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Abstract

Introduction: Traffic-related air pollution has been shown to be neurotoxic to the developing 

fetus and in term-born infants during early childhood. It is unknown whether there is an increased 

risk of adverse neurobehavioral outcome in preterm infants exposed to higher levels of air 

pollution during the fetal period.

Objective: To assess the association between prenatal exposure to traffic-related air pollution on 

early preterm infant neurobehavior.

Methods: Air pollution exposure was estimated by two methods: density of major roads and 

density of vehicle-miles traveled (VMT), each at multiple buffering areas around residential 

addresses. We examined the association between prenatal exposure to traffic-related air pollution 

and performance on the Neonate Intensive Care Unit (NICU) Network Behavioral Scale (NNNS), 

a measure of neurobehavioral outcome in infancy for 240 preterm neonates enrolled in the NICU-

Hospital Exposures and Long-Term Health cohort. Linear regression analysis was conducted for 

exposure and individual NNNS subscales. Latent profile analysis (LPA) was applied to classify 

infants into distinct NNNS phenotypes. Multinomial logistic regression analysis was conducted 

between exposure and LPA groups. Covariates included gestational age, birth weight z-score, post-
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menstrual age at NNNS assessment, socioeconomic status, race, delivery type, maternal smoking 

status, and medical morbidities during the NICU stay.

Results: Among all 13 NNNS subscales, hypotonia was significantly associated with VMT (104 

vehiclemile/km2) in 150m (β=0.01, P-value<0.001), 300m (β=0.01, P-value=0.003), and 500m 

(β=0.01, P-value=0.002) buffering areas, as well as with road density in a 500m buffering area 

(β=0.03, P-value=0.03). We identified three NNNS phenotypes by LPA. Among them, high 

density of major roads within 150m, 300m, and 500m buffers of the residential address was 

significantly associated with the same phenotype (P<0.05).

Conclusion: Prenatal exposure to intensive air pollution emitted from major roads may impact 

early neurodevelopment of preterm infants. Motor development may be particularly sensitive to air 

pollution-related toxicity.
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Introduction

Traffic-related air pollution (TRAP) is a mixture of ubiquitous toxic chemicals generated by 

the combustion of fossil fuels. TRAP is known to be neurotoxic [1], likely via oxidative 

stress and neuroinflammation caused by particulate matter [2, 3], polycyclic aromatic 

hydrocarbons [4], or other chemicals in vehicle exhaust [5–7]. Epidemiologic studies have 

reported that exposure to TRAP can adversely affect children’s cognitive function [8–10], 

executive function [11], and behavioral development [12]. Our existing understanding of 

perinatal TRAP neurotoxicity comes from studies of young or school age children. Evidence 

for the impact of TRAP on infant development is lacking.

Many known components of traffic-related air pollution can cross the placental barrier and 

enter the fetal circulation [13–15]. The current epidemiological evidence for prenatal or 

perinatal exposure to TRAP and neurobehavioral function during infancy is mixed. One 

recent study suggested that living close to a major road during pregnancy may be adversely 

associated with behavioral development in infants ranging from 8 to 36 months age, but did 

not find a statistically significant association [16]. Other studies reported that prenatal 

exposure to traffic-related air pollution (e.g., suspended particulate matter, NO2, SO2, and 

benzene) may adversely affect infants’ cognitive, verbal, and motor development [12, 17].

Neurobehavioral disorders are prevalent [18], with significantly increased rates among 

preterm infants [19]. The Neonatal Intensive Care Unit (NICU) Network Neurobehavioral 

Scale (NNNS) is a measurement of neurobehavioral outcome in infancy, which was 

developed to detect infants at high risk of neurobehavioral disorders early in life [20, 21]. 

The NNNS consists of 13 individual subscales that grade an infant’s resting tone, basic 

reflexes, motor function, attention, social reactivity, and stress response [20]. The NNNS has 

been used in numerous studies as a valid indicator of infants’ neurodevelopment [22–24].

