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Abstract

The storm water management model (SWMM) is a widely used tool for urban drainage design and 

planning. Hundreds of peer-reviewed articles and conference proceedings have been written 

describing applications of SWMM. This review focuses on collecting information on model 

performance with respect to calibration and validation in the peer-reviewed literature. The major 

developmental history and applications of the model are also presented. The results provide utility 

to others looking for a quick reference to gauge the integrity of their own unique SWMM 

application. A gap analysis assesses the model’s ability to perform water-quality simulations 

considering green infrastructure (GI)/low impact development (LID) designs and effectiveness. It 

is concluded that the level of detail underlying the conceptual model of SWMM versus its overall 

computational parsimony is well balanced—making it an adequate model for large and medium-

scale hydrologic applications. However, embedding a new mechanistic algorithm or providing user 

guidance for coupling with other models will be necessary to realistically simulate diffuse 
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pollutant sources, their fate and transport, and the effectiveness of GI/LID implementation 

scenarios.

Introduction

SWMM (Rossman 2004) is one of the most widely used urban watershed hydrology and 

water-quality models in the world (Obropta and Kardos 2007). Historically, what sets 

SWMM apart from other urban watershed models is its emphasis on engineered water 

conveyance systems for stormwater runoff and wastewater management, considering both 

combined and sanitary sewer design and performance. As this review will highlight, SWMM 

has been used for a wide variety of sewer planning, analysis, and design applications, in 

addition to flood analysis, primarily as a result of sewer system backup, and evaluating the 

performance of stormwater green infrastructure (GI) strategies. With concern growing for 

how climate change is affecting already degrading urban water infrastructure in many areas 

(Grimm et al. 2008; Rosenberg et al. 2010) and interest increasing for adopting GI 

alternatives as a potentially cost-effective stormwater management option (Marsalek and 

Chocat 2002; Pataki et al. 2011), SWMM likely already is, and probably will be, the go-to 

simulation tool for addressing such needs in at least the near-term future. Historically, 

SWMM has been used most often by consulting engineers to help address the unique design 

needs of municipal and regional planning projects. Therefore, most reports using SWMM do 

not pass through the scientific peer-review processes. As such, it is at present difficult to 

gauge the integrity of previous work with respect to model performance and utility. The 

objective in this paper is to conduct such a review of the scientific literature pertaining to the 

reported application and performance of SWMM. The level of effort put forth to collate an 

up-to-date and comprehensive accounting of SWMM applications, including highlighting 

reported model performance data, would benefit the user community as a quick reference for 

gauging the relative integrity of existing and new projects that are using SWMM.

Previous reviews of SWMM have been primarily associated with comparisons to other 

models (Dietz 2007; Elliott and Trowsdale 2007; Obropta and Kardos 2007; Tsihrintzis and 

Hamid 1997). This paper aims to (1) provide an overview of SWMM’s development history; 

(2) summarize the modeling methods and research findings for many of the more than 150 

peer-reviewed articles returned by the search, and provide a quantitative assessment of 

model performance from different application categories; and (3) describe the key strengths 

and weaknesses of SWMM to identify gaps and suggest some improvements. The intent was 

to cover most of the peer-reviewed articles published on the application of SWMM for a 

variety of problems. The decision to include a paper in the review was based on the level of 

detail provided about the model application. Descriptions in some articles were not detailed 

enough to extract a complete understanding of the application or the model performance; 

these were excluded. Finally, because conference proceedings do not undergo rigorous peer 

review, these were not referenced in the collation of model performance data.
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SWMM Development History

The U.S. Environmental Protection Agency (USEPA) developed SWMM as a public domain 

software in 1971 to meet the need for rainfall runoff quantity and quality simulations in 

urban environments, coincident with the signing into law of the Clean Water Act in the 

United States (Metcalf and Eddy 1971). Since then, there have been four major software and 

user manual iterations. The search of peer-reviewed literature illustrated a dramatic rise in 

the publication rate of studies using the model as a primary tool or evaluating its utility in 

urban hydrology applications over the last 10 years since the release of the most recent 

version, SWMM 5 (Fig. 1).

The first version of SWMM (SWMM I) was produced as a joint project among the USEPA, 

Metcalf & Eddy, the University of Florida, and Water Resources Engineers (Metcalf and 

Eddy 1971). The model was written in FORTRAN and consisted of a series of blocks: 

Executive, Runoff, Transport, Storage, and Receiving Water. The latter four are the 

computational blocks; each block contains multiple subroutines. The Runoff block was 

limited to Horton’s equations for pervious infiltration, whereas the Manning’s equations and 

continuity equations were used for overland flow approximations. Flow routing within the 

Transport block was done using the kinematic wave method. There were several computing 

limitations for SWMM I, and applications were limited to watersheds with surface area 

ranging from 10 to 5,000 acres (4 to 2,023 ha).

SWMM was upgraded to version II in 1975. The Combine block was added to merge output 

data for processing by individual computational blocks. This feature allowed SWMM to be 

applicable to larger urban basins. Erosion prediction was also added by incorporating the 

Universal Soil Loss Equation. The modeling capability for pollutants, including 5-day 

biological oxygen demand (BOD5BOD5), nitrogen (N) and orthophosphate (PO4PO4), was 

also added (Huber et al. 1975).

With the release of SWMM 3 in 1981, the model could be used for both planning and design 

considerations. A formal Statistics block was created to perform frequency analysis by 

evaluating the time-step output, and a Graph block consisted of multiple subroutines that 

allowed for hydrographs and pollutographs to be plotted with appropriate scaling, ranges, 

and labeling. Continuous simulations on monthly and annual time scales could also be 

conducted. Metric units were also supported for the first time in the Runoff, Transport, and 

Storage/Treatment blocks. The Green-Ampt equation for infiltration expanded surface-water 

generation capabilities. Scour and deposition procedures were added to the Transport block. 

Most significantly, a full dynamic wave method (Extran) for routing flows through the 

conveyance network was added. However, explicit limitations were still imposed that limited 

the number of elements that could be modeled.

When the fourth iteration, SWMM 4, was released in 1988, several additional alterations 

were made. Rain and Temp service blocks were created for the input of long-term, 

continuous precipitation and temperature data, respectively. A groundwater module and 

irregular channel cross section geometry were also added. Computational improvements 

were made to the hydraulic routines to eliminate convergence problems.
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Finally, with the release of SWMM 5 in 2005, the model’s engine was completely re-

engineered in the C language, and a separate graphical user interface was added. There was 

no longer any limit on the number of elements that could be included in a model. The fully 

interactive graphical user interface (GUI) improved user access to all model features and 

their respective options. The ability to import background images to aid in constructing the 

model was added to the GUI; the user could also construct his or her own map within the 

software. The current version of SWMM (5.1.010) allows users to simulate GI through low-

impact development (LID) components, such as rain barrels, porous pavement, and 

infiltration trenches. Best management practices (BMPs) can be incorporated in wash-off 

load reduction simulations. The U.S. Soil Conservation Service curve number (CN) method 

for modeling infiltration was added in addition to support for custom closed-conduit shapes. 

Improvements were made to the hydraulic routines and a very flexible rule-based approach 

for controlling, e.g., pumps and gates, was implemented. The current version of the model 

can be downloaded from http://www2.epa.gov/water-research/storm-water-management-

model-swmm?#downloads.

With its long open-source history and well-supported commercial options, SWMM has 

become a robust piece of software. Its potential uses include developing sizing rules for 

devices, planning of land use in catchments and urban areas, and preliminary design of 

regional controls, subdivisions, or sites (Elliott and Trowsdale 2007). In the following 

sections, SWMM’s process models are reviewed from the literature to show how SWMM 

has been used in practice, and to assess its calibration and validation accuracy.

SWMM Process Models

SWMM’s processes and their governing equations have been described in a number of past 

publications (e.g., Huber et al. 1988; Rossman 2015). However, for potential newcomers to 

the model, the core processes that SWMM was built upon and the assumptions used in 

developing the governing equations are included. Fig. 2 shows the model’s represented 

processes and their interactions. A modeling project can be constructed using six primary 

environmental components: (1) external forcing data including precipitation, temperature, 

and evaporation; (2) a land surface runoff component; (3) a subsurface groundwater 

component; (4) a conveyance system of pipes, channels, flow regulators, and storage units; 

(5) contaminant buildup, wash-off, and treatment; and (6) LID controls. These components 

are described subsequently. Not all of these components need to be included in a project 

(i.e., most literature include just precipitation, surface runoff, and conveyance system 

hydraulics).

External Forcing Data

Both single-event and long-term precipitation time series can be used in SWMM. Single 

events representing a design storm can be used to simulate the runoff and pollutant loads. 

Temperature data are needed for simulation of snowmelt. SWMM can approximate the daily 

temperature fluctuations by using temperature minimums and maximums. Evaporation data 

can be introduced to the program in various forms of a single constant value, a set of 

monthly average values, time-series daily data, or calculated based on temperature using the 
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Hargreaves method (Hargreaves and Samani 1985). Wind speeds are used for snowmelt 

modeling, and they can be provided as average monthly values or as daily time series. 

Precipitation is considered to be in the form of snow when the temperature is below a certain 

threshold, specified by the user. Snow accumulation and melting are computed with the 

National Weather Service’s SNOW-17 model (Anderson 2006).

Land-Surface ComponentSurface Runoff

A SWMM project divides an area to be modeled into one or more subcatchments. Each is 

represented as an idealized rectangular basin with a uniform slope where overland flow 

occurs parallel to one of the major axes of the rectangle. A water balance is made by 

considering each subcatchment as a nonlinear reservoir (Shubinski et al. 1973), in which the 

change in depth of overland flow with respect to time is simply the difference between 

precipitation input and the sum of evaporation, infiltration, and runoff flow losses. The latter 

is computed as a function of depth using the Manning’s equation.

Each subcatchment can be divided into three zones, including a pervious area and two 

impervious areas, one with and one without depression storage. By default, each of the 

zones will contribute independently (in parallel) to the conveyance system or a downstream 

subcatchment. However, there are options to reroute fractions of runoff generated on each 

zone to other zones.

Infiltration

SWMM computes infiltration using either Horton’s method (Horton 1940), the Green-Ampt 

method (Green and Ampt 1911), or an incremental form of the curve number method (Akan 

and Houghtalen 2003). Horton’s method expresses infiltration capacity as an empirical 

exponentially decreasing function of time after the start of the precipitation. SWMM can 

also use the Mein and Larson (1973) formulation of the Green-Ampt method. It assumes the 

formation of a sharp wetting front during infiltration and uses Darcy’s law to relate the 

velocity of this front to the soil’s hydraulic conductivity, the capillary suction along the 

front, and the depth of the saturated zone. The incremental curve number model is based on 

an empirical equation that relates cumulative infiltration to cumulative precipitation through 

the well-known Soil Conservation Service (SCS) curve number that has been tabulated for 

various types of land covers (Cronshey 1986).

Subsurface Component

SWMM can account for infiltration causing a rise in the water table beneath a subcatchment 

with a subsequent slow release of groundwater back into the conveyance system. This 

feature allows the program to reproduce the long recession periods associated with runoff 

hydrographs for unlined and natural channels. Subsurface flow is modeled by assigning two 

reservoirs to each subcatchment: one representing the vadose zone and the second 

representing a deeper groundwater zone. The moisture content in the upper (vadose zone) 

compartment is assumed to be uniformly distributed, whereas the lower (groundwater) layer 

is assumed to be fully saturated. The depth of the groundwater layer is variable depending 
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on the total storage. Water is directed from the vadose zone compartment into the 

groundwater compartment. The water in the groundwater layer can then be directed into the 

conveyance system or percolate downward. Evapotranspiration can affect both reservoirs, 

with its rate being dependent on the depth of each reservoir. While solving the model, a 

water balance is performed on the two reservoirs to model the dynamics of storage and flow 

from each.

Conveyance System Component

There are two primary options for modeling flow routing in SWMM: kinematic wave 

routing and dynamic wave routing. The kinematic wave routing model is based on solving 

the continuity equation in which the friction slope along a conduit is assumed to equal its 

bottom slope. This method is not able to account for pressurized flow, flow reversal, or 

backwater effects, and is only applicable to dendritic conveyance networks. The dynamic 

wave model solves the full St. Venant equations for conservation of mass and momentum, 

and therefore does not have the aforementioned restrictions. The St. Venant equations are 

solved by expressing them in a finite-difference form that makes the flow in conduit a 

function of the nodal heads at either end of the conduit. Another set of continuity equations 

accounts for the change in nodal head as a function of the net nodal inflow and the surface 

area of the connecting conduits. These two sets of equations are solved together to provide 

an updated hydraulic solution at each time step.

