nanoformulations of SN38/CPT-11 and warrant 

further exploration of other approaches.

The complementary role of TOA as a mitocan may be adding to the anticancer effect of 

these nanoparticles, but this is difficult to model accurately in vitro. Nevertheless, we saw 

not only an enhanced anticancer effect, but also differentiation of the neuroblastoma 

xenograft cells in tumors that were pretreated with CPT-11 alone. Two groups were treated 

with SN38-TOA nanoparticles: small untreated tumors (0.2 cm3), and large pretreated 

tumors (2.0 cm3). Only the re-treated group presented a dramatically different histology. 

This was also observed previously when large untreated tumors were treated with SN38-TS 

(10). In both instances, exposing large tumors to high amounts of SN38 resulted in 

differentiated tumors. The role of each component is unclear, as a larger concentration of 

SN38 was also delivered. However, in addition to neuroblastomacells differentiated into 

ganglionic cells, we also saw fields of Schwannian stroma surrounding the differentiated 

neural cells. We confirmed that they were Schwann cells by SOX-10 staining, but they were 

also identified as mouse in origin, due to the absence of staining with a human-specific 

antibody (Fig. 5F). Although this model is clearly different than the spontaneous 

development of ganglioneuromas in humans, it lends support to the hypothesis that the 

Schwann cells in these tumors are normal host-derived, infiltrating cells, rather than an 

alternate differentiation path of malignant sympathoadrenal progenitor cells (30). It is 

possible that the TOA component of this nanoparticle codrug may have contributed to the 

differentiated state of these retreated neuroblastomas.

In conclusion, we have shown that nanoparticle drug delivery of SN38-TOA had a 

dramatically greater tumor response and prolonged control compared with treatment with 

comparable or higher levels of the parent drug, CPT-11. This was due presumably to the 

higher and sustained drug levels in the tumor using nanoparticle prodrug delivery. These 

nanoparticles were able to achieve prolonged EFS in 50% to 100% of the mice, as defined 

by tumor remission and control for at least 180 days. Furthermore, these anticancer effects 

were achieved using a lower total drug dose, while drug entrapment in nanoparticles should 

further reduce systemic exposure and toxicity. Although this nanoparticle prodrug 

formulation was tested in a model of neuroblastoma in these experiments, it should be 

effective in treating many other aggressive solid tumors in children and adults.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
SRB assay assessing efficacy of free SN38 and SN38-TOA nanoparticle. Growth inhibition 

by free SN38 is statistically significant for 2 and 4 nmol/L at 72 hours (P > 0.0001) and 96 

hours (P > 0.0001), and 1 nmol/L at 96 hours (P = 0.0007). Growth inhibition by SN38-TOA 

is statistically significant for 4 nmol/L at 72 hours (P = 0.0002), and 2 and 4 nmol/L at 96 

hours (P < 0.0001). FD, free drug; NP, nanoparticles.
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Figure 2. 
Efficacy of SN38-TOA nanoparticles (NP) on BR6 flank xenografts. A, Tumor growth 

inhibition by SN38-TOA. Trk-B-expressing SH-SY5Y (BR6) cells were implanted 

subcutaneously in the flank of each mouse. All mice (n = 10/arm) were treated intravenously 

via tail vein injections twice per week for 4 weeks when tumors reached a volume of 0.2 

cm3. SN38-TOA nanoparticles and CPT-11 were given at doses equivalent to 10 and 25 

mg/kg drug, respectively. B, Event-free survival graph. Mice were removed from the study 
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when the tumor volumes reached 3.0 cm3. SN38-TOA nanoparticles are more effective than 

CPT-11 (P < 0.0001) at inhibiting tumor growth and extending survivability.
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Figure 3. 
Biodistribution profile of SN38-TOA nanoparticles (NP). Mice (n = 3/arm, per time point) 

were given a single dose of SN38-TOA nanoparticles (10 mg/kg) or CPT-11 (25 mg/kg) 

intravenously via tail vein. A and B, Blood: SN38-TOA nanoparticle treated (A) and CPT-11 

treated (B). C and D, Tumor, SN38-TOA nanoparticle treated (C) and CPT-11 treated (D) 

were collected post sacrifice at 4, 24, and 72 hours. SN38 levels in SN38-TOA nanoparticle-

treated mice were much higher compared with CPT-11–treated mice at all time points. 

Values are shown ±SE.
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Figure 4. 
SN38-TOA nanoparticle (NP) treatment of CPT-11–treated tumors. A, Kinetic pattern of 

tumor growth inhibition. Tumors recurred in mice previously treated with CPT-11. When 

these tumors reached a volume of 2.0 cm3, they (n = 4/arm) received a second treatment 

course of either SN38-TOA nanoparticles (10 mg/kg drug) or CPT-11 (25 mg/kg drug) twice 

per week for 4 weeks. B, Event-free survival curves of CPT-11–re-treated mice. CPT-11 was 

ineffective, while tumors immediately responded to SN38-TOA nanoparticles (P = 0.0067) 

and took 100 days to return to their original size.
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Figure 5. 
Histology of tumor samples. A and B, H&E staining of a CPT-11–treated tumor (A) and a 

CPT-11–re-treated tumor (B) shows undifferentiated neuroblastoma with areas of necrosis. 

There is no evidence of Schwannian differentiation, and no ganglion cells. C, H&E of a 

SN38-TOA nanoparticle (NP)–treated tumor shows ganglion cells embedded in Schwannian 

stroma with a background of neuropil. D–F, A SN38-TOA nanoparticle–treated tumor with 

H&E staining (D) shows neuroblastoma cells, ganglion cells embedded in Schwannian 

stroma, Schwann cells, and neuropil; SOX-10 (E) staining shows positive spindle cell nuclei, 
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consistent with Schwann cells, while neuroblastoma cells and ganglion cells are negative. F, 
Anti-Hu nucleolar staining shows positive undifferentiated neuroblastoma cells, and negative 

Schwannian spindle cells consistent with murine origin.
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Figure 6. 
Efficacy of SN38-TOA nanoparticles (NP) on IMR-32 flank xenografts. A, Tumor growth 

inhibition by SN38-TOA. IMR-32 cells were implanted subcutaneously in the flank of each 

mouse. Mice (n = 4/arm) were treated intravenously via tail vein injections with SN38-TOA 

nanoparticles (10 mg/kg) twice per week for 4 weeks when tumors reached a volume of 1.5 

cm3. B, Event-free survival curves of CPT-11–re-treated mice. Mice were removed from the 
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study when the tumor volumes reached 3.0 cm3. SN38-TOA nanoparticles caused the 

tumors to completely regress in all of the mice (P = 0.0101).
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