Previous work has shown associations between NNNS performance and different types of 

exposure, including environmental chemicals [25–29], maternal psychological conditions 
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[25, 30], and health conditions [23]. One conclusion is that NNNS is highly sensitive to both 

internal and external exposure during the prenatal and perinatal period. To our knowledge, 

the only literature linking prenatal TRAP exposure to NNNS performance is a single 

conference abstract that reported that prenatal exposure to traffic-related air pollution was 

associated with high arousal in a term birth cohort [31]. There are no prior studies of the 

impact of TRAP on early neurobehavioral performance among preterm infants. We 

hypothesized that preterm infants, a sensitive population for neurobehavioral toxicity [32] 

may demonstrate neurobehavioral impairment associated with perinatal TRAP exposure.

Methods

NICU-HEALTH

The NICU Hospital Exposures and Long-Term Health (NICU-HEALTH) cohort [33] is part 

of the DINE (Developmental Impact of NICU Exposures) cohort of the ECHO 

(Environmental influences on Child Health Outcomes) program (ClinicalTrials.gov 

NCT01420029, NCT01963065, NCT03061890; http://www.nih.gov/echo). It is a cohort 

study aimed at evaluating environmental exposures and associated neurobehavioral 

development in preterm infants. NICU-HEALTH enrolls infants born at birth weight <1500 

g or with gestational age less than 33 weeks at the Mount Sinai Hospital. Enrollment has 

occurred in two phases thus far. Phase I enrolled preterm infants between 2011 to 2013; 

phase II launched in 2015 and enrolls to the present. Through July 2019, NICU-HEALTH 

has enrolled 284 preterm infants and collected biospecimens including urine, stool, hair, 

saliva, and blood from infants and their mothers during the infants’ NICU stay. We have 

previously examined the association between NICU-based phthalate exposure to and 

neurologic function among NICU-HEALTH participants [22, 29]. NICU-HEALTH was 

approved by the Mount Sinai Program for the Protection of Human Subjects.

Geocoding—Families of 263 NICU-HEALTH mothers reported their residential address at 

the time of their preterm infants’ birth. This was used as the prenatal residential address. 

Residential addresses were geocoded using a method developed by the United States (U.S) 

Census Bureau [34]. Briefly, geocoding was conducted using the geocoding tool in ArcGIS 

Pro software (ESRI, Redlands, CA) and the U.S. Topologically Integrated Geographic 

Encoding and Referencing (TIGER)/Line 2017 database. TIGER/Line files are structured 

with street segments, usually from intersection to intersection, such that a range of addresses 

is coded for each side of the street. The results of geocoding were the latitude and longitude 

of residential addresses.

Exposure—TRAP is highly concentrated near major roads [35]. Most of our study 

participants were living near road. As such, proximity to major road, which is a commonly 

used measure of traffic-related air pollution, was not applicable to our analysis due to its 

small variation among our study participants. We estimated TRAP by calculating the density 

of roads and vehicle-miles traveled (VMT) within 150m, 300m, and 500m of a participants’ 

home. Traffic density and VMT data in our study area was obtained from the U.S. 

Department of Transportation’s Highway Performance and Monitoring System (HPMS) in 

Shapefile format [36], which has been used as a valid provider of traffic volume and road 
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network data in previous studies [37–40]. The Shapefile compiled the annual average daily 

traffic (AADT) for all highways and roads maintained by the HPMS. AADT represents the 

average number of vehicles traveled in both directions on a road in a single day. In this 

study, exposure assessment was restricted to roads with more than 10,000 AADT in the 

study area. We obtained the Shapefiles for the years 2011–2017 to match the birth years of 

NICU-HEALTH participants. Vehicle classification data were not available for all years, so 

were not included in analyses. Geospatial analyses were conducted in the ArcGIS Pro 

software (ESRI, Redlands, CA).

Road density was calculated in 100 meter per square kilometer units. Conceptually, a 

circular buffer was drawn around each participant’ geocoded residential address. The length 

of roads that fell within the buffer was calculated. The road density was calculated as the 

sum of all linear roads (m) divided by the area of buffer (km2). The unit of road density was 

scaled to 103 m/km2 in statistical analysis.

