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Abstract

A fundamental question is how memory is stored for several weeks and even longer. A long-

lasting increase in gene transcription has been suggested to mediate such long-term memory 

storage. Here, we used contextual fear conditioning in mice to search for lasting transcription that 

may contribute to long-term memory storage. Our study focussed on hippocampal area CA1, 

which has been suggested to have a role for at least one week in contextual fear memory. Using an 

unbiased microarray analysis followed by confirmatory quantitative real-time PCR, we identified 

an upregulation of two transcription factors, Fosl2 and Nfil3, which lasted for seven days after 

conditioning. To our knowledge these are the longest transcriptional changes ever detected in the 

hippocampus after contextual fear conditioning. Thus, our findings suggest novel transcriptional 

candidates for long-term memory storage.
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Introduction

A fundamental question in brain research is how memory is stored for a lifetime. Particular 

emphasis has been given to the idea that memory storage could be mediated by persistent 
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kinase activity at synapses overcoming molecular turnover (Bear et al., 2018; Crick, 1984; 

Lisman, 1985; 2017; Sacktor & Fenton, 2018; Smolen, Baxter, & Byrne, 2019). However, it 

is unknown whether such feedforward kinase signaling is sufficient for memory storage. In 

addition to synaptic signaling, it has been suggested that epigenetic mechanisms in the 

nucleus contribute to memory storage (Crick, 1984; Smolen, Baxter, & Byrne, 2019; Zovkic, 

Guzman-Karlsson, & Sweatt, 2013). In this case, involved epigenetic mechanisms would 

need to cause lasting changes in gene transcription. However, the vast majority of 

transcriptional studies associated with learning and memory have identified only transient 

transcriptional events, induced shortly after training and dissipating within 24 hours (Crick, 

1984; Zovkic, Guzman-Karlsson, & Sweatt, 2013; Peixoto, & Abel, 2013; Alberini, & 

Kandel, 2015). Such transient transcription is essential for cellular memory consolidation, 

which is a prerequisite for long-term memory, but it cannot maintain long-term memory due 

to its short duration and molecular turnover. Nonetheless, training-induced transcription that 

lasts longer than the cellular consolidation window has been identified. For example, after 

contextual fear conditioning, a memory task in which an animal associates a novel 

environment with an aversive stimulus, transcription of the memory suppressor gene 

calcineurin is downregulated for at least 30 days in prefrontal cortex (Miller et al., 2010). At 

this time point also various changes in DNA methylation have been detected (Miller et al., 

2010; Halder et al., 2016). Although long-term storage of contextual fear memory involves 

prefrontal cortex (Frankland, & Bontempi, 2005), it has emerged that the hippocampus may 

also involved, although this debated (Doron, & Ghoshes, 2018; Lux, Atucha, Kitsukawa, & 

Sauvage, 2016; Wiltgen, & Tanaka, 2013; Yonelinas, Ranganath, Ekstrom, & Wiltgen, 

2019).

Here, we searched for hippocampal transcription lasting at least 7 days after contextual fear 

conditioning, using an unbiased microarray analysis. The 7-day time point was chosen as 

there is clear consensus that the hippocampus is required for contextual fear memory 

(Frankland & Bontempi, 2005). We focussed on hippocampal area CA1, as this region is 

essential for contextual fear memory (Goshen et al., 2011; Lux, Atucha, Kitsukawa, & 

Sauvage, 2016; Matsuo, Reijmers, & Mayford, 2008; Rampon, Tang, Goodhouse, Shimizu, 

Kyin, & Tsien, 2000). We detected and validated an upregulation of two transcription 

factors, fos-related antigen 2 (Fosl2/Fra-2) and nuclear factor interleukin-3 regulated (Nfil3/

E4BP4), persisting for at least 7 days.

Materials and Methods

Subjects:

Experiments were conducted with 3–6 month-old male C57BL/6J mice (Charles River, UK), 

which were group-housed with food ad libitum with a 12:12 light-dark cycle. The 

experiments were performed in accordance with the UK Animals Scientific Procedures Act 

1986.

Contextual fear conditioning:

The mice were trained as described previously (Irvine, Vernon, & Giese, 2005; Mizuno, 

Dempster, Mill, & Giese, 2012). Briefly, a mouse was placed in a conditioning chamber 
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(MedAssociates), after 148 s a mild footshock was provided (0.7 mA, 2 s). Subsequent 

footshocks were applied at 90 s intervals and this was repeated four times (five footshocks in 

total). Thirty seconds after the final footshock the mouse was returned to their home cage. 

The behavioral control group was tested for contextual fear memory 24 hours after 

conditioning, by exposing the mouse to the conditioning chamber and scoring freezing for 5 

minutes.