Contaminant Buildup, Fate, and Transport

The user selects the functional relationship governing pollutant buildup and wash-off based 

on specific pollutant characteristics. Buildup on surfaces is modeled according to a power, 

exponential, or Langmuir saturation function. Pollutant wash-off is a rate limited 

mobilization process, whose rate constant is a power function of the overland flow rate and 

is proportional to the pollutant mass remaining. Alternatively, wash-off can be modeled with 

a rating curve in which the mobilization is solely a function of flow, independent of buildup, 

or as a constant concentration (the so-called event mean concentration or EMC). The effect 

of street sweeping can be modeled by specifying a frequency or noting specific times and by 

selecting the fraction of pollutants removed during each event. Pollutant treatment (as a 

result of settling or filtration) can be modeled as a removal rate at each node, making it a 

function of water depth, hydraulic residence time, and other variables. The fate and transport 

of pollutants in the conveyance system is then modeled based on mass balance and 

advection. Pollutant decay can be modeled as a first-order reaction whose rate constant is 

supplied by the user.

LID Controls

LID modeling features were added to the 2010 version of SWMM 5 (Rossman 2015, 2004). 

LIDs are modeled as a number of interconnected, fully mixed layers representing the 

surface, pavement, soil, storage, and underdrain portions of a LID unit. Infiltration, drainage, 

and overflow control the storage in each of the layers dynamically. SWMM can explicitly 

model bioretention cells, infiltration trenches, porous pavement, rain barrels, vegetated 
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swales, green roofs, and street planters. The infiltration rate in the soil layers is determined 

by assuming an exponential relationship between the hydraulic conductivity and moisture 

content. The saturated hydraulic conductivity and conductivity slope (i.e., the slope of the 

relationship between the logarithm of conductivity and moisture content) are provided by the 

user. Infiltration into the growth media of bioretention cells and green roofs is modeled with 

the Green-Ampt equation. Outflow from the storage zone into the native soil beneath the 

unit proceeds at a constant user-supplied rate. Underdrain flow is represented by an orifice-

type equation. The presence and absence of each layer type depends on the type of LID. For 

example, a vegetative swale only has the surface layer, whereas bioretention systems can 

have surface, soil, storage, and underdrain layers.

SWMM ApplicationsUrban Drainage Flooding Analysis

Studies on the use of SWMM for flooding analysis have been published throughout the 

period of 1987–2014, but most have been published since 2013 with the growing interest in 

the effects of climate change (Dasgupta et al. 2013; Gersonius et al. 2013; Kirshen et al. 

2014; Ranger et al. 2011). Earlier use of continuous simulation for design flood estimation 

within urban catchments was performed in the 1960s and 1970s as reviewed by Rawls et al. 

(1980). Flooding analysis for land-use change is also a great concern (Camorani et al. 2005; 

Huong and Pathirana 2013). Study areas have included coastal regions, for which the 

additional consideration of sea level rise (Huong and Pathirana 2013; Ranger et al. 2011) 

and typhoon-driven waves (Chen et al. 2011) have been considered. Flooding analyses in the 

literature have often been performed on large scales, including watershed, country (Chen et 

al. 2011), province, and mega-city (Dasgupta et al. 2013; Hsu et al. 2000; Ranger et al. 

2011). Internationally, a number of existing megacities and peri-urban areas have 

experienced largely unplanned growth, have sparse sewer networks, and are geographically 

at risk from climate change and extreme events (Dasgupta et al. 2013). Numerous smaller-

scale studies have also been undertaken by city and county governments in the United 

States, and in provinces or districts internationally. Because of the scope of this review, these 

papers have not been included, but database searches for conference proceedings (ASCE 

Library) using the keywords of flooding and SWMM returned 261 results.

In residential areas, the motivation for detailed flooding predictions is often because flood 

warnings and evacuations may need to be planned, rescues performed, species protected, 

ecosystem services maintained, and resources best allocated (Ford et al. 2002). The 

questions to be answered include, is there a risk? And if so, what kind, and where? The 

concept of flood risk is typically defined as the product of flood damage and the probability 

of its occurrence (Morita 2014); it may also combine estimates of hazard exposure and 

vulnerability (Patel et al. 2005; Ranger et al. 2011). Pairing risk analyses with various 

rainfall scenarios and infrastructure configurations is a common problem in the literature, for 

which SWMM has served a role. By modeling the urban drainage network, the role that 

infrastructure plays can be understood, and plans for improvement to mitigate risk can be 

made. Flooding analyses using SWMM have produced inundation maps, helped to 

determine the areas with the greatest risk, and found weak points in sewer networks (Banks 

et al. 2014; Chen and Herr 2010; Ford et al. 2002; Fu et al. 2011; Gersonius et al. 2013; 

Huong and Pathirana 2013).
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Another common trend has been for modelers to combine the SWMM model with other 

hydrologic models, to better account for complex hydraulic or hydrologic flooding regimes 

from multiple sources in larger spatial scale regions. Examples include HEC-1 (Chen et al. 

2011), the soil and water assessment tool (SWAT) (Dasgupta et al. 2013), HEC-RAS 

(Dasgupta et al. 2013), a combination of HEC, HEC-2, and HEC-RAS for channel 

monitoring (Ford et al. 2002), the open-source two-dimensional (2D) model BreZo (Huong 

and Pathirana 2013), and geographical information system (GIS)-based flood damage 

prediction tool (FDPM) (Morita 2014).

In fact, the spatial resolution of most of the relevant studies was low, while the modeled 

areas were located within larger basins or megacities. Although specific lot sizes were rarely 

addressed, this level will be a focus for understanding how GI implementation may affect 

local flooding risks. This requires modeling at subhourly time steps, especially for 

catchments affected by short-duration high-intensity rainfalls (Olsson et al. 2009), and this is 

a strength of SWMM.

Water Quality and Transport of Contaminants

Twenty-one relevant papers were found in the literature search on SWMM and water quality 

during the period of 1988–2014. Notably, a review of stormwater quality modeling tools 

other than SWMM was provided by Borah and Bera (2004). A variety of water quality 

constituents have been investigated using SWMM, including total suspended solids (TSS) 

(Borris et al. 2014; Chang et al. 2008; Chow et al. 2012), nitrogen compounds (Burian et al. 

2001, 2002; Chang et al. 2008; Jia et al. 2014), heavy metals (Borris et al. 2014; Fallah 

Shorshani et al. 2014), dissolved oxygen (DO) and biochemical oxygen Demand (BOD) 

(Kirshen et al. 2014), and phosphorous (Chow et al. 2012; Jia et al. 2014). The water quality 

constituents considered in these studies are summarized in Tables 1 and 2. Most papers had 

investigated multiple constituents at once, and a number reported generalized assessment of 

SWMM output regarding pollutants rather than specifically discussing constituent fate and 

transport modeling results.

Researchers have taken two approaches to modeling water quality within SWMM. The first 

is to make an assumption about the link between runoff volumes generated by a model 

simulation and water quality values for a particular constituent. For example, it is sometimes 

assumed that the TSS load is directly proportional to runoff volumes (e.g., Blumensaat 2012; 

Choi et al. 2006). Generally speaking, this indicates that water quality investigations take 

place in postprocessing, outside of SWMM. In some cases, other water quality models have 

been linked to SWMM to perform these analyses, using input data from SWMM (Burian et 

al. 2002; Choi et al. 2006). The second approach uses the water quality modules within 

SWMM (Tables 1 and 2).

The purpose of water quality investigations using SWMM have included (1) determining the 

effects from nonpoint pollution (Jia et al. 2014; Lee et al. 2010; Oraei Zare et al. 2012; Choi 

et al. 2006), (2) BMP/LIDs treatment (Chang et al. 2008; Jia et al. 2014; Oraei Zare et al. 

2012; Van der Sterren et al. 2014), (3) air quality interactions (Burian et al. 2001, 2002; 

Fallah Shorshani et al. 2014), (4) climate/land use change effects (Borris et al. 2014), (5) 
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first flush effects (Chang et al. 2008; Ouyang et al. 2012; Young et al. 2010), (6) monitoring 

the program design (Talei et al. 2010), (7) traditional stormwater management structure 

performance (Borris et al. 2014), and (8) spatial resolution effects (Fallah Shorshani et al. 

2014; Park et al. 2008; Warwick et al. 1991).

SWMM and Total Maximum Daily Load Implementation Plans

There were 18 references on the topic of SWMM and total maximum daily loads (Toddles), 

from the time period of 1999–2015. Most of these papers discussed SWMM in their 

introduction, and only five of them chose to apply SWMM. Some researchers chose to 

create improved models that were based on SWMM, or they sought to simplify it for their 

application (Chen et al. 1999; Chin 2011; Ha and Stenstrom 2008; Kuzin and Adams 2008; 

Petersen et al. 2005). The data heaviness and complexity of SWMM were cited in these 

cases (Ha and Stenstrom 2008; Petersen et al. 2005). No bacterial TMDL studies conducted 

using SWMM were found among these peer-reviewed journal publications.

SWMM models were not necessarily used as stand-alone methods for assessing TMDL 

implementation plans. They were used in larger studies to determine the main sources of 

nonpoint pollution and the effect of reduction measures (e.g., BMPs). One study combined a 

SWMM model with another water quality model, and additional models, into a larger risk-

management decision-making tool (Chen and Herr 2010).

Four other papers applied SWMM in looking at sediment and heavy metals (Lee et al. 2010; 

McGarity 2013; McPherson et al. 2005; Smith et al. 2007). Event mean concentrations 

(EMCs) were used to assess TMDLs. The models were calibrated using previously collected 

monitoring data. Although in all cases, the hydrology closely matched, in one paper the 

agreement between modeled and measured data was weaker (R2 between 0.5 and 0.7) 

(McPherson et al. 2005).

In one of these papers, BMPs were optimized afterward by using a mixed-integer linear 

program (Smith et al. 2007). That particular model required ambient monitoring data to 

estimate loadings at each of the inlets. The authors mentioned that the model was robust. 

They also stated that the practice was data intensive, and as a city might consider, significant 

capital expenditure is required for getting the information needed to rigorously perform such 

analysis.

Overall, the number of applications of SWMM in assessing TMDL plans was few. However, 

as seen in the literature, a large number of watersheds with existing SWMM models can 

easily be added onto these models to optimize pollution reduction plans and to meet 

regulatory requirements. Where capital has already been invested in collecting geographic 

and monitoring data, SWMM would be a great tool. When TMDL assessment is the goal, 

uncertainly analysis is important to determine the reliability of projections and to choose 

appropriate margins of safety.
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Land Use and Climate Change Effects

Many of the more recent studies using SWMM were performed to consider the effects of 

land use and climate change. Researchers have performed simulations to understand better 

the effects on stream ecological health and the hydraulics of sewer systems. Particular 

concerns for these studies have included overflows, flooding frequency, and water quality. 

Studies that considered climate change have primarily modeled changes in precipitation, and 

effects on stream flow, peak discharge, flashiness, and transport of contaminants. Studies 

that considered land use change have primarily modeled changes to imperviousness to 

predict effects on flooding. Land use change applications have also considered changing 

demands for urban sewage and water treatment and changing inflows. There were nine 

studies that fell into the category of addressing water quantity, compared with five that 

addressed water quality concerns.

Considering those papers that addressed water quality concerns, models were used to predict 

effects on a range of measures, including total phosphorus (TP) (Kovács and Clement 2009; 

Ouyang et al. 2012), TSS (Borris et al. 2014; Doglioni et al. 2009; Ouyang et al. 2012), 

chemical oxygen demand (COD) (Doglioni et al. 2009; Ouyang et al. 2012), biochemical 

oxygen demand (BOD) (Doglioni et al. 2009), and temperature (Sabouri et al. 2013). The 

type of land use change that was used in the models was increasing imperviousness. 

Gradually increasing imperviousness scenarios were used by the studies reviewed. Results 

from land use change included higher runoff, pollutant transport, and temperatures. For just 

under half of these studies, SWMM was used in conjunction with other models, including 

WetSpa (Kovács and Clement 2009), SWAT (Kim et al. 2011), the urban drainage model 

(Doglioni et al. 2009), and the land use change model (Doglioni et al. 2009).

Considering those papers that addressed water quantity concerns, models were used to 

predict effects on flood risk (Camorani et al. 2005; Huong and Pathirana 2013), drainage 

needs (Denault et al. 2006), total runoff (Kim et al. 2011; Ouyang et al. 2012), surface flow 

(Kim et al. 2011; Ouyang et al. 2012), and groundwater discharge rates (Kim et al. 2011). 

These studies also used changes to impervious cover and precipitation pattern changes, in 

addition to sea level rise (Huong and Pathirana 2013). The effect of sea level rise was 

studied by integrating SWMM with a 2D inundation model. Results included greater flood 

risk, increased inundation areas, increased maximum flood depth, increased stream flow, 

increased channel dimensions, increases in total runoff and surface flow, and decreases in 

groundwater discharge rates. Again, just under half of the time, SWMM was combined with 

other models, including SWAT (Kim et al. 2011), BreZo (Huong and Pathirana 2013), 

Dinamica-Environment for Geoprocessing Objects (an urban growth model) (Huong and 

Pathirana 2013), and a National Oceanic and Atmospheric Administration (NOAA) 

atmospheric and land surface model (Huong and Pathirana 2013).

In most cases, climate and land uses changes are both occurring, but only one study 

attempted to address the interrelated changes. Urich (2013) reviewed a hypothetical sewer 

system’s overflow efficiency and surface flooding for a 20-year period. As factors 

representing the effect of climate change were increased, combined sewer overflows and 

surface flooding increased between 20 and 30% in 2030.
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There was a single study that focused on the effects on ecologic stream health. Wu et al. 