VMT density was calculated in VMT per square kilometer units. The VMT of each buffer 

was calculated as the sum of “AADT x length of road” for all road segments located inside 

the buffering area [40]. The VMT density (vehicle-mile/km2) was calculated as the sum of 

VMTs divided by the area of the buffer (km2). The unit of VMT density was scaled to 104 

vehicle-mile/km2 for statistical analysis.

Neurobehavioral Assessment—Participants underwent neurobehavioral assessment 

prior to NICU discharge with the NICU Network Neurobehavioral Scale (NNNS) 

administered by a certified examiner. Exams were performed between 34 and 37 weeks 

postmenstrual age (PMA).

Statistical analysis—Descriptive statistics were calculated for exposure variables, 

subscales of NNNS, and covariates. Linear regression models were used to estimate the 

association between each exposure and each subscale of the NNNS, adjusting for gestational 

age (GA) at birth, birth weight (BW) z-score, PMA at NNNS assessment, insurance type 

(Medicaid or private insurance), neighborhood socioeconomic (SES) z-score race 

(Caucasian, African American, or other), ethnicity (Hispanic or not), maternal smoking 

status (smoking or non-smoking during pregnancy), delivery type (vaginal or Cesarean), 

NICU morbidity, and base deficit at birth (a surrogate biomarker of degree of illness at 

birth). All of those adjusted covariates were collected by the NICU-HEALTH cohort except 

for the variable of neighborhood SES z-score. The calculation of neighborhood SES z-score 

was referred to the methods used by large population studies [41, 42]. The neighborhood 

SES z-score is a sum of the z-scores of six 2015 US American Community Survey [43] 

measures in our study area: median household income, % of households receiving interest, 

dividend, or net rental income, % of adults 25+ with high school degree, % of adults 25+ 

with a college degree, % of individuals ages 16+ in professional, managerial, or executive 

occupations, and % of people with income in the past 12 months below poverty level. 

Individuals were assigned to the neighborhood SES z-score of the block group they resident 

in.
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We further identified NNNS phenotypes and the association of phenotype with prenatal 

exposure to TRAP based on a multi-step approach. Prior to undertaking this analysis, we 

examined the missing rate for all 13 subscales of NNNS in our dataset. The majority 

(56.7%) of participants were missing data for the “habituation” subscale as this subscale 

requires the infant to be deeply asleep at the beginning of the exam. We thus excluded 

“habituation” from the multi-step analysis.

We identified NNNS phenotypes among study participants by completing a latent profile 

analysis (LPA). In the first step, the optimal number of latent profiles was chosen by Akaike 

information criterion (AIC), Bayesian information criterion (BIC), Vuong-Lo-Mendell-

Rubin Likelihood Ratio Test (LMRT), and Bootstrap Likelihood Ratio Test (BLRT). For 

LMRT and BLRT, we compared the likelihood between models with k to (k-1) classes. The 

null hypothesis was that the k-1 class model would be adequate to describe the latent profiles 

of this population, thus a significant result would suggest that a k class model could rather 

necessary. In the second step, the conditional posterior probability of being one profile was 

calculated. In the third step, the association between identified latent profile subgroup and 

exposure was investigated by introducing covariates into a multinomial logistic regression 

model with the conditional posterior probabilities as the dependent variable. Covariates 

included in the multinomial logistic model were the same to those used in the linear 

regression models fitted previously. The LPA and multinomial logistic regressions were 

conducted using R3STEP function in Mplus Version 8.2 software [44].

Sensitivity analysis—NNNS performance is strongly affected by the PMA of preterm 

infants at the time of the examination due to the rapid growth and development of the central 

nervous system during the preterm period. To avoid misclassification of NNNS phenotype 

caused by chronological or gestational age, we additionally compared PMA and GA 

variables between different latent profiles groups. If the difference of PMA and gestational 

age was not statistically significant, then the LPA result was considered to be valid and not 

influenced by the developmental stage of the infant at the time of the exam.

Results

Geocoding yielded to 96.7% completion rate, identifying the coordinates of 255 families’ 

residential addresses. Figure 1 shows the geographic distribution of all geocoded 

participants. To protect participants’ identifying information, only the zipcode areas of each 

home is shown on the map. Among those whose addresses were geocoded, 82.7% lived in 

four of the five boroughs of New York City: Manhattan, Queens, Brooklyn, and the Bronx. 