RNA isolation:

The mice were killed at 7 days after contextual fear conditioning. Hippocampal area CA1 

was micro-dissected and fresh-frozen on dry ice and stored at −80°C. Total RNA was 

isolated using the AllPrep DNA/RNA/Protein mini kit (Qiagen). Total RNA (2 μg) was 

reverse transcribed using superscript II reverse transcriptase (Invitrogen). The obtained 

cDNA was diluted 1:10 and stored at −20°C.

Microarray experiment:

The quality of RNA was checked using Agilent RNA 6000 Nano Kit on Agilent 2100 

Bioanalyzer (Agilent Technologies, Palo Alto, CA). cRNA samples were hybridized onto 

Illumina mouse array chip (mouse ref 6v3, Illumina, Inc.; CA, USA) and scanned (Genome 

Centre; Barts and The London). The resulting data was then extracted from GenomeStudio 

software (Illumina) and the lumi Bioconductor package (Du, Kibbe, & Lin; 2008) used to 

apply variance stabilizing transformation followed by robust spline normalization.

Quantitative real-time PCR (qPCR):

qPCR was performed on the same RNA used for the microarray analysis, in triplicate on 

7900HT Fast Real-Time PCR System (Applied Biosystems; ABI, US) using SYBR Green 

(KAPAbiosystems; Roche, Switzerland) and analysed using SDA Software 2.3 (ABI) except 

Ankrd35. qPCR of Ankrd35 was performed using QuantStudio 7 (ABI). Reactions were 

performed in 384-wells PCR Plates (Thermo Scientific, Hampshire, UK) with optical 

adhesive covers (ABI). The cycle conditions were 95°C for 10 min, followed by 40 

amplification cycles (95°C for 15s, 60°C for 1min). Analysis of relative gene expression 

were using delta deltaCt (ddCt) method. The specific primers used for qPCR are listed in 

Supplementary Table 1.

Statistical analysis:

Normalized microarray data were analysed using significance analysis of microarrays 

(SAM) (Tusher, Tibshirani, & Chu, 2001) with a false discovery rate (FDR)<0.01. qPCR 

data freezing scores were analysed by one-way ANOVA followed by Student Newman 

Keuls post hoc tests. Statistical tests were carried out on SigmaPlot v13.0.

Results

To identify long-lasting transcription in hippocampus that may contribute to memory 

storage, we trained adult C57BL/6J mice in a strong contextual fear conditioning paradigm 

(Irvine, Vernon, & Giese, 2005; Mizuno, Dempster, Mill, & Giese, 2012). This training 

generated contextual fear memory (Fig. 1). RNA from hippocampal area CA1 was isolated 
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from naïve mice (N = 6) and mice killed 7 days after contextual fear conditioning (N = 6). 

These RNA samples were compared in a microarray analysis. This approach identified 6 

candidate upregulations lasting for at least 7 days after contextual fear conditioning (Table 

1). No downregulations were found. Six of these potential upregulations were studied for 

validation with qPCR. A long-lasting regulation of the transcription factors Fosl2 and Nfil3 

was confirmed (Fig. 2), whereas expression changes for Andrd35, Pvalb, H2afj were not 

significant and Sdf2l1 could not be detected (Table 2). Fosl2 transcription was significantly 

upregulated after contextual conditioning (F1,10=6.12; p=0.033). Nfil3 transcription was also 

significantly upregulated after contextual conditioning (F1,10=12.82 p=0.005).

Discussion

We have identified long-lasting upregulation of two transcription factors, Fosl2 and Nfil3, in 

hippocampal area CA1 after contextual fear conditioning. The upregulation lasted for at 

least 7 days after conditioning. Our finding is consistent with the idea that storage of 

contextual fear memory involves the hippocampus for at least one week (Doron, & Ghoshes, 

2018; Goshen et al., 2011; Lux, Atucha, Kitsukawa, & Sauvage, 2016; Wiltgen, & Tanaka, 

2013; Yonelinas, Ranganath, Ekstrom, & Wiltgen, 2019).

Our analysis did not include a context-only group, leaving it uncertain whether the observed 

long-lasting transcriptional changes are specific for a context-shock association. However, 

we think that this is rather unlikely when considering the role of the hippocampus in 

contextual fear conditioning. The hippocampus stores a contextual memory, whereas the 

amygdala, and not the hippocampus, is thought to store the context-shock association (Rudy, 

Huff & Mattus-Hamat, 2005; Keeley et al., 2006). Accordingly, transcriptional changes in 

the hippocampus that occur after conditioning, but not in a context only group, may not 

indicate transcription specific for the context-shock association, instead they may simply 

reflect that contextual memory is stronger after a shock presentation than without shock 

presentation.

Previous analyses of transcription after contextual fear conditioning have identified up- and 

downregulations that terminate within one day in the hippocampus. This is consistent with 

the widely held view that cellular consolidation is completed within one day. However, it has 

emerged that beyond this window still cellular consolidation processes occur (Bambah-

Mukku, Travaglia, Chen, Pollobibi, & Alberini, 2014; Katche et a., 2010; Mizuno, 

Dempster, Mill, & Giese, 2012; Ryan et al., 2012). Therefore, in principle even 7-day 

transcriptional changes may be part of a late consolidation process. Alternatively, such late 

transcriptions may represent mechanisms of memory storage.

