Skip to main content
. 2020 Jun 29;21:269. doi: 10.1186/s12859-020-03608-0

Table 1.

Performance of rPCA for outlier detection on simulated data with 3 biological replicates in each treatment group using rlog transformation

ID of sample being added outlier model Error rate Sample replicate Outlier detected by PcaHubert Number FP outlier called by PcaHubert outlier detected by PcaGrid Number FP outlier called by PcaGrid SEN (%) by PcaGrid SP (%) by PcaGrid
None (baseline) NA 0.005 NA NA NA NA NA NA
N-1 NA 0.01 1 NA 0 NA 0 NA NA
N-2 0.05 1 NA 1 NA 0 NA NA
N-3 0.1 1 NA 1 NA 0 NA NA
N-4 0.2 1 NA 1 NA 0 NA NA
L-1 outlierL 0.01 1 Yes 1 Yes 0 100 100
L-2 0.01 2 Yes 1 Yes 0 100 100
L-3 0.01 3 Yes 1 Yes 0 100 100
L-4 0.05 1 Yes 1 Yes 0 100 100
L-5 0.05 2 Yes 1 Yes 0 100 100
L-6 0.05 3 Yes 1 Yes 0 100 100
L-7 0.1 1 Yes 1 Yes 0 100 100
L-8 0.1 2 Yes 1 Yes 0 100 100
L-9 0.1 3 Yes 1 Yes 0 100 100
L-10 0.2 1 Yes 1 Yes 0 100 100
L-11 0.2 2 Yes 1 Yes 0 100 100
L-12 0.2 3 Yes 1 Yes 0 100 100
H-1 outlierH 0.01 1 Yes 1 Yes 0 100 100
H-2 0.01 2 Yes 1 Yes 0 100 100
H-3 0.01 3 Yes 1 Yes 0 100 100
H-4 0.05 1 Yes 1 Yes 0 100 100
H-5 0.05 2 Yes 1 Yes 0 100 100
H-6 0.05 3 Yes 1 Yes 0 100 100
H-7 0.1 1 Yes 1 Yes 0 100 100
H-8 0.1 2 Yes 1 Yes 0 100 100
H-9 0.1 3 Yes 1 Yes 0 100 100
H-10 0.2 1 Yes 1 Yes 0 100 100
H-11 0.2 2 Yes 1 Yes 0 100 100
H-12 0.2 3 Yes 1 Yes 0 100 100

SEN Sensitivity, SP Specificity, rlog Regularized log transformation, vst Variance Stabilizing Transformation, outlierL Outlier with low “outlierness”, outlierH Outlier with high “outlierness”