Table 1 shows the demographic and clinical characteristics of the study population. The 

average gestational age of included preterm infants was 30.1 (±2.1) weeks. The 

characteristics of preterm infants enrolled in this study did not differ significantly from the 

complete population of the NICU-HEALTH cohort. The inclusion and exclusion of study 

participants in each step of analysis is shown in Figure S1 (Supplementary Material).

Table S1 (Supplementary Material) shows coefficients and P-values for traffic exposure 

regressing on each subscale of the NNNS, with covariate adjustment. Among all 13 

subscales, hypotonia was significantly associated with VMT density (104 vehicle-mile/km2) 
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in 150m (β=0.01, P-value<0.0001), 300m (β=0.01, P-value=0.003), and 500m (β=0.01, P-

value=0.002) buffering areas, as well as with road density (103m/km2) in the 500m buffering 

area (β=0.03, P-value=0.03).

We analyzed the latent profiles of 214 preterm infants who had complete data for 12 NNNS 

subscales (habituation was excluded). In model fitting, we tested 2–4 profiles. A 3-profile 

solution was selected as the best model (Table 2). The change of bootstrap P-value from a 3-

profile to a 4-profile model indicated that the 3-profile model was better than the 4-profile 

model (P-value < 0.001 compared to P value = 1.00). The AIC and BIC also suggested that a 

3-profile model fit better than the other tested models. The P-values for LMR were not 

statistically significant in all tested models.

Preterm infants were grouped into three identified latent profiles of NNNS performance, 

which were considered as three distinct neurobehavioral phenotypes. The heterogeneity of 

the three phenotypes is shown in Table 3 and Figure 2. The percentage of preterm infants in 

profiles 1, 2, and 3 were 6.1%, 16.4%, and 77.6%, respectively. Preterm infants in profile 

3had the average scores for all 12 analyzed NNNS subscales, representing typical 

development. Preterm infants in profile 1 had a higher average score for the hypotonia and 

lethargy subscales than those in other two groups. Preterm infants in profile 2 had higher 

scores for hypertonia and excitability subscales than those in the other two groups. The 

comparisons of PMA and gestational age between phenotype groups were not statistically 

significant.

The associations between TRAP exposure and the posterior probability of phenotypes were 

examined using multinomial logistic regression modeling. Preterm infants in profile 3 were 

modeled as the reference. Figure 2 shows the adjusted odds ratio (OR) and 95% confidence 

interval (CI) for each of the exposure variables by phenotype and by buffering areas. 

Exposure to higher intensity of traffic was associated with profiles 1 and 2. Specifically, 

compared with the reference group, those who demonstrated a profile 1 phenotype had 

higher exposure to VMT (104 vehicle-mile/km2) during the prenatal period in all study 

buffering areas (for 150m buffer: OR=1.05, 95% CI=1.01, 1.09; for 300m buffer: OR=1.07, 

95% CI=1.01, 1.13; for 500m buffer: OR=1.12, 95% CI=1.05, 1.18). The association 

between road density (103m/km2) and profile 1 was positive but not statistically significant. 

Associations between road density, VMT density, and the profile 2 phenotype was found to 

be positive in all models, but their 95% CIs still overlapped the null.

Discussions

Prenatal exposure to traffic density was associated with characteristic motor phenotypes in 

our cohort of hospitalized preterm infants. This association was consistently found for 

exposures measured in 150m, 300m, and 500m buffers around homes and the effect was 

stronger when roads inside a larger buffering area were included. As our entire study 

population was born in the late second or early third trimester, our study suggests that the 

impact of prenatal TRAP exposure on neurobehavioral development begins early in 

gestation. We also found that prenatal TRAP exposure could affect infants’ NNNS profile 

over a moderate distance. Larger road buffers included more roads than smaller buffers such 
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that traffic-related air pollution in larger buffers was more strongly associated with our 

outcome of interest. The odds of demonstrating profile 1 performance were 1.05 to 1.12 

times higher than the reference group given a one unit (104 vehicle-mile/km2) increase of 

VMT. The area of a 500m buffer is 0.79 km2. A unit increase of VMT in a 500m buffer 

represents approximately 1256 additional vehicles passing the residence in a day. Based on 

the average AADT of different types of road, adding a road with 1256 AADT means adding 

a urban boulevard into the buffer [45]. We thus found a strong association of TRAP with the 

neurobehavioral profile of preterm infants.