(2013) used the kinematic wave method for five watersheds in Iowa. The authors indicated 

in the study that SWMM was able to model some watersheds more accurately than others 

[Nash-Sutcliffe efficiency (NSE) ranged from 0.23 to 0.91]. There was also one paper that 

looked at adapting infrastructure. In Gainesville, Florida, this was done by retrofitting an 

area with more pervious surfaces. According to the predictions made by the model, the 

addition of some 2.0 m linear infiltration reactors would lead to reductions of phosphorous, 

nitrogen, and TSS (Sansalone et al. 2013).

Hypothetical Analysis

Generally speaking, the strength of SWMM is how it facilitates the determination of the best 

sewer designs in complex situations, and finds the most sensitive parameters with regard to 

flooding and water quality issues. This theme carries through those papers that created 

hypothetical watersheds and hypothetical sewer or water treatment systems. In some of these 

cases, real parameters were used to simulate the performance of a designed system in a 

particular location. These applications have been undertaken to determine sewer designs 

with appropriate pipe sizes, manhole locations, and system pressurization. Applications of 

hypothetical watersheds within SWMM have also included designing optimum systems for 

handling suspended solids, and testing numerical methods and parameters. A total of 14 

papers included in this review chose to model hypothetical watersheds.

Two papers among the 14 focused on applying SWMM to explain results from laboratory 

experiments. Ferreri et al. (2010) used laboratory testing to evaluate system pressurization 

through a conduit. They found that SWMM was able to adequately capture the 

pressurization. Xiong et al. (2005) created three watershed experimentation systems in a 

laboratory. They exported the results for use in SWMM to estimate the water quality based 

on the kinematic wave model and SWMM’s nonlinear reservoir modeling. They found that 

the kinematic wave modeling more closely captured peak flow than SWMM’s nonlinear 

reservoir model for all experiments.

Guo and Urbonas (2009) constructed a hypothetical sewer system to determine appropriate 

pipe sizes. Blumensaat (2012) created a hypothetical system including SWMM and 

consisting of a one-dimensional (1D) river and a 2D aquifer to evaluate the water flux within 

the Poltva catchment in Ukraine. Urich et al. (2013) created virtual infrastructure 

benchmarking (VIBe) computer-generated cities for use with the biophysical model (BPM). 

SWMM 5 was used in this study to evaluate the combined sewer overflow and surface 

flooding. Todeschini et al. (2012) created a hypothetical catchment to evaluate multiple 

sewer network designs for installation in Pavia, Italy. They used SWMM 5 to compare the 

performance of stormwater detention tanks, flow regulators, and bypass devices for total 

volume and TSS discharge concentrations. They found that a detention tank with flow 

regulators provided the most optimal performance.

SWMM was also used to create semihypothetical systems to evaluate wastewater treatment 

plant design (Doglioni et al. 2009; Schindler et al. 2010). Guo and Urbonas (2009) 

constructed cascading planes of watersheds to determine different kinematic wave shape 
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factors. These factors were then incorporated into SWMM 5’s nonlinear reservoir model to 

translate a natural watershed into its equivalent rectangular shape. Steffen et al. (2013) 

applied SWMM to a hypothetical watershed to understand the effect of weather pattern 

trajectory on peak flow, and found that downstream storm movement generally produced 

greater peak flows than upstream storm movement. The authors were able to show that these 

additional physical factors are important to take into consideration when applying SWMM 

to predict flow rates.

Effects of Spatial Discretization

The effect of the spatial resolution of subcatchment discretization and the corresponding 

sewer network setup on SWMM output has been investigated in multiple studies (Fallah 

Shorshani et al. 2014; Ghosh and Hellweger 2007; Krebs et al. 2014; Park et al. 2008; Sun et 

al. 2014a). Fallah Shorshani et al. (2014) provided one of the most complete analyses in 

which they investigated the effect of different configurations and model structures, including 

an increasing quantity of geographical information, on both water quantity and water quality 

predictions for a 2.3-km2 catchment in a suburb of Paris, France. Results for water quantity 

showed that the inclusion of basic geographical information, particularly land uses, improves 

the performance. They also stated that uncalibrated models with sufficient land use 

information can reach prediction performances comparable to those of calibrated models. 

On the other hand, inclusion of high-resolution data on improving model prediction 

performance is far more uncertain when considering calibrated models. This may be because 

the model calibration compensates for the lack of high spatial resolution for model setup. 

Ghosh and Hellweger (2007) found that the total outflow volume was relatively insensitive 

to spatial resolution in their study watershed, whereas peak flows were more sensitive, and 

the level depended on the size of the storm. Sun et al. (2014a) showed that both the model 

parameterization and model prediction were sensitive to spatial scale of the delineation for 

moderate-sized watersheds in New York. Krebs et al. (2014) showed that although the runoff 

volume was mostly unaffected by input spatial resolution, lower resolutions resulted in 

overestimation of peak flows as a result of excessively short times of concentration.

Generally, the conclusions about the effect of spatial resolution have been widely variable, 

from finding insignificant effects to significant dependence of model predictions on it. 

Model prediction clearly depends on spatial resolution in all cases; however, no definitive 

conclusion can be made on the optimal resolution required to achieve the most accurate 

prediction of runoff and water quality, as it depends highly on the accuracy and availability 

of the data used to build the model at finer resolution.

Combined Sewer System Overflows

Combined sewer systems are a form of urban drainage system that is common in medium 

and large-sized U.S. cities. They are also internationally prevalent. When excess runoff 

occurs in these systems, overflows commonly result, in which the contents of sanitary and 

storm sewers are mixed and released out of a common outlet, typically to a natural water 

body. Sixteen studies were found in the literature that focused exclusively on modeling 

combined sewer systems or improving methods to model these types of systems in SWMM. 
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Fifty-five conference proceedings were found on this application (ASCE Library), but were 

not included in this review.

The most common trend in these studies was the focus on the designing and planning of 

sewer systems, either to avoid combined sewage overflows (CSOs) or to adapt current 

systems to reduce existing overflow problems. Kirshen et al. (2014) took a lowest-cost and 

risk-based net-benefits approach, considering adaptation strategies that included the 

following: underground storage, LID applied throughout the watershed, sewer separation, 

and a combination of sewer separation and LID. Koudelak and West (2008) developed a new 

master plan for the city of Liepaja, Latvia. The combined sewers were sized to provide 

protection against internal flooding of properties.

Some additional studies modeled LIDs and investigated their performance in reducing runoff 

in CSOs. Abi Aad et al. (2009) used the new LID features in SWMM 5 to model the effects 

of rain barrels and rain gardens. The overarching goal was to reduce CSOs by reducing peak 

flow, and to time the outflow using detention techniques. Muhaisen et al. (2009) studied 

detention basin design for a specific flood control target and performed storm modeling 

based on the extreme value theory (EVT) copula (Gudendorf and Segers 2010). The purpose 

of this study, which took place in Spain, was to avoid CSO expansion by designing detention 

basins with minimized cost.

Two studies looked in a more in-depth manner at water quality in combined sewers. In one 

study, Park et al. (2010) sought to characterize the discharge of storm runoff pollution 

(COD, TSS, total nitrogen, and total phosphorus) from urban catchments with combined 

sewers in Korea, and to estimate the probability of mass first flush (MFFn) by using SWMM 

and probability density functions. The authors found that the most reliable MFFn could be 

achieved when the representative rainfall characteristics including rainfall depth and 

duration are statistically representative. Another study looked at pathogen loadings from 

CSOs in a hypothetical river basin (Mahajan et al. 2014). The authors estimated these by 

superimposing a simulation of overflow discharges on raw sewage enteric pathogen 

concentration.

Consideration of the effects of climate change on CSOs and increasing CSOs was another 

trend in the literature. Abi Aad et al. (2009) included climate change as a concern in the 

introduction of their study. Kirshen et al. (2014) performed a vulnerability assessment and 

an evaluation of adaptation strategies for the effects of climate change on urban drainage 

flooding and CSOs. Fu et al. (2011) developed a general framework for sewer flood 

estimation that enables simultaneous consideration of two types of uncertainty: randomness 

from rainfall data represented using imprecise probabilities, and imprecision from model 

parameters represented by fuzzy numbers that were used as a simplified representation of 

probability.

Overall, SWMM, and particularly because of its combined mechanistic conveyance network 

modeling capability and algorithm for overland flow simulation, provides a powerful tool to 

evaluate the effects of various management practices on reducing the risk or frequency of 

CSO overflow into receiving waters.
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LID Effectiveness

Because of the relatively recent addition of LID capabilities to SWMM, the number of 

papers reporting the LID application in urban stormwater modeling is small. Tillinghast et 

al. (2012) used these features to evaluate the effects of LID practices on stream geomorphic 

stability in Chapel Hill, North Carolina. They examined the effect of implementing nine 

different scenarios of wet ponds. Jia et al. (2014) used SWMM’s LID capability to predict 

the effectiveness of bioretention cells, permeable pavement, and infiltration ponds to reduce 

the risk of flooding in the city of Suzhou in eastern China. Chaosakul et al. (2013) applied 

SWMM to evaluate the effectiveness of LIDs including bioretention cells, vegetative swales, 

rain barrels, porous pavement, and infiltration trenches in Bangkok, Thailand. McCutcheon 

and Wride (2013) applied the SWMM bioretention component to runoff data collected 

during a single event from two rain gardens, one turf and one clay, and found a reasonable 

agreement between the simulated and measured results.

Most of the other studies currently published on LID effectiveness using SWMM have not 

used the LID features of the program; instead, they have used its conventional flow routing 

capabilities. In many applications, the effect of LIDs on runoff generation in a region is 

modeled using conventional rainfall-runoff capabilities of SWMM by adjusting the 

percentage of pervious surface or the depression storage (Muhaisen et al. 2009) and runoff 

coefficient (Alfredo et al. 2010). Others who have used the conventional capabilities of 

SWMM have represented green infrastructure as subcatchments receiving water from the 

adjacent impervious or pervious subcatchments (Jawdy et al. 2010). In a few studies, 

retention-based BMPs are modeled simply as storage units (Muhaisen et al. 2009). Some 

researchers have coupled SWMM with other models representing the LIDs. In one example 

of this, Jia et al. (2012) coupled SWMM with the best management practice decision support 

system (BMPDSS) system to evaluate the effectiveness of several scenarios of LID 

improvement in Beijing’s Olympic Village.

One study indicated the co-benefits of using a continuous simulation (CS) model, like 

SWWM, with a design storm (DS) model. Lucas (2010) applied SWWM and HydroCAD in 

the design of a bioretention planter/trench infiltration-detention system for a large-scale 

urban retrofit project. By incorporating bioretention systems, comprising 0.8% the drainage 

area and stone trench comprising another 3.4%, the volume of flows exceeding the CSO 

threshold were decreased by 90%. HydroCAD and SWMM were used to model the system 

separately, with near-identical results. A few key modifications were required in SWMM. 

The benefits of the CS model were in seeing the entire picture and refining the DS models, 

whereas the DS models’ flexibility allows for the exploration of alternative designs and 

stakeholder input. Lucas and Sample (2015) applied the SWMM LID component to evaluate 

the long-term performance of different types of LIDs, including free discharge and 

controlled outlet green and gray (primarily storage) infrastructure. They concluded that in 

terms of hydraulic performance, green LIDs with controlled outflow rate performed 

substantially better than gray stormwater control measures (SCMs).

Acknowledging the necessity for modifications to model LIDs appropriately in the SWMM 

5.0, Zhang et al. (2010) proposed and tested two SWMM representation schemes for 
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bioretention and porous pavement. Schemes like these would allow for more uniform 

applications.

Optimization

Single and multiobjective optimization techniques (outside of those used for calibration 

discussed previously) have been used with SWMM by several researchers to meet the 

optimal design criteria for the stormwater conveyance system or LID design and placement. 

Tobio et al. (2014) optimized design rainfall (the depth of precipitation expected to be 

captured). They found that the runoff volume reduction of a system is directly proportional 

to the storage volume to surface area (SV/SA) ratio. However, the optimal design rainfall 

was also dependent on the amount of rainfall during a storm event. For the TSS load 

reduction of the system, no significant relationship with the rainfall was found, but the TSS 

reduction was found to be directly proportional to the SV/SA ratio. Li et al. (2015) 

investigated the optimal design of detention tanks, under the constraints of local flooding 

control criteria, with the aim of developing an efficient and robust method for the design of 

tank networks. A modified particle swarm optimizer was adopted to find nondominated 

solutions to minimize both the engineering cost and flooding risks.