Fosl2 is a member of the c-Fos family of transcription factors (Nishina, Sato, Suzuki, Sato, 

& Iba, 1990). Phosphorylation of the transcription factor CREB and the CREB-regulated 

NR4A transcription factors, which are required for memory consolidation (Alberini, & 

Kandel, 2015), stimulate Fosl2 transcription (Hawk et al., 2012; Spessert, Rapp, Jastrow, 

Karabul, Blum, & Vollrath, 2000). In turn, Fosl2 transcription increases expression of the 

transcription factor C/EBPβ (Chang, Rewari, Centrella, & McCarthy, 2004), an effector of 

memory consolidation (Alberini, & Kandel, 2015; Bambah-Mukku, Travaglia, Chen, 
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Pollobibi, & Alberini, 2014). Therefore, we suggest that Fosl2 upregulation may execute 

transcription needed for generation and maintenance of memory lasting for weeks.

Nfil3 is transcriptional repressor, which is activated by CREB and competes with CREB and 

C/EBP isoforms for binding to target genes (MacGillavry et al., 2009; 2011). It has been 

suggested that this results in feedforward loops, which seems important for dynamic control 

of target gene expression. Therefore, we propose that Nfil3 upregulation may also execute 

transcription required for generation and maintenance of long-lasting memory.

Finally, there may be more long-lasting transcription changes after contextual fear 

conditioning, which our approach could not detect. For example, a recent study identified 7-

day long upregulation of delta-isoform of calcium/calmodulin kinase II (CaMKIIδ) 

transcription in hippocampus after object location training (Zalcman et al., 2019). Our 

microarray analysis did not detect a significant CaMKIIδ upregulation 7 days after 

contextual fear conditioning. This discrepancy could be due to the fact that our analysis 

focussed on hippocampal area CA1, whereas the object location memory study considered 

the entire hippocampus. In future, sophisticated approaches, such single-cell RNA-

sequencing, may succeed to identify more comprehensively long-lasting transcriptions after 

contextual fear conditioning.

In conclusion, we have identified for the first time transcription in hippocampal area CA1 

that lasts for at least 7 days after contextual fear conditioning. This is an unexpected result, 

as most transcriptional studies of learning and memory assume that in the hippocampus 

training-induced transcriptional dissipate within one or two days. Our findings suggeststhat 

lasting alterations in transcription in hippocampus contribute to contextual long-term 

memory storage.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Unbiased microarray analysis of gene transcription in hippocampal area CA1 

7 days after contextual fear conditioning

• Fosl2 expression is upregulated for 7 days after conditioning.

• Nfil3 expression is upregulated for 7 days after conditioning.
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Figure 1. Contextual fear conditioning paradigm generated robust contextual fear memory.
(A) Mice were conditioned after placed in the conditioning chamber for 148s and a mild 

footshock was provided and followed 4 footshocks at 90s intervals. The mouse was returned 

to the home cage 30s after the final shock (footshocks are indicated in red arrows). (B) Mice 

underwent contextual fear conditioning and their 1-day memory was tested by scoring 

freezing to the trained context. N=6 Means ± sem are indicated.
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Figure 2. Regulation of Fosl2 and Nfil3 transcription in hippocampal area CA1 after contextual 
fear conditioning.
Results from a qPCR analysis of Fosl2 (A) and Nfil3 (B) in hippocampal CA1 of naïve mice 

(N=6) and 7 days (N=6) after contextual fear conditioning. Means ± sem are indicated. ** 

(p<0.01), * (p<0.05).
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Table 1

Candidate genes upregulated 7d after tear conditioning in microarray analysis.

Gene ID Gene Name Score(d) Numerator(r) Denominator(s + s0) Fold change q-value (%)

H2afj 770240 4.859465621 0.27775047 0.057156587 1.21230312 < 0.01 ILMN_1222767

Fosl2 7400044 4.079573912 0.328429365 0.080505801 1.255645632 < 0.01 ILMN_1252481

Ankrd 35 5220754 4.004673635 0.251250379 0.06273929 1.190238244 < 0.01 ILMN_3157692

Pvalb 5340064 3.721709584 0.301169958 0.080922477 1.232143219 < 0.01 ILMN_1218223

Sdf2l1 3360010 3.713768409 0.292996474 0.078894654 1.225182338 < 0.01 ILMN_1221943

Nfil3 3840521 3.709728092 0.395717585 0.10667024 1.315596965 < 0.01 ILMN_2595732
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Table2.

Summary of confirmational qPCR 7d after fear conditioning

Gene ID p value naive vs 7dFC

Fosl2 p<0.05

Nfil3 p<0.01

Ankrd35 p>0.05

Pvalb p>0.05

H2afj p>0.05

Sdf2l1 not detected
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