The NNNS was developed as an assessment for infants at risk for abnormal 

neurodevelopment. We observed an association between TRAP exposure and the hypotonia 

subscale of the NNNS in linear regression analysis. There are some challenges to using the 

scores of NNNS in epidemiological research. The 13 NNNS subscales are quite 

heterogeneous; a higher score indicates an optimal result on one subscale but adverse 

performance on another subscale. Many subscales are not independent; they can be 

correlated directly or inversely. These obstacles can be addressed by LPA [46]. LPA is an 

unsupervised clustering approach which calculates a reduced-dimension indicator of NNNS, 

where individuals group into a range of latent profiles based on their scores of all available 

subscales. This approach has been applied to identify NNNS phenotypes in high-risk births 

[47], healthy births [23, 24], and preterm births [48] in epidemiologic studies.

The three NNNS profiles identified by LPA were consistent with the three profiles found in 

Sucharew et al [24], a study of healthy infants selected from low exposure areas. Sucharew 

et al. [24] considered infants in their hypotonic group, similar to our profile 1, having 

unfavorable development because they later demonstrated worse psychomotor development 

and lower externalizing scores on the Bayley Scales of Infant and Toddler Development and 

the Behavior Assessment System for Children – 2 [24]. In our study, preterm infants in 

profile 1 had experienced higher prenatal exposure to TRAP. All mothers of preterm infants 

with profile 1 phenotype lived in New York City while pregnant, where a large volume of 

gasoline-powered vehicles likely contributed the traffic-related air pollution. The links found 

between TRAP and profile 1 mirror problems with TRAP-associated motor development in 

other studies of older infants and children [16, 49]. However, our findings are in contrast 

findings in the Health Outcomes and Measures of the Environment (HOME) study where 

TRAP was associated with higher arousal scores but not motor abnormalities [31]. Given the 

differences between the hospitalized preterm NICU-HEALTH cohort and the community-

based term-born HOME cohort, we cannot make a direct comparison for NNNS 

performance between the two. HOME participants of were healthy infants with NNNS 

completed approximately 5 weeks after birth (PMA 42–47 weeks), while the majority of 

NICU-HEALTH study participants had not reached full-term equivalent (37–40 weeks) 

when their NNNS was completed. Our study population had lower average arousal scores at 

baseline compared to term births [23, 24], thereby the power to detect an association 

between TRAP and arousability might be hindered.

Several biological mechanisms could explain the association between hypotonia and 

perinatal TRAP exposure. Hypotonia can be caused by damages at many levels of the 

nervous and musculoskeletal systems, from the brain to peripheral nerves to muscles [50]. 
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Inhalation of air pollutants could cause neuroinflammation and has been see in both human 

and animal models reflected in increased cytokine production and reactive oxygen species in 

the brain [51]. Laboratory studies found that levels of proinflammatory cytokines (IL-1α, 

TNF-α) and immune-related transcription factors (NF-kB and AP-1) were increased in 

mouse’s brain after exposure to inhaled particulate matter [52]. In a study examining 

neurogenesis in relation to nano-sized traffic-related air pollutant exposure, male rats 

exposed prenatally had 70% fewer newly generated neurons in the dentate gyrus of the 

hippocampus at 5 months of age (equivalent to human adolescence) than rats without 

prenatal TRAP exposure [53]. Several MAP kinase pathways seem to link TRAP exposure 

and neuroinflammation in the brain [3]. Although a single biological mechanism for autism 

spectrum disorder (ASD) has not been established, studies suggest that the MAPK pathway 

may play a key role in regulating genetic variants in relation to ASD [54]. In addition to 

direct effects on CNS development, vehicle exhaust contains several endocrine disruptors 

that could disrupt thyroid balance in infants [55]. One early study found increased risk of 

hypotonia among infants prenatally exposed to polychlorinated biphenyls (PCBs) [56], 

which likely act by interrupting thyroid function [57]. Additionally, exposure to particulate 

matter during the third trimester has been associated with reduced free thyroid hormone 

(FT3, FT4) and thyroid-stimulating hormone (TSH) in cord blood samples [58].