Karamouz and Nazif (2013) proposed an optimization model for selecting BMPs to improve 

system performance and reliability in dealing with urban flash floods in a case study in 

Tehran (110  km2). They further enhanced the method to perform multi-objective 

optimization nondominated sorting genetic algorithm-II (NSGA-II) to investigate multiple 

factors including flooding damage risk and cost of BMP implementation (Karamouz and 

Nazif 2013; Oraei Zare et al. 2012). System for Urban Stormwater Treatment and Analysis 

Integration (SUSTAIN) is a framework to evaluate optimal location, type, and cost of 

stormwater best management practices. SUSTAIN consists of a land simulation module, a 

conveyance module, and a BMP module. It is also equipped with a cost analysis and an 

optimization module for finding the optimal types and placement of BMPs. It is built on an 

ArcGIS platform that provides spatial analysis needed for watershed delineation and the 

BMP sitting tool. The land simulation module and conveyance module are based on the 

SWMM engine, whereas the sediment transport is based on the HSPF sediment algorithm. 

The BMP module is custom-based and considers the following processes to reduce land 

runoff volume and attenuate peak flows: evaporation of standing surface water, infiltration of 

ponded water into the soil media, deep percolation of infiltrated water into groundwater, and 

outflow through weir or orifice control structures (Lee et al. 2012). The BMP sitting tool is 

equipped with an NSGA-II multi-objective algorithm to find the best placement of BMPs to 

meet water quantity and quality objectives.

The automatic optimization studies usually rely on a highly hypothetical representation of 

the constraints on placement of stormwater management and treatment devices. In reality, 

there are practical, including regulatory, constraints that substantially limit the choices of 

locations and types of facilities, and these are not easily implemented into the automatic 

optimization algorithms. When the number of plausible choices is limited because of these 

practical constraints, sometimes performing a simple scenario analysis is more effective than 

computationally costly optimization.
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Comparison of SWMM with Other Models

The studies in the literature comparing SWMM with other models can be divided into three 

major groups: (1) SWMM compared with data-driven models, (2) SWMM used to evaluate 

the accuracy of the proposed analytical formulations or numerical process-based methods 

for stormwater quantity and quality, and (3) SWMM compared with available hydrological 

and hydraulic models. The last category is the most relevant to the scope of the study and is 

reviewed chronologically as follows.

Pandit and Gopalakrishnan (1997) compared the average annual total nitrogen stormwater 

loads in multiple sites in Tampa, Florida, as predicted by multiple models. They found close 

model predictions for the continuous simulation method (CSM) and SWMM Level I 

(developed in 1976). Bhaduri et al. (2001) applied long-term hydrologic impact analysis (L-

THIA) and SWMM to two watersheds in Chicago (89 and 38 ha) and found that L-THIA 

predicts the annual average runoff as being between 1.1 and 23.7% higher than SWMM’s 

predictions. The model’s results were better for larger watersheds. Calabrò and Maglionico 

(2002) compared runoff and water quality (Villarreal et al. 2002) (TSS) predictions between 

SWMM and two other models—urban pollution simulator (UPSIM) and conceptual 

simplified model for sewer system simulation (COSMOSS). The tests were performed for 

two catchments in Italy, Parco d. Orleans (9.6 ha) and Fossolo (40.71 ha), and one catchment 

in Yugoslavia, Milijakovac (211  m2). All of the models’ results were found to be sufficiently 

accurate and reliable; however, the models were sensitive to the parameters used to simulate 

the buildup and wash-off processes. Valeo and Ho (2004) applied multiple methods/models, 

including the urban snow model (USM) and SWMM to predict the snow melt flow from a 

small residential community (25.48 ha) located in Calgary, Canada. They found that the 

USM performed better than SWMM as measured by time to peak, peak flow rate, and model 

efficiency. The SWMM model fared poorly and was unable to simulate peak flow rates in 

most cases, although it predicted the time to peak moderately well.

Xiong et al. (2005) compared the nonlinear reservoir routing for overland flow in SWMM, 

and the kinematic wave routing method as applied in the dynamic watershed simulation 

model (DWSM) using data collected from a laboratory experiment conducted using 

smoothed aluminum rectangles with the overall size of 12.2×12.2  m. They found that 

DWSM generally provides more accurate results. The results of SWMM were acceptable 

only for storms with durations longer than the watershed’s time of concentration. Tsihrintzis 

et al. (2007) calibrated the Illinois Urban Drainage Area Simulator ILLUDAS (ILUDRAIN) 

and the Penn State runoff quality model (PSRM-QUAL) to predict flow from multiple urban 

sites in south Florida (5.97–23.57 ha). They compared the modeling results with three other 

tested methods/models: the runoff CN method combined with the Santa Barbara urban 

hydrograph method (SCS-SBUH), SWMM, and the U.S. Geological Survey (USGS) 

distributed routing rainfall-runoff model (DR3M). The predictions from all models showed 

agreement with the observed data, but better predictions were obtained for cases with more 

impervious areas. Overall, it was found that ILUDRAIN matched the runoff depth and peak 

flow more closely than the other models, the SCS-SBUH method resulted in better 

predictions for the time to peak, and the time base of the hydrograph was estimated more 

accurately by SWMM and PSRMQUAL.
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Guo and Urbonas (2009) compared SWMM 5 and CUHP runoff predictions for a 74-ha 

watershed in Denver and found that both models predict the peak flows well. Lee et al. 

(2010) evaluated the applicability of the SWMM and hydrologic simulation program-

FORTRAN (HSPF) models to simulate the flow and water quality [BOD5, TP, total nitrogen 

(TN)] at the Nogok stream watershed (51  km2) in South Korea. They found that both 

models adequately simulated the field data. Cantone and Schmidt (2001) used the Illinois 

urban hydrologic model (IUHM) to model the runoff from the Calumet Drop Shaft 52 

(CDS-51) catchment (316 ha), located in the village of Dolton, Illinois. They found that 

IUHM is capable of predicting runoff with a similar accuracy as the more tedious 

InfoSWMM model. Zhang and Shuster (2014) assessed the performance of SWMM and the 

gridded surface-subsurface hydrologic analysis (GSSHA) in simulating two catchments in 

Ohio (0.65 and 0.47 ha). They found that with simple calibration, GSSHA outperformed 

SWMM; however, SWMM achieved better results using a priori parameter values obtained 

based on the literature. This can be indicative of the more complex and therefore flexible 

model being able to reproduce the data by adjusting the parameters, and not reflective of 

GSSHA better representing the underlying processes.

Although watershed hydrology models such as SWAT (Pisinaras et al. 2010), HSPF 

(Ackerman et al. 2005), and HEC-HMS (Emerson et al. 2005) have been used for modeling 

urban stormwater systems, they clearly lack features specifically needed for urban 

environments, such as the ability to model flow in a complex sewer network that can operate 

under partially free-surface and partially pressurized flow, and can experience backwater 

conditions, or subwatersheds, consisting of pervious and impervious areas with specific 

configuration of connection to the sewer network. They also lack the ability to implement 

LIDs that are specifically used in urban areas such as green roofs, bioretention systems, and 

infiltration trenches among others with the level of detail needed for such areas.

Interfacing SWMM with Other Models

SWMM has been interfaced or coupled with other models. In these cases, its output has been 

exported to other models for integrated modeling. The coupled models include GIS, SWAT, 

and other models designed for specific applications such as river water quality, groundwater, 

air quality, LID, and urban planning.

Barco et al. (2008) used SWMM version 4.3 with GIS to manage and process input and 

output data. Dongquan et al. (2009) proposed an automatic GIS approach for the catchment 

discretization in SWMM and successfully tested it to model runoff in Macau, China (13.65 

ha). They showed that their proposed approach results in more meaningful parameters 

compared with manual catchment discretization. Jat et al. (2009) coupled SWMM and GIS 

externally to compute the change in surface runoff characteristics, for groundwater analysis 

to simulate the change in groundwater level and quality.

Kim et al. (2011) integrated SWAT and SWMM to assess the effects of urbanization on the 

White Rock Creek watershed (169  km2) in Texas. SWMM simulated runoff from urban 

areas, while the runoff from the other land uses was modeled by SWAT. Shrestha and 

Buchberger (2012) developed the open modeling interface (OpenMI) to simulate sediment 
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dynamics at the River Zenne in Belgium (basin area of 1,162  km2). The OpenMI integrated 

SWAT to model water and sediment fluxes from rural areas of watershed, and SWMM to 

model the hydraulics of the river, canal, and sewer systems from urban areas of watershed, 

in addition to new codes for sediment transport and stream water temperature that were 

developed to complement SWMM.

Chen et al. (2002) assessed the effect of stormwater overflow on DO levels in an urban river 

system, using the Lover River in Taiwan (154  km2) as a case study. They used a Web-based 

platform that integrated calibrated the SWMM and Lover River hydrodynamic and water 

quality (LRHWQ) models. They fed the rainfall data to SWMM and the storm runoff and 

BOD loading to LRHWQ to dynamically predict the DO levels.

Blumensaat (2012) coupled the hydrogeological OpenGeoSys model with SWMM and 

tested this river-aquifer model in the Poltva River catchment (1,500  km21,500  km2) in the 

Ukraine. The SWMM solved the 1D dynamic wave equations in the river compartment, and 

OpenGeoSys solved a 2D groundwater flow equation in the aquifer compartment. Shon et al. 

(2012) combined SWMM and the Tank model (Sugawara 1969) to simulate flow at the Big 

Ning River basin in China (3,720  km23,720  km2). They modeled surface hydrological 

processes through SWMM, and interflow and groundwater hydrological processes using the 

Tank model. The combined model prediction for three storm events resulted in flood peak 

predictions with relative errors ranging between 20 and 30%.

Burian et al. (2001) coupled the California Institute of Technology (CIT) airshed model for 

wet and dry deposition and SWMM to simulate the fate and transport of nitrogen species 

through the atmosphere and storm drainage system of the Ballona Creek watershed (300 

km2300  km2) in Los Angeles, California.

Jia et al. (2012) coupled the SWMM and BMPDSS models and applied this framework to 

simulate and optimize LID-BMP scenarios for Beijing’s Olympic Village (36 ha) in China. 

They used SWMM to generate time series data of surface runoff from different types of land 

use, and to simulate pipe network hydraulics for the case study. The runoff series data were 

then used as inputs to BMPDSS to analyze BMPs’ placement and optimization.

Sansalone et al. (2013) used the SWMM and USGS VS2D models to simulate the behavior 

of green infrastructures—cementitious permeable pavement and biofiltration area reactors in 

controlling the flow and pollution from impervious surfaces. VS2D was used to model the 

flow and transport in the substrate mediums (represented as 2D systems) that are not able to 

use SWMM’s LID component. Their study, conducted in Gainesville, Florida, used SWMM 

to compute the recharge periods and inflow fluxes to the green infrastructures. They found 

that only a fraction of the LID media is used during storms. The reduction in the 

effectiveness of LIDs as a result of short-circuiting has been reported by others (DeBusk and 

Wynn 2011; Jones and Davis 2013; Trowsdale and Simcock 2011).

SWMM’s Performance

A formal model evaluation process is deemed to be critical to the integrity of a SWMM 

modeling project. The conducted search of the peer-reviewed literature returned 93 
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publications that have presented model evaluation formally. These findings are summarized 

in Tables 1 and 2. With the information provided in these tables, a user now has a reference 

to compare the relative performance of his or her unique application.

Over half of the SWMM model evaluation statistics reported in the literature were 

completed on small watersheds with areas <5  km2 (51 papers out of 93). The SWMM 

output for midsized watersheds (5–40  km2) was evaluated in 18 of the papers reviewed, 

whereas 12 papers reported evaluation statistics for basins larger than 40  km2. These 

numbers are likely biased toward smaller catchments, as this review focuses solely on peer-

reviewed publications; including all practical applications of SWMM may result in a 

different outcome. Runoff prediction was the endpoint for model evaluation in most of the 

reviewed papers (67 papers out of 93). Only 26 of the papers formally evaluated water 

quality endpoints. When water quality was the focus, those specific studies also evaluated 

runoff (22 papers). Among the water quality indicators, TSS and BOD were modeled more 

often in 22 and 11 studies, respectively. Other water quality indicators evaluated included 

(with number of studies in parenthesis) total phosphorus (8), chemical oxygen demand (5), 

total Kejldahl nitrogen (4), total nitrogen (4), Zn (4), Cu (3), Pb (3), total solids (3), 

oxidation reduction potential (ORP) (2), and other indicators of SC, Cd, Fe, Organic-N, 

Nitrate-N, Ammonia-N, OP, and 17β-estradiol with just 1 literature reference.

Sensitivity Analysis

Sensitivity analysis is a model evaluation technique used to identify the parameters or inputs 

to which the model results are most sensitive. The results of sensitivity analysis can be 

particularly useful in assessing the effects of the uncertainties associated with each 

parameter. Sensitivity analysis is also performed to find the most effective parameters for 

consideration during model calibration.

Because the outputs of SWMM are often in the form of time series rather than single scalar 

quantities (e.g., hydrographs or pollutographs), aggregate quantities are usually extracted 

from the outputs before the sensitivity analysis. These aggregate quantities are usually 

discharge, peak discharge, peak discharge time, total volume, total depth, and time base for 

runoff simulations; for water quality modeling, they include pollution load and 

concentration, peak concentration, and peak concentration time. In a sensitivity analysis, 

each parameter is perturbed (changed) from a default value, and the change (typically in 

percent) in model aggregate outputs is quantified. In a few studies, these aggregates are also 

quantified in terms of a sensitivity coefficient (Boon et al. 2008; Chow et al. 2012; Lei and 

Schilling 1994). Although the sensitivity analysis is typically performed manually by 

changing one variable at a time, automatic sensitivity analysis is available in some 

commercial versions of SWMM (van der Sterren et al. 2014; James et al. 2002).

Although relative sensitivities of SWMM input parameters are highly project-specific, 

commonly reported sensitive parameters fell within three categories: conduit, land surface, 

and water quality parameters. For conduits, the parameters that describe the conduit 

geometry and orientation are usually assumed to be known and fixed. However, in a few 

studies, the conduit length and width were found to be sensitive (Ghosh and Hellweger 
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2012; Peterson and Wicks 2006; Wu et al. 2008; Zaghloul 1998), in addition to conduit 

slope (Ghosh and Hellweger 2012). More frequently, the Manning’s roughness coefficient 

for conduits has been reported sensitive in the literature (Burszta-Adamiak and Mrowiec 

2013; Ghosh and Hellweger 2012; Gülbaz and Kazezyılmaz-Alhan 2013; Krebs et al. 2014; 

Lee et al. 2010; Peterson and Wicks 2006; Sun et al. 2014a; Tsihrintzis and Hamid 1997, 

1998; Zaghloul 1983).

SWMM model predictions are typically found to be sensitive to parameters that are related 

to characteristics of impervious surfaces such as impervious percentage (Barco et al. 2008; 

Cermola et al. 1979; Chow et al. 2012; Jia et al. 2014; Kim et al. 2011; Mancipe et al. 2011; 

Song et al. 1983; Zaghloul 1983), impervious depression storage (Barco et al. 2008; Boon et 

al. 2008; Calabrò and Maglionico 2002; Chen and Adams 2006; Obropta and Kardos 2007; 

Sun et al. 2014a; Tsihrintzis and Hamid 1998; Xiong et al. 2005; Zaghloul and Al-Shurbaji 

1991; Zhao et al. 2008), and Manning’s roughness coefficient for impervious surfaces (Chen 

and Adams 2006; Chow et al. 2012; Gülbaz and Kazezyılmaz-Alhan 2013; Jia et al. 2014; 

Krebs et al. 2014; Mancipe et al. 2011; Schoenfelder et al. 2006; Sun et al. 2014a; Xiong et 

al. 2005; Zhao et al. 2008; Zhao and McEnroe 2000). Moreover, a number of studies found 

output to be sensitive to overland flow width (Boon et al. 2008; Cermola et al. 1979; Chow 

et al. 2012; Jia et al. 2014; Mancipe et al. 2011; Marsalek 1983; Sun et al. 2014a; Zaghloul 

and Al-Shurbaji 1991; Zhao et al. 2008) and average slope (Boon et al. 2008; Calabrò and 

Maglionico 2002; Chen and Adams 2006; Krebs et al. 2014; Mancipe et al. 2014; Wu et al. 

2008). Width and slope along with Manning’s roughness coefficient for impervious surfaces 

are the inputs to the Manning’s equation for computing overland flow rate and velocity. Guo 

and Urbonas (2009) explicitly derived a method to determine the most representative 

catchment width and slope as a function of watershed lateral and longitudinal slopes, relative 

location of the drainage channel, and width of overland flow.

Pervious surfaces of a watershed can also contribute to stormwater runoff and pollution 

when most of a watershed’s surface consists of pervious surfaces during large storms. Of the 

34 studies that presented a sensitivity analysis of SWMM, 13 identified the pervious surface 

characteristics (i.e., Manning coefficient or depression storage) or infiltration parameters to 

be sensitive to SWMM predictions. Mancipe-Munoz et al. (2014) identified infiltration 

parameters as being sensitive if the impervious surface covers less than 20% of a watershed. 

Valeo and Ho (2004) found snowmelt from pervious surfaces to be sensitive. Chung et al. 

(2011) modeled a 56-km2 watershed in South Korea during the monsoon season. They 

identified Manning’s roughness coefficient and the depression storage of both pervious and 

impervious areas, and the saturated hydraulic conductivity of the soil among the sensitive 

parameters. Gülbaz and Kazezyılmaz-Alhan (2013) modeled a 165-km2 watershed in 

Turkey, finding that hydraulic conductivity and the initial soil moisture were sensitive. Sun 

et al. (2014a) found that runoff predictions were insensitive to lawn parameters of depression 

storage and Manning’s coefficient. However, and although the total runoff volume was 

insensitive to tree area, the peak runoff predictions were slightly sensitive to depression 

storage and Manning’s coefficient of tree area. Krebs et al. (2014) found that predicted peak 

runoff flow was sensitive to infiltration parameters only for a catchment (19% 

imperviousness area) with the lowest urbanization of the three modeled. Borris et al. (2014) 

concluded that pervious areas can have an influence on stormwater runoff and TSS load.
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SWMM water quality predictions are sensitive to the choice of buildup and wash-off 

functions and their parameters as shown by Baffaut and Delleur (1990), Calabrò and 

Maglionico (2002), Chung et al. (2011), Ouyang et al. (2012), Temprano et al. (2006), 

Tsihrintzis and Hamid (1998), and Van der Sterren et al. (2014). Although the exponential 

wash-off model was found to be the only model for sensitivity analysis of water quality 

(eight studies), various functions have been used for sensitivity analysis of the buildup 

parameters including exponential (six studies), whereas the linear, saturation, and power 

function were sensitive in a single study each.

Calibration and ValidationCalibration

Traditionally, SWMM calibration has been performed manually by changing one parameter 

at a time and comparing the SWMM predictions with observations. This trial-and-error 

method has been used extensively by researchers (Blumensaat et al. 2012; Chung et al. 

2011; Gülbaz and Kazezyılmaz-Alhan 2013; Temprano et al. 2006; Scholz and Kazemi 

Yazdi 2009; Zaghloul and Abu Kiefa 2001; Calabrò 2002; Park et al. 2008; Walsh et al. 

2014; Warwick and Tadepalli 1991; Wu et al. 2013). Out of the papers reviewed reporting 

calibration statistics (84 studies), 44 did it manually. As a common practice, sensitive 

parameters are initially assigned a value within the range reported in the SWMM manual or 

in the literature, and are then ae subject to perturbation (or tweaking). This approach is time-

consuming, especially when a larger number of parameters are considered. Furthermore, 

there is no guarantee that the optimal parameter values will result. Automatic calibration 

algorithms exist to overcome this limitation and are essentially optimization or search 

algorithms. Optimization algorithms are based on gradient-based methods (e.g., steepest 

descent, conjugate gradient), combinatorial methods (e.g., the simplex method), heuristic 

approaches, or evolutionary algorithms (e.g., genetic algorithms, shuffled complex evolution 

algorithms). Gradient-based methods typically need a smaller number of model runs to find 

the optimal values of the parameters; however, they are prone to getting trapped in local 

minima if the initial guess is not appropriately chosen (Abrishamchi et al. 2010; Mancipe-

Munoz et al. 2014). Heuristic approaches are better able to identify the global minima, but 

require a large number of model runs (Duan et al. 1994; Shie-Yui Liong 1993).

Commercial versions of SWMM (KBSWMM, used in three studies; PCSWMM, used in six 

studies; and XPSWMM, used in one study) provide automatic model calibration capabilities, 

based on one or more of the aforementioned optimization algorithms. Furthermore, there 

have been multiple algorithms/methods coupled with SWMM, but not as an embedded 

feature. These include shuffled complex evolution algorithms used in three studies, Box’s 

complex method used in three studies, generalized likelihood uncertainty estimation 

(GLUE) used in three studies, PEST parameter estimation code used in two studies, genetic 

algorithms used in eight studies, expert systems used in two studies, and genetic 

multiobjective optimization algorithm (NSGA-II) used in two studies. Other optimization 

algorithms used include the Metropolis Monte Carlo algorithm, Powell method, and 

Rosenbrock’s method. Because different studies have used different measures to determine 

the goodness of fit, it is not possible at this time to draw a conclusion about whether 

automatic calibration techniques result in better model performance compared with manual 

calibration methods. Regardless, calibration tools allow a user to perform the calibration task 
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more effectively while trying more combinations of parameter values in less time, 

potentially resulting in better calibration.

Although 10 of the studies reported in Tables 1 and 2 evaluated the calibration process 

qualitatively by visualizing hydrograph characteristics, such as arrival time, magnitude of 

peak flow rate, and the overall shape of the hydrograph, the rest used measures of goodness 

of fit to quantify the results of the calibration process. A summary of the goodness of fit 

measures reported in Tables 1 and 2 (including both calibration and validation measures) is 

presented in Table 3. Some studies have used more than one goodness of fit measure. 

Description, ranges, advantages, and deficiencies of various goodness of fit measures are 

discussed elsewhere (Krause et al. 2005; Legates and McCabe Jr. 1999). The results 

presented in Table 3 indicate that relative error is the most common statistical measure of 

goodness of fit and has been used 83 times in the literature. The next most popular statistic is 

the Nash-Sutcliff efficiency NSE (38 times). For evaluating the runoff processes, runoff 

discharge is the most popular calibration endpoint, used 54 times. Other popular runoff-

based calibrants include peak discharge (45 times), total runoff volume (32 times), depth (19 

times), peak discharge time (10 times), and time base (5 times). For water quality modeling, 

the contaminant load is the most popular calibration endpoint (20 times), followed by 

contaminant concentration (18 times), peak concentration (7 times), and time-to-peak 

concentration (1 time).

Validation

Validation pertains to verifying the accuracy of a model for a time period separate from that 

used for calibration. SWMM validation was performed in numerous studies (59 studies in 

Tables 1 and 2). Model performance for the validation period is usually quantified using the 

same measures of goodness of fit that was used for calibration process. A comparison 

among studies in Tables 1 and 2, in which both calibration and validation performance were 

reported using similar measures, shows that SWMM validation performance is more often 

weaker than calibration performance, indicating a lower confidence for the extrapolation 

capacity of the model. This highlights the need to perform the validation, to ensure that it is 

not substantially inferior to the model performance for the calibration period.

In an attempt to summarize the bulk of the information provided on goodness of SWMM 

model fits listed in Tables 1 and 2, a box and whisker distributional diagram was prepared 

from the most commonly reported statistics (Fig. 3). To be conservative, when values were 

reported as a range, the lower end of the range was taken. NSE, coefficient of determination 

(R2), and relative error (RE) goodness of fits (GOFs) for runoff discharge and peak 

discharge were combined (QP), as were those for concentration load and peak concentration 

(CLP). A box and whisker plot for the former provides a general view of how the model 

performs relative to hydrology, and the latter generalizes model performance with respect to 

water quality (Fig. 3). NSEs and R2s above 0.6 (in which a maximum of 1 means the best 

fit) are typical and slightly higher for calibration than validation periods for flow variables. 

For the water quality variables reported, model fits using NSE and R2 are slightly lower than 

flow, but still mostly above 0.5. The central tendencies among the REs reported for both 

calibration and validation periods for QP fall between ±10%, as does the calibration period 
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results for CLP variables. However, the validation period results found for CLP variables 

suggest a strong negative bias for SWMM simulations, but this is based only on seven values 

found in the literature and is not consistent with respect to water quality constituents. Taken 

together, the values reported in Tables 1 and 2 and generalized in Fig. 3 suggest that SWMM 

can be effectively calibrated to simulate flows and water quality that closely match reality 

over a wide range of urban catchment sizes.

The time period over which the model is calibrated is potentially an important consideration 

for model performance. Continuous simulation lasting from just one day (e.g., Peterson and 

Wicks 2006) up to a year or more (e.g., Ashbolt et al. 2013; Zhang and Shuster 2014), and 

event-based simulations from just one storm event (e.g. Alfredo et al. 2010; Fioretti et al. 

2010; Wu et al. 2008) up to tens of storm events (Muhaisen et al. 2009; Wang and 

Altunkaynak 2012; Zaghloul and Abu Kiefa 2001; Tsihrintzis and Hamid 1998; Tsihrintzis 

and Sidan 2008) have all been used in the literature. The event-based calibration approach is 

more popular in the literature (61 studies) as compared with continuous calibration (20 

studies). However, no comprehensive study exists that compares the continuous and event-

based simulations over different climatic and hydrological conditions. However, the event-

based approach was found by Boon et al. (2008) to provide more accurate results in terms of 

overall hydrograph shape, time to peak, and peak flow rate, whereas the continuous 

approach performed better in the runoff volume estimation. This study suggested that 

continuous calibration should still be implemented when runoff volume is the main concern.

Continuous-event calibrations are susceptible to potential inaccuracies in the rain-intensity 

input data, particularly when the rain gauge location is not close to the catchment centroid. 

These inaccuracies are mostly in the form of deviations from the actual temporal patterns, so 

that when event total runoff volumes are used for calibration the inaccuracies are averaged 

out and better agreements between modeled and observed runoff can be obtained.