Our study has some limitations. Given the unique geographic location of this single-center 

study, our study population over-sampled people living in the dense urban New York City 

tristate area, where usually higher level of TRAP is the norm. Second, the cross-sectional 

study design is not adequate to infer causality between prenatal TRAP and preterm infants’ 

neurobehavioral performance. In addition, the traffic data we obtained were the daily 

average traffic volume that not change within a calendar year. We cannot adjust for the 

seasonal variation of traffic [39] thereby the study exposure may had been misclassified to a 

certain extent. Third, in a survey conducted by the NICU-HEALTH study, 20% of families 

reported moving during pregnancy. Unfortunately, neither the specific time of the move nor 

the previous address was available for those who moved during pregnancy. Moving during 

pregnancy could cause misclassification of environmental exposure if the move was far and 

the exposure had a great spatial heterogeneity. For movers, our study-generated TRAP 

exposure would mainly represent the exposure level in a period prior to birth. Fourth, only 

TRAP exposure was considered, other air pollution sources like cooking gas, poor 

ventilation, and indoor dust were not addressed in our analyses. Last, the sample size of this 

study was small and the study population is specific. The NNNS phenotypes and their 

relationship to TRAP requires further investigation in large population-based studies.

Prenatal exposure to TRAP studied with multiple adverse health outcomes in child health, 

but collecting data representing the exposure exclusively for prenatal period is often 

difficult. One strength of our study is that the exposure to TRAP presumably stopped at 

birth, with postnatal exposure being exactly same to all participants. Thus, our finding 

indicates a sensitive window of TRAP exposure. Exposure to high levels of TRAP is an 

important influential factor of neurodevelopment during fetal stage, and this effect could be 

narrowed to the period before the late-third trimester, when neurodevelopment is particularly 

rapid. Future work to determine the contribution of the various constituents of TRAP to 

specific health effects will aid in risk reduction.
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Conclusion

Our study suggests a link between prenatal exposure to intensive traffic-related air pollution 

and neurobehavioral development among preterm infants, especially for the development of 

motor function during infancy. As we look towards solutions for morbidities related to 

preterm birth, it is becoming increasingly clear that exposures during the prenatal period 

may be more important than previously thought. Our study suggests that TRAP exposure 

during pregnancy may impact all births, term or preterm.

Supplementary Material
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Highlights

• Three phenotypes of neurobehavior were identified based on NNNS and LPA.

• Hypotonia was significantly associated with prenatal exposure to road traffic.

• The first two trimesters could be a sensitive window of air pollution exposure.
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Figure 1. 
Geographic Distribution of NICU-HEALTH participants. The highlighted areas are the 

zipcodes lived by NICU-HEALTH participants. The grey lines show the roads with more 

than 10,000 annual average daily traffic (AADT). Road data were obtained from the 

Highway Performance and Monitoring System (HPMS) representing the study year of 2012.
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Figure 2. 
The three profiles calculated from latent profile analysis with 12 NNNS subscales. Y axis is 

calculated as the ratio of “mean (profile) – mean (all participants)” and “mean (all 

participants)” for each subscale.
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Figure 3. 
Odds ratio and 95% confidence interval of traffic exposures and identified NNNS 

phenotypes. Road: road density exposure (103m/km2); VMT: VMT density exposure (104 

vehicle-mile/km2). P1: profile 1; P2: profile 2; P3: profile 3. ORs and 95% CIs were 

calculated using multinomial logistic regression. Covariates: gender, gestational age at birth, 

birth weight z-score, postmenstrual age at NNNS assessment (PMA), delivery type, 

insurance type, neighborhood SES z-score, race, ethnicity, maternal smoking status, NICU 

morbidity, and base deficit at birth.

Zhang et al. Page 15

Environ Res. Author manuscript; available in PMC 2021 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhang et al. Page 16

Table 1.