Uncertainty Analysis

Uncertainty analysis refers to evaluating the effects of estimation errors associated with the 

values used for model setup, variance in the external forcing data, and model structural (or 

epistemic) uncertainty as a result of simplification of real-world phenomena. These 

uncertainties can propagate to the model output (Sun et al. 2014a). When the models are 

calibrated using observed data, there are additional uncertainties associated with the 

measurement errors (Gaume et al. 1998). It becomes desirable and necessary to integrate 

these uncertainties into the modeling processes to quantify the overall confidence in model 

predictions (Sun et al. 2014a). The uncertainty assessments performed on the SWMM model 

can be classified into two general approaches, here referred to as “forward uncertainty 

assessment” and “inverse uncertainty analysis.” The goal of forward uncertainty assessment 

is to evaluate model output uncertainty as a result of parameter and external forcing 

uncertainties (Gaume et al. 1998; Lei and Schilling 1994; Mailhot et al. 1997; Wu et al. 

2013). Typically, a prior range or a prior distribution is assumed for the model parameters, 

and a Monte Carlo (MC) simulation is performed to find the ranges of possible model 

predictions. Forward model uncertainty analysis involves identification and quantification of 

the sources of uncertainty, and the propagation of the uncertainty through the model.
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In contrast, the goal of inverse uncertainty analysis is to use observed data to find the ranges 

or the probability distributions of model input parameters that represent the plausible 

parameter values, resulting in model predictions close to the observed data. The parameter 

uncertainty can be expressed as joint probability distributions, plausible regions, or 95% 

confidence intervals. The methods used for inverse uncertainty analysis can be classified into 

MC-based approaches, such as Markov chain Monte Carlo (MCMC) methods based on 

Bayesian inference, generalized likelihood uncertainty estimation (GLUE) (Beven and 

Binley 1992), and methods based on local sensitivity. The methods based on local sensitivity 

are more efficient in the sense that they require a significantly smaller number of model runs 

compared with MC based methods; however, they are based on the assumption of a linear 

response surface between the parameters and the model outputs, and the results can be 

inaccurate when the relationship is nonlinear. Both MC-based approaches and local 

sensitivity-based approaches have been used to perform uncertainty analysis in SWMM (Sun 

et al. 2014b; Zhao et al. 2008).

Lei and Schilling (1994) proposed a strategy to reduce the computational cost of forward 

uncertainty propagation analysis using first-order analysis, sensitivity analysis, statistical 

linearization, and MC analysis. As an example, parameter uncertainty propagation analysis 

in the runoff block of the HYSTEM-EXTRAN model (a modification of SWMM) was 

performed for the Halden subcatchment in Zurich, Switzerland. They found that the type of 

probability density function had little effect on the results of the error propagation analysis, 

given a fixed mean and standard deviation of the input parameters. Wu et al. (2013) studied 

uncertainty of model prediction stemming from parameters including subcatchment width, 

Manning’s roughness coefficient for pervious surfaces, and natural channels, by changing 

one of these parameters at a time while holding all others constant. Their uncertainty 

analyses showed that these parameters have little effect on model prediction as measured by 

aggregate statistics.

Among the papers that have described inverse uncertainty assessment, Sun et al. (2014a) 

used GLUE with a high-resolution SWMM developed for a highly urbanized sewershed in 

Syracuse, New York (58.8 ha). The results showed that the sampling importance resampling 

(SIR) method (Rubin 1988) was a more effective alternative than the conventional threshold 

sampling method. They also examined the effect of catchment discretization resolution, 

showing that the posterior parameter sets calibrated based on a more refined watershed 

delineation (i.e., microdelineation) resulted in a lower uncertainty of flow predictions for the 

entire hydrograph, compared with the cases in which rougher subwatershed delineation (i.e., 

macrodelineation) was used.

Zhao et al. (2008) integrated SWMM with the Latin hypercube sampling technique (Hossain 

et al. 2006) based on a combined objective aiming to reduce the uncertainty of model 

outputs to obtain more accurate predictions. They applied their model to the Yalianfang 

catchment in Macau, China (13.65 ha), and found that the combined objective method could 

reduce the uncertainties of both the model parameters and the predictions. Mailhot et al. 

(1997) used the Metropolis Monte Carlo algorithm to investigate the effects of the amount of 

observed data and data uncertainty on the uncertainty associated with the estimated 

parameters. They did this using the water quality component of SWMM and data collected 
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from Quebec City’s sewer system. Their analysis showed that even when a large amount of 

data is available, the uncertainties in predictions of the suspended solid concentration can 

remain significant. Gaume et al. (1998) focused on the estimation and interpretation of the 

parameter uncertainties, finding that the local sensitivity-based methods, based on the 

second-order approximation of the shape of the objective function in the vicinity of the 

optimum parameter set, provide an inaccurate estimate of the uncertainty, and suggested 

using global approaches. In general, however, forward and reverse uncertainty analysis has 

been rarely performed in the different applications of SWMM.

Gap Analysis

The need for high computational speed when modeling hydrological and contaminant 

transport in complex sewersheds consisting of interconnected subcatchments, conveyance 

systems, and LIDs makes it inevitable that the processes be represented in a simplified way. 

This is a strength of SWMM that has led to its widespread application to address a multitude 

of design, policy decision making, and planning problems in urban systems. In most 

hydrologic applications, the simplified representation has proven justifiable not only because 

of the necessity to keep the computational burden manageable, but also to make 

parameterization and calibration doable and reduce the risk of misuse. However, this 

strength can also be considered a limitation pending the modeling goal. Options for users to 

represent urban drainage features with a higher degree of process-level detail are called for, 

but for model refinement to be justified it needs to be supported by field data and adequate 

scientific understanding.

Five areas that—based on authors’ experience in the field and given the results returned by 

the peer-reviewed literature—suggest that gaps in the current model structure are limiting 

SWMM’s utility as a comprehensive stormwater management decision support model are 

identified. These include (1) lack of embedded algorithm and/or user guidance for parameter 

estimation, sensitivity analysis, automated calibration, and uncertainty assessment; (2) 

inadequate provision and criteria for specifying the surface spatial heterogeneity in the 

overland flow simulation; (3) no mechanistic multicomponent reactive fate and transport 

processes for contaminants (particularly nutrients) during buildup and wash-off simulation, 

in transport as overland flow or in the conveyance system, and inside LIDs and storage 

structures; (4) limited options for direct simulation of urban land management operations; 

and (5) the need for more explicit handling of interflow and groundwater flow pathways for 

water quality loading. Clearly, these aspects do not represent vital features needed for 

common catchment-scale hydrologic applications, but rather would provide options for users 

to evaluate smaller-scale processes in more detail and would allow SWMM to be used more 

specifically for risk-based water quality management in urban environments.

Parameter Estimation, Model Sensitivity and Calibration, and Uncertainty 

Assessment

Better handling of model parameter estimation facilitates proper use of the model and could 

occur along two lines. One includes updated user guidance for choosing appropriate 

parameter values during model setup, including characteristic ranges and nonsensical values. 
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For instance, the addition of an internal urban soils database with selection criteria would 

offer more refined estimates of infiltration parameters. This is important because urban soils 

do not behave like natural soils; therefore, inferring infiltration-based parameter values from 

Natural Resources Conservation Service (NRCS) soil distribution maps, for example, is 

inaccurate. Second, inverse modeling procedures can be used to estimate parameter values 

when detailed observational/monitoring data is available to support such a goal. Statistical 

tools that allow users to approach this aspect quantitatively should be explored and 

considered for inclusion in the SWMM package.

Provided computationally efficient optimization algorithms for characterizing model 

structural uncertainty, model sensitivity analysis, and calibration can be conducted in a more 

automated manner. Commercially available SWMM packages (e.g., PCSWMM) already 

offer such a framework. However, little methodological guidance is available for the use of 

such a framework, and there is little support to SWMM model users for evaluating the 

results. Furthermore, it has been suggested by a few studies (e.g., Baffaut and Delleur 1990; 

Blackler and Guo 2014; di Pierro et al. 2006; Qin et al. 2013; Warwick et al. 1991) that 

calibration processes might be sensitive to the selection of event(s) for event-based 

simulation; thus, different model performance might be observed for low and high-intensity 

events that are used for calibration. In addition, calibration is subjective to the form of the 

objective function, which should formally be defined based on a presumed error structure for 

observation. A systematic study on how different objective functions for model calibration 

results in which features of hydrographs or pollutographs (e.g., total volumes, peak volumes, 

base flows, total loads) are reproduced better or worse would be useful in guiding users in 

selecting appropriate objective functions for different applications.

Finally, formal model uncertainty analysis is critical for probabilistic risk management. 

Uncertainty analysis not only allows the user to characterize the generated output in terms of 

a confidence range, but it also allows for estimation of relative risk, such as risk of flooding, 

or violating a water quality standard. Quantifying the uncertainty of the calibrated model 

after LID or BMP scenarios have been simulated is critical to weighting the significance of 

such management scenarios, and therefore to decisions about management alternatives. 

However, the review returned only a few articles that had demonstrated such a quantitative 

uncertainty estimation approach to the decisions related to model output or management 

scenario analysis. Forward or reverse uncertainty analysis has rarely been performed 

(section “Uncertainty Analysis”). The reason stems from the fact that SWMM lacks a built-

in functionality to perform uncertainty assessment. Coupling SWMM with external 

uncertainty analysis programs to perform this task requires special skills foreign to most 

practitioners. Because of the popularity of SWMM in the urban drainage design community, 

adding a built-in feature to perform forward and inverse uncertainty analysis would help 

move the whole community in the direction of making uncertainty analysis a standard 

practice for stormwater management modeling.

Hydrologic Simulation Improvements

Overland flow for urban surfaces encounters heterogeneity in perviousness, slopes, and in 

the particular formations of preferential flow paths that are designed to quickly transfer 
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runoff to the conveyance system. Although the same hydraulic phenomena happen in 

nonurban watersheds, it is more pronounced in urban environments because of the presence 

of curbs, gutters, roofs, sidewalks, catch-basins, and parking lots. This level of heterogeneity 

has implications related to both water quantity and quality.

The current version of SWMM represents the overland flow formation on subcatchments 

using a single reservoir, with the outflow rate assumed to be a function of average storage 

per area and assuming a single roughness. This simplification, particularly when a coarse 

subcatchment delineation is considered, can result in high bias in the peak flow simulation 

and in the flow rates during transition periods at the beginning and the end of storm events 

(Xiong et al. 2005). In addition to the heterogeneities of surface roughness and connectivity, 

the heterogeneity in infiltration plays a very important role in controlling the ultimate 

surface runoff. In urban catchment, the infiltration is usually far from something that can be 

represented using a uniform Green-Ampt equation, but rather is more appropriately 

governed by a matrix of Green-Ampt models with a spectrum of saturated hydraulic 

conductivities. Yu (1998) showed that the SCS method can be theoretically derived by 

considering a distribution of saturated hydraulic conductivities. When observed flow rates 

are used for calibration, the effect of lumping the parameters can be compensated (to some 

degree) by adjusting the parameter values such as Manning’s roughness coefficient and 

depression storage. However, further field and modeling studies are needed to evaluate how 

well the single reservoir approach reproduces observed hydrographs on small catchments. It 

is also beneficial to find parsimonious alternatives to the single reservoir representation that 

can capture the urban surface heterogeneity. Because of the large number of alternatives for 

representing the urban mosaic in SWMM and the potential effect the spatial discretization 

approach can have on the model results, better guidance to help modelers best match 

simulation objectives with the spatial resolution of model setup would be useful.

Although adding a 2D surface runoff modeling feature to SWMM would represent a 

complex undertaking, additional studies that compare the performance of SWMM to an 

existing 2D model run in parallel would also prove useful to understanding the conditional 

reliability of the existing SWMM modeling approach. These model comparison studies 

could be accompanied by tracer study protocols that would inform the real travel time 

distributions over a catchment and help in model refinement (Harman and Kim 2014). 

Studying how to best approach overland flow simulation could also help to improve SWMM 

for more realistic evaluation of the effects of potential flooding or flash floods that require 

incorporation of the effect of structures.

Model prediction clearly depends on spatial resolution in all cases. However, no definitive 

conclusion can be made on the optimal resolution required to achieve the most accurate 

prediction of runoff and water quality, as it depends highly on the accuracy and availability 

of the data used to build the model at finer resolution.

Water Quality Improvements

The capability of SWMM in predicting pollutographs is substantially inferior to hydrographs 

(Tables 1 and 2). It is known that the buildup and wash-off algorithms used in the model are 
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gross simplifications of the real heterogeneous physiochemical processes at play. 

Contaminant buildup rates are highly dependent on site locations and land management 

practices (i.e., turf grass fertilization rates). Similarly, the nature and rates of wash-off are 

expected to depend on the characteristics of the surfaces where pollutants accumulate. As 

opposed to water quantity, for which the main external forcing data (i.e., precipitation) are 

widely available with a relatively good accuracy, the forcing data for water quality are 

mostly lacking. This makes the predictive use of the model uncertain in the absence of 

monitoring data. Generally, a critical gap is that biogeochemically driven nutrient fate and 

transport processes of any kind are not available for simulation. Multicomponent reactive 

transport as affected by the aerobic/anoxic conditions of mediums encountered in the built 

stormwater conveyance system, stream channels, and LIDs is a requirement for watershed-

scale nutrient TMDL development and implementation.

First Flush and Sediment Transport

Although the buildup and wash-off modules in SWMM are flexible enough to represent a 

wide range of pollutants, several studies show that first-flush phenomena is specific to the 

physiochemical properties of the pollutant; some pollutants may have an affinity for binding 

to sediments, whereas others are solubilized quickly (e.g., Kim et al. 2011; Massoudieh et al. 

2008). At this time, there are no provisions in the model to represent loosely versus tightly 

bound pollutant fractions. This is important because understanding the first-flush 

phenomena may be critical to effectively sizing BMPs or LIDs (Massoudieh et al. 2011; 

Razmkhah et al. 2010; Stenstrom and Kayhanian 2005). First-flush behavior also relates to 

basin size, surface characteristics, rain intensity, and temporal rain dynamics. The relative 

importance among these parameters needs further study. Adding a multirate modeling 

feature to SWMM would allow users to consider first flush by distributing the built-up 

pollutants into classes (or bins) with different levels of mobilization potential. Although 

adding this feature to the current version of SWMM is relatively easy in terms of 

implementation, research is needed to parameterize such a component. Once pollutants are 

released to the overland flow, there is no provision to allow for sedimentation or 

resuspension. Such an addition would be a useful feature, particularly in the context of 

modeling the effect of conveyance system clogging as a result of sedimentation and 

sediment-contaminant interactions affecting water quality.

Soluble and Particle Bound Pollutants, Aqueous-Solid Mass Exchange

In SWMM, pollutants are represented as single entities. In reality, some pollutants of 

importance in urban environments, such as heavy metals, some organics, and to some degree 

phosphorus species, have various degrees of affinity to solid colloidal (or fine particles) and 

can undergo solid-aqueous phase mass transfer as a result of physical, chemical, or 

biological processes (Pitt and Clark 2008). For example, Pb or Zn bound to particulate 

matter can be immobilized as a result of sedimentation in the sewer system, filtration, or 

settling in BMPs, but then they can gradually be released back into the runoff as a result of 

solid-aqueous phase mass exchange. An external link of SWMM to other numerical codes is 

required to accurately model the solids (Shrestha et al. 2013). However, better understanding 

of the interactions between pollutants and suspended solids in urban setting requires further 
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study. To make SWMM capable of considering such processes, contaminants should be 

allowed to be present at different phases (particulate and aqueous), and the mass transfer 

between the phases should be incorporated into the model.

Transformation

First-order decay of pollutants can be modeled in SWMM. However, in the case of some 

pollutants undergoing microbial-mediated transformations, such as nitrogen species and 

organic matter, the fate is affected by the presence and concentration of other constituents 

such as dissolved organic carbon (DOC) and oxygen (in the case of nitrogen). 

Denitrification occurs primarily under anoxic condition, and the rate of mineralization of 

organic matter depends on the redox conditions. In streams and sewer networks, anoxic 

conditions can prevail in the sediment layer and lead to some level of denitrification. In such 

cases, flow rate can be a controlling factor in the size of anoxic zones forming. There is no 

provision in SWMM to consider these interactions. Allowing the user to define reaction 

rates as a function of a few constituents would be a useful add-in feature that will allow 

more realistic modeling of the fate of contaminants undergoing microbial-mediated 

transformations.

Urban Land Management and LID Representation

SWMM provides an option for users to schedule street sweeping activity, which reduces the 

buildup of contaminants on impervious surface. There are several other types of rather 

routine urban land management operations that would be useful to be simulated, especially 

when it comes to water quality considerations related to nutrients. Examples include lawn 

fertilizer application rates, pesticide spray programs, and grass cutting or leaf mulching. 

These are potentially important sources of pollutants or excess organic loads in many low 

and medium-density urban environments that currently can only be implicitly accounted for 

through input of a known pollutant runoff time series, assigning contaminant loads to 

specific subcatchments manually, or through event mean concentration estimation.

With interest continuing to grow in the application of LID/GI as a cost-effective and 

aesthetic alternative to gray infrastructure for managing stormwater, there is a great need for 

research that formally evaluates SWMM’s ability to accurately simulate these management 

alternatives. Currently, the way LID performance is modeled in SWMM is relatively simple: 

Each LID is represented as a few fully mixed layers. The effect of the additional hydraulic 

head as a result of the surface ponding is not considered, and the maximum Darcy flux that 

can be achieved is equal to the saturated hydraulic conductivity. This simple representation 

is suitable for the most widely used application of the model, which is to analyze 

hydrological fluxes at a catchment scale. However, the user cannot simulate important 

processes internal to LIDs, such as the sedimentation of solids and the pollutants bound to 

them. Processes such as clogging of the substrate in LIDs can result in the decline of the unit 

performance, as is prevalent in porous pavement, sand filters, infiltration trenches, and other 

bioretention systems. In addition, when the fate and transport of pollutants with high affinity 

to the solid phase is modeled, it is important to consider processes like adsorption and 

desorption to the substrate or soil media in the LIDs. Sorption can cause significant 
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retardation of pollutant transport in LID media; however, the pollutant front still moves in 

the media, which can lead to a decline in the pollutant reduction capability of some LIDs 

over time.

The typical scale of SWMM applications probably does not warrant modeling these process-

level details, especially considering that many LID types are meant to be distributed spatially 

at multiple locations throughout a catchment. Having such utility when a more detailed 

analysis is needed of a certain LID option over a smaller area would be invaluable to 

improving the performance and adoption rate of such practices. Therefore, including the 

level of detail needed to consider many of the processes affecting fate, transport, and 

remobilization of contaminants in LIDs—such as the effect of redox conditions, colloid, or 

particle-assisted transport and settling—and remobilization dynamics would probably best 

be implemented in a stand-alone model, whose results could be used as input to an existing 

SWMM application.

Groundwater

Placing emphasis on GI/LID simulation as a major utility of SWMM in the future dictates 

that the subsurface modeling component be re-evaluated and likely upgraded, especially 

with respect to water quality simulation. Although SWMM can account for important 

groundwater hydrologic effects, such as delayed runoff as a result of base flow entering the 

conveyance system or open channels, this water—pending its source and path taken to the 

discharge point—could be laden with pollutants. For example, infiltrating rainfall on 

pervious areas like lawns and flower beds can solubilize soil nutrients and pesticides that are 

subsequently carried to receiving streams in delayed fashion. The ability to explicitly model 

important chemical transformation and physical processes in the shallow groundwater (or 

vadose zone) may be necessary for SWMM to simulate in-stream water quality effects, if a 

significant portion of pollutants flux through this compartment. In addition, because of the 

reservoir-based representation of subsurface, SWMM is unable to model regional 

groundwater flow, as it requires considering coupled interaction between adjacent reservoirs 

representing the groundwater underneath each subcatchment. The base-flow can play an 

important role in determining the temporal pattern of the falling limb of hydrographs; 

therefore, adding the ability to model groundwater in a more rigorous way to SWMM can be 

beneficial in some applications. Adding the ability of the subsurface components underneath 

subcatchments to interact with each other through a Darcy-type relationship would allow 

better representation of the base flow and processes like the groundwater mounding 

underneath infiltration-based LIDs.

Conclusions

The search of peer-reviewed scientific literature and evaluation of the over 150 articles 

returned that the use of the SWMM model to help solve water management issues in urban 

environments highlights the relevance of the model to drainage design and planning. The 

analysis focused on reporting model performance data for both hydrologic and water quality 

endpoints. From the articles reviewed, the relevant information on sensitive parameters, 

calibration methods, and calibration/validation statistics were extracted. From this collection 

Niazi et al. Page 30

J Sustain Water Built Environ. Author manuscript; available in PMC 2020 June 30.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



(Tables 1 and 2), SWMM was found to be applied to a wide range of problems related to 

urban stormwater, which can be attributed to it being a flexible and parsimonious simulation 

tool for urban hydrology and water quality that is adequate for most of its intended 

applications. It fosters end-user ease of use that has made it one of the most widely used 

models for urban water management in the world. It performs better simulations of 

hydrologic endpoints compared with water quality constituents, but the latter could 

definitely be improved upon by relatively simple embedded component additions or with a 

model run in parallel. Opportunities for automated calibration and uncertainty analysis are 

quickly becoming a reality for SWMM, and these will enhance its use as a tool for managing 

risks in urban environments that are undergoing rapid alterations in response to both climate 

change and a growing urban populace. Although much work has focused on modeling 

methods that support automated optimization of management alternatives to help support 

urban planning studies, this should not be of critical importance because of practical 

limitations that are unique to each urban watershed model construct. The focus for SWMM 

improvement over the next few years should be placed on developing and validating 

methods that integrate LID/GI alternatives in terms of hydrologic continuity and water 

quality management.
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Fig. 1. 
Trends of SWMM publications in water resources subject (data from Web of Science 2016)
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Fig. 2. 
Processes considered in the SWMM model
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Fig. 3. 
Summary of NSE, R2, and RE GOF statistics obtained from the literature review (all data 

taken from Tables 1 and 2). QP, gray boxes; CLP, white boxes; lowercase “c” and solid 

boxes, GOF statistics reported for the calibration period; lowercase “v” and hashed boxes, 

values reported for a validation period; numbers above the median line of each box in the 

diagram are the sample size
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Table 1.

Brief Description and Sensitive Parameters in SWMM Applications Used in the Review

Study area

Reference Catchment (s) Location Drainage area (km2km2) Indicator
a Sensitive 

parameters
b

Alfredo et al. (2010) Laboratory green 
roof prototypes

— 7.442×10−77.442×10−7 Runoff —

Lee et al. (2008) Scott Creek Adelaide, 
Australia

26.8 Runoff —

Ashbolt et al. (2013) Upper Yaun Creek Coomera, 
Australia

3.61 Runoff —

Baffaut and Delleur 
(1989)

4 catchments Ross 
Ade

Florida; West 
Lafayette, Indiana

—; 0.117 Runoff —

Baffaut and Delleur 
(1990)

9 experimental plots Lakewood, 
Colorado

0.00009
TSS, TP,

c
 Pb, 

Zn

Washoff C1&C2 
(exp), Buildup 
C1&C2 (exp)

Balascio et al. (1998) — New Castle 
County, Delaware

0.23 Runoff %Imperv, Dstore-
Imperv, % Zero-
Imperv, Width, % 

Slope, N-Imperv, N-
Perv, Dstore-perv, 

MaxRate, MinRate, 
Decay

Barco et al. (2008) Ballona Creek California 217 Runoff Dstore-Imperv, 
Dstore-Perv

Blumensaat (2012) 3 catchments Saxony, 
Germany; North-
Rhine Westphalia, 

Germany; 
Western Ukraine

1.97–52.08 Runoff Width

Borris et al. (2014) City of Skelleftea Sweden 2.35 Runoff Dstore-Imperv, 
Dstore-Perv

Burszta-Adamiak and 
Mrowiec (2013)

3 green roof 
platforms

Wroclaw, Poland 2.88×10−62.88×10−6 Runoff InitSat

Camorani et al. 
(2005)

Po river Bologna, Italy 76.1 Runoff —

Cermola et al. (1979) City of New Haven 
(2 catchments)

Connecticut 20 Runoff %Imperv, Width

BOD, TSS
CoFract

c

Chang et al. (2008) Yong-Kong 
industrial park (2 

catchments) Guan-
Tian industrial park 

(1 catchment)

Taiwan 0.115–0.28 Runoff —

Blumensaat (2012) BOD, COD, 
TSS, TS, 
TKN, TN

—

Chen and Adams 
(2006)

Upper East Don Toronto, Canada 0.161 Runoff Area; % Slope, 
Dstore-Imperv, 
Dstore-Perv; N-
Imperv, N-Perv, 

MinRate, MaxRate

TSS, TS, 
TKN, TP; 

Buildup C1&C2 
(exp), Washoff 
C1&C2 (exp)
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Study area

Reference Catchment (s) Location Drainage area (km2km2) Indicator
a Sensitive 

parameters
b

COD, BOD, 
Cu, Fe, Zn

Chen and 
Goldscheider (2014)

Hochifen-
Gottesacker area, 

Alps

Austria/Germany 35 Runoff —

Chen et al. (2002) Love River Kaohsiung City, 
Taiwan

154 Runoff —

Chiang et al. (2010) Yu-Cheng Taipei, Taiwan 16.45 Runoff —

Choi and Ball (2002) Centennial Park Sydney, Australia 1.327 Runoff —

di Pierro et al. (2006) Upper Bukit Timah Singapore 6.11 Runoff —

Chow et al. (2012) 3 catchments Skudai, Malaysia 0.044–0.342 Runoff %Imperv, Width, 
Dstore-Imperv, N-

Imperv

TSS, TP Buildup C1&C2 
(exp), Washoff 
C1&C2 (exp)

Chung et al. (2011) Mokgamcheon South Korea 56 Runoff N-Perv, N-Imperv, 
Dstore-Imperv, 

Dstore-Perv, Rough, 
Conduct, FC, UMC, 

Ks, Ps, CET, DP

BOD, TSS Buildup C1&C2&C3 
(Pow), Washoff 
C1&C2 (exp)