Characteristics of Participants.

Included (N=228)
a NICU-HEALTH (N=284)

P-value of Comparison
No. ( %) Mean (SD) No. (%) Mean (SD)

Sex

Boy 112 (49.1) 144 (50.7)
0.72

Girl 116 (50.9) 140 (49.3)

Gestational Age (week) 30.1 (2.1) 30.2 (2.0) 0.37

Birth weight z-score −0.1 (0.8) −0.2 (0.9) 0.79

Race

Caucasian 135 (59.2) 162 (57.0) 0.71

African American 57 (25.0) 61 (21.5)

Other 36 (15.8) 61 (21.5)

Ethnicity

Hispanic 21 (9.2) 25 (8.8) 0.83

Other 207 (90.8) 263 (92.6)

Delivery Type

Vaginal 105 (46.1) 123 (43.3) 0.53

Cesarean 123 (53.9) 161 (56.7)

Insurance type

Medicaid 64 (28.1) 81 (28.5) 0.91

Private Insurance 164 (71.9) 203 (71.5)

Neighborhood SES Z-score 0.00 (3.75)
-
b - -

Maternal smoking

Yes 47 (20.6) 54 (19.0) 0.48

No 171 (79.4) 230 (81.0)

NICU morbidity
c

Yes 53 (23.3) 69 (25.0) 0.67

No 174 (76.7) 207 (75.0)

Base deficit (mEq/L) −3.6 (3.6) −3.6 (3.5)

a.
Criteria of inclusion: whose addresses were geocoded and NNNS were measured.

b.
Neighborhood SES was not available for whose residential addresses were not geocoded.

c.
NICU morbidity has missing rates.
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Table 2.

The diagnosis of latent profile analysis given two-four number of profiles.

N of Profiles Two Three Four

Profile 1 35 13 36

Profile 2 179 35 0

Profile 3 166 0

Profile 4 177

Model Diagnosis

AIC 3408.54 3196.57 3460.54

BIC 3533.08 3364.87 3672.60

Sample-Size Adjusted BIC 3415.84 3206.43 3472.96

Entropy 0.92 0.96 0.96

LMR P-value 0.17 0.21 0.50

LMR Adjusted P-value 0.17 0.22 0.50

Bootstrap P-value 0.00 0.00 1.00
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Table 3.

The mean (standard deviation) of NNNS subscales in each of the three latent profile groups.

Profile 1 (N=13, 6.1%) Profile 2 (N=35, 16.4%) Profile 3 (N=166, 
77.6%) Mean ANOVA P-value

Attention 3.29 (0.29) 4.75 (0.16) 4.68 (0.06) 4.60 (0.68) <0.0001

Handling 0.12 (0.06) 0.27 (0.04) 0.13 (0.01) 0.15 (0.03) 0.03

Quality of movement 4.55 (0.10) 4.32 (0.8) 4.86 (0.03) 4.76 (0.14) <0.0001

Regulation 4.69 (0.16) 5.56 (0.09) 5.98 (0.04) 5.84 (0.29) <0.0001

Non-optimal reflexes 6.93 (0.65) 5.03 (0.29) 5.53 (0.16) 5.54 (3.80) 0.23

Stress 0.15 (0.01) 0.11 (0.01) 0.09 (0.002) 0.09 (0.001) <0.0001

Arousal 2.85 (0.09) 4.02 (0.09) 3.30 (0.03) 3.39 (0.19) 0.02

Hypertonia 0.15 (0.11) 0.17 (0.07) 0.03 (0.01) 0.06 (0.06) 0.001

Hypotonia 0.77 (0.31) 0.03 (0.03) 0.03 (0.01) 0.08 (0.11) <0.0001

Asymmetric reflexes 1.20 (0.39) 1.20 (0.20) 0.89 (0.08) 0.96 (1.14) 0.103

Excitability 2.32 (0.35) 3.00 (0.30) 0.48 (0.07) 1.00 (1.62) <0.0001

Lethargy 8.46 (0.72) 3.92 (0.29) 5.17 (5.17) 5.19 (3.69) 0.009
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