Fang and Ball (2007) Centennial Park Sydney, Australia 1.327 Runoff —

Ferreri et al. (2010) Laboratory 
experiment

— — Runoff —

Fioretti et al. (2010) Green roof system University of 
Genova, Italy

0.001 Runoff Dstore-Imperv, N-
Imperv

Gaume et al. (1998) Quebec City Canada — TSS —

Ghosh and Hellweger 
(2012)

Faneuil Brook 
subbasin, lower 
Charles River 

watershed

Boston, 
Massachusetts

— Runoff —

Gülbaz and 
Kazezyılmaz-Alhan 
(2013)

Sazlidere Istanbul, Turkey 165 Runoff Rough,N-Imperv,N-
Perv, Conduct, 
InitDef, Dstore-

Imperv, Dstore-Perv

Hsu et al. (2000) Taipei City Taiwan — Runoff N-Imperv

Jat et al. (2009) Ajmer City (2 
catchments)

Rajasthan, India 40.80–58.20 Runoff —

Karamouz and Nazif 
(2013)

Tehran Iran 110 Runoff —

Kazezyılmaz-Alhan 
and Medina (2007)

Duke University 
West Campus

Durham, North 
Carolina

0.22 Runoff —

Koudelak and West 
(2008)

Liepaja Latvia — Runoff —

Krebs et al. (2013) Taapelipolku Finland 0.0587 Runoff Dstore-Imperv, Rough

Krebs et al. (2014) City of Lahti (3 
catchments)

Finland 0.0663–0.1259 Runoff %Imperv, Dstore-
Imperv, Dstore-Perv, 
N-Imperv, N-Perv, 
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Study area

Reference Catchment (s) Location Drainage area (km2km2) Indicator
a Sensitive 

parameters
b

Rough, Suction, 
Conduct, InitDef

Lee et al. (2010) Nogok Stream Korea 51 Runoff —

BOD, TN, TP —

Lei and Schilling 
(1994)

Hakden Zurich, 
Switzerland

— Runoff %Imperv

Lenz et al. (2003) Central Park New York City, 
New York

3.428 Runoff —

TP, TN, TSS, 
BOD, ON, 

NN, AN, OP, 
ORP

—

Liong et al. (1993) Upper Bukit Timah Singapore 6.11 Runoff —

Liong et al. (2001) Upper Bukit Timah Singapore 6.11 Runoff —

Liong et al. (1991a) Upper Bukit Timah Singapore 6.11 Runoff —

Liong et al. (1991b) Upper Bukit Timah Singapore 6.11 Runoff —

Liong et al. (1995) Upper Bukit Timah Singapore 6.11 Runoff —

Liu et al. (2013) Dry run Columbus, Ohio 17.4 Runoff —

SC —

Madarang and Kang 
(2014)

Gwangju City South Korea 0.0025 Runoff —

TSS buildup rate (buildup 
function not specified)

Mahajan et al. (2014) — Cincinnati, Ohio — Runoff —

Mailhot et al. (1997) — Quebec City, 
Canada

1.81 TSS Buildup C1&C2 
(exp),Washoff C1&C2 

(exp)

Mancipe-Munoz et 
al. (2014)

Western Hills Cincinatti, Ohio 6.77 Runoff %Imperv, Width, % 
Slope, N-Imperv, 
Dstore-Imperv, N-

Perv, Dstore-Perv; If 
imperviousness 

<20%<20%: Suction, 
Conduct, InitDef

Muhaisen et al. 
(2009)

City of Granada Spain 3 Runoff —

Muschalla et al. 
(2014)

— Quebec City, 
Canada

0.153 Runoff —

Obropta et al. (2008) Teaneck Creek 
Conservatory site

New Jersey 0.1862 Runoff —

Ouyang et al. (2012) — Beijing 0.01 Runoff —

COD, TSS, TP —

Park et al. (2008) — — — Runoff —

TSS, BOD —

Park et al. (2010) Boeun (2 
catchments)

Chungbukdo, 
South Korea

0.177–0.182 Runoff —

BOD, TSS —
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Study area

Reference Catchment (s) Location Drainage area (km2km2) Indicator
a Sensitive 

parameters
b

Peterson and Wicks 
(2006)

Devil’s Icebox/
Connor’s Cave 

system

Missouri — Runoff Rough, Length, 
Width-C

17β-estradiol

Petrucci et al. (2013) Seine-Saint-Denis 
county; Orge River/ 
Seine River basins

France 207–100,000 Runoff —

Petrucci and 
Bonhomme (2014)

City of Sucy-en-
Brie

Paris, France 2.3 Runoff —

TSS —

Piro et al. (2010) Liguori Cosenza, Italy 4.136 Runoff —

TSS —

Qin et al. (2013) Guang-Ming New 
District

Shenzhen, China 0.6 Runoff Height, Vratio, Thick, 
Ksat

Sabouri et al. (2013) City of Guelph (2 
catchments); City of 

Kitchener (2 
catchments)

Ontario, Canada 0.194–0.79 (Gulph); 
0.051–0.358 (Kitchener)

Runoff —

Scholz and Kazemi 
Yazdi (2009)

Experimental site University of 
Edinburgh, 
Scotland

0.00064 Runoff —

Selvalingam et al. 
(1987)

Bukit Timah Singapore 27.4 Runoff —

Shrestha et al. (2013) Zenne River Belgium 1162 Runoff —

Slys and Stec (2012) City of Przemysl Poland 6.3288 Runoff —

Smith et al. (2005) Reesor Creek Toronto, Canada 35 Runoff —

Smith et al. (2007) City of Costa Mesa Orange County, 
California

— Runoff —

TSS, Cd, Cu, 
Zn

—

Cho and Seo (2007) Jangcheon Youngrang Lake 4.7 Runoff —

BOD, COD, 
TSS, TP

Sun et al. (2014a) CSO 027 Syracuse, New 
York

0.588 Runoff N-Imperv, N-Perv, 
Dstore-Imperv, 

Dstore-Perv; Width, 
Rough

Sun et al. (2014b) CSO 044 and CSO 
027 (2 catchments)

Syracuse, New 
York

0.1775–0.4676 Runoff Dstore-Imperv, N-
Imperv, Rough

Taeuk and Sangho 
(2014)

Milyang Dam South Korea 94.39 Runoff —

(Talei and Chua 
2012)

Kranji Reservoir Singapore 5.6 Runoff —

Talei et al. (2010) Kranji basin Singapore 5.6 Runoff —

Tan et al. (2008) — Singapore 5.6 Runoff Width, %Imperv, % 
Slope, N-Imperv

Temprano et al. 
(2006)

Santander Spain 0.56 Runoff %Imperv, % Slope, 
Width, N-Imperv, N-

Perv
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Study area

Reference Catchment (s) Location Drainage area (km2km2) Indicator
a Sensitive 

parameters
b

TSS, COD, 
TKN

Buildup C1&C2 
(exp), Washoff 
C1&C2 (exp), 

CoFract
c

Tillinghast et al. 
(2011)

House Creek Piedmont, North 
California

0.431 Runoff —

Tran and Kang 
(2013)

Gwangju City South Korea 0.0025 Runoff —

TSS —

Tsihrintzis and 
Hamid (1998)

4 catchments South Florida 0.0597–0.2357 Runoff Dstore-Imperv, 
Rough, N-Imperv, N-

Perv, Dstore-Perv, 
Suction, Conduct, 

InitDef

BOD, TSS, 
TKN, Pb

—

Tsihrintzis and Sidan 
(2008)

4 catchments South Florida 0.0597–0.2357 Runoff —

Tsihrintzis et al. 
(2007)

Vassova Lagoon North Greece 2.7 Runoff Rough

Valeo and Ho (2004) McKenzie Lake 
community

Calgary, Canada 0.2548 Runoff —

van der Sterren et al. 
(2014)

2 rainwater tank 
systems

Sydney, Australia 0.000144–0.000170 Runoff —

TP, TN, TS Buildup C1 (lin), 

Washoff C2 (exp)
c
, IC

Walsh et al. (2014) Chollas Creek San Diego, 
California

30.7 Runoff —

Wang and 
Altunkaynak (2012)

Cascina Scala Pavia, Italy 0.1135 Runoff —

Warwick et al. (1991) Bachman Branch Dallas, Texas 25.9 Runoff %Imperv

TSS, BOD, 
ORP

—

Wicke et al. (2012) 15 experimental 
boards

Christchurch, 
New Zealand

5.625×10−75.625×10−7 TSS, Zn, Cu 
Pb

Buildup C1&C2 
(exp), Buildup 
C1&C2 (Sat), 

Washoff C1(exp)

Wu et al. (2008) Shuifang Spring Chongqing, China — Runoff % Slope, Dstore-
Imperv, Dstore-Perv, 

rough, Length, Width-
C, CurveNo

Wu et al. (2013) 5 catchments Polk County, 
Iowa

0.618–2.698 Runoff —

Xiong et al. (2005) Laboratory 
experiment

University of 
Illinois Urbana 

Champaign

0.0001488 Runoff —

Xiong et al. (2005) 25 hypothetical 
catchments

— 0.046458 Runoff %Imperv, Width, 
Dstore-Imperv, 
Dstore-Perv, N-

Imperv, N-Perv, % 
Slope, Length, Rough, 
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Study area

Reference Catchment (s) Location Drainage area (km2km2) Indicator
a Sensitive 

parameters
b

MaxRate, MinRate, 
Decay

Zaghloul and Abu 
Kiefa (2001)

3 hypothetical 
catchments

— 0.0324–0.0486 Runoff —

Zaghloul and Al-
Shurbaji (1991)

Kuwait City Kuwait 0.48 Runoff Dstore-Imperv, Width, 
N-Imperv

Zhang and Shuster 
(2014)

North Appalachian 
(2 catchments)

Coshocton, Ohio 0.0047–0.0065 Runoff —

Zhao et al. (2009) Yalianfang Macau, China 0.1365 Runoff —

Zhao et al. (2008) Yalianfang Macau, China 0.1365 Runoff Des-Imperv; 
%Imperv, N-Imperv, 

Widt

Note: The parameter abbreviations are as follows:

Hydrologic parameters: Dstore-Imperv, depth of depression storage on the impervious portion of the subcathcment; Dstore-perv, depth of 
depression storage on the pervious portion of the subcathcment; %Imperv, percent of land area that is impervious; Width, characteristic width of the 
overland flow path for the sheet flow runoff; %Slope, average percent slope of the subcatchment; N-Imperv, Manning’s nn for overland flow over 
the impervios porion of the subcatchment; N-Perv, Manning’s nn for overland flow over the pervious portion of the subcatchment; %Zero-Imperv, 
percent of the impervious area with no depression storage; Area, area of subcatchment; Rough, Manning’s nn for conduit/open channel; Length, 
length of conduit/open channel; Width-C, width of conduit/open channel.

Infiltration parameters: InitSat, percent to which the LID unit’s soil layer or storage layer is initially filled with water; MaxRate, maximum 
infiltration rate on Horton infiltration; MinRate, minimum infiltration rate on Horton infiltration; Decay, decay rate constant of Horton infiltration; 
Suction, soil capillary suction in Green-Ampt infiltration; Conduct, soil saturated hydraulic conductivity in Green-Ampt infiltration; InitDef, initial 
soil moisture deficit in Green-Ampt infiltration; CurveNo, SCS curve number.

Groundwater parameters: FC, soil field capacity; UMC, unsaturated zone moisture content at start of simulation; Ps, slope of soil tension versus 
moisture content curve; Ks, slope of the logarithm of hydraulic conductivity versus moisture deficit; CET, maximum evapotranspiration rate 
assigned to the upper zone; DP, coefficient for unquantified losses.

LID parameters: Height, thickness of storage layer; Thick, thickness of soil layer/permeable pavement; Vratio, void ratio; Ksat, soil’s saturated 
hydraulic conductivity, initial concentration.

Buildup/washoff parameters: Buildup C1&C2 (exp), coefficients of buildup exponential function C1 (maximum buildup possible) and C2 (buildup 
rate constant); Buildup C1&C2 (Sat), coefficients of buildup saturation function C1 (maximum buildup possible) and C2 (half-saturation constant); 
Buildup C1&C2&C3 (Borah et al.), coefficients of buildup power function C1 (maximum buildup possible) and C2 (buildup rate constant) and C3 
(time exponent); Buildup C1 (lin), coefficient of buildup linear function C1 (maximum buildup); Washoff C1&C2 (exp), coefficients of washoff 
exponential function C1 (washoff coefficient) and C2 (washoff exponent); CoFract, fraction of co-pollution.

a
Indicator abbreviations: TSS, total suspended solids; TS, total solids; BOD, biochemical oxygen demand; COD, chemical oxygen demand; Pb, 

lead; Cu, copper; Zn, Zinc; NN, nitrate nitrogen; AN, ammonia nitrogen; TKN, total kjeldahl nitrogen; TN, total nitrogen; ON, organic nitrogen; 
ORP, ortho-phosphate; OP, organic phosphorus; SC, specific conductance.

b
Parameters that are specified by sensitivity analysis.

c
Inferred.
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