Skip to main content
. 2020 Jun 30;15(6):e0234806. doi: 10.1371/journal.pone.0234806

Table 1. Test accuracy of patch-based classification averaged over two runs (for two subsets described in Experimental setup).

Method CA CG CL CN CP CT MF SB SC BG Total Training time (s)
AlexNet 78.6 ± 4.3 80.0 ± 1.4 55.8 ± 1.4 63.4 ± 14.7 75.0 ± 7.9 35.0 ± 6.4 71.6 ± 16.6 67.9 ± 5.0 72.1 ± 2.1 90.0 ± 0.1 71.6 ± 2.4 250600
DenseNet169 67.9 ± 17.9 72.1 ± 0.7 53.6 ± 0.7 56.3 ± 13.3 60.0 ± 12.7 81.4 ± 0.7 68.7 ± 5.6 85.0 ± 5.0 68.8 ± 8.6 81.2 ± 2.0 72.9 ± 0.6 271600
InceptionV3 67.3 ± 1.5 55.0 ± 2.2 59.3 ± 6.4 67.0 ± 18.2 64.3 ± 1.4 81.4 ± 2.9 61.1 ± 11.1 55.0 ± 0.7 89.3 ± 1.3 84.7 ± 3.1 69.9 ± 1.9 309400
ResNet18 91.4 ± 3.6 67.1 ± 5.7 67.1 ± 5.7 61.9 ± 7.5 65.0 ± 0.7 69.8 ± 2.8 54.8 ± 12.8 93.6 ± 3.2 93.5 ± 1.2 93.1 ± 0.5 75.9 ± 2.6 263900
ResNet50 86.4 ± 3.5 57.9 ± 2.1 89.3 ± 3.5 61.8 ± 11.5 60.0 ± 7.1 64.5 ± 6.0 66.4 ± 19.3 79.3 ± 0.7 64.3 ± 12.4 90.4 ± 2.7 73.9 ± 2.6 276500
AlexNet BoW RF 87.3 ± 9.7 39.0 ± 0.3 88.3 ± 7.0 64.0 ± 17.0 79.0 ± 11.0 79.3 ± 10.7 55.1 ± 3.3 93.3 ± 2.0 81.3 ± 6.0 92.6 ± 1.0 76.7 ± 1.0 156
InceptionV3 BoW RF 44.3 ± 7.7 51.0 ± 13.7 60.3 ± 0.3 34.2 ± 17.8 28.0 ± 0.7 40.7 ± 11.3 13.3 ± 1.4 39.7 ± 11.7 36.3 ± 8.3 83.5 ± 2.0 44.6 ± 0.3 155
ResNet18 BoW RF 54.3 ± 2.3 39.7 ± 8.3 80.7 ± 12.7 46.2 ± 20.1 72.0 ± 3.3 61.3 ± 11.3 42.1 ± 2.9 58.7 ± 8.7 68.0 ± 4.0 91.6 ± 2.0 62.7 ± 2.4 158
AlexNet BoW SVM 92.3 ± 3.0 44.3 ± 18.3 88.7 ± 9.3 62.2 ± 22.2 83.0 ± 5.7 71.0 ± 15.0 76.1 ± 11.8 85.0 ± 4.3 76.3 ± 7.0 89.5 ± 3.6 77.6 ± 1.2 5124
InceptionV3 BoW SVM 44.3 ± 10.3 32.3 ± 5.7 57.7 ± 2.3 33.3 ± 17.6 28.3 ± 1.0 39.7 ± 6.3 13.0 ± 1.7 34.7 ± 8.0 32.0 ± 2.0 78.8 ± 2.1 40.8 ± 1.3 5153
ResNet18 BoW SVM 59.0 ± 3.7 32.3 ± 5.7 84.0 ± 11.3 54.7 ± 22.0 66.0 ± 0.0 62.0 ± 4.0 39.7 ± 1.0 59.3 ± 2.0 73.0 ± 12.3 92.9 ± 1.8 63.4 ± 0.7 5195
AlexNet FV RF 83.3 ± 10.7 54.3 ± 31.7 81.7 ± 0.3 49.3 ± 32.0 78.0 ± 12.0 73.0 ± 15.7 76.5 ± 5.8 89.3 ± 2.0 74.7 ± 6.7 88.0 ± 0.9 75.8 ± 0.4 166
InceptionV3 FV RF 40.7 ± 9.3 53.3 ± 11.3 60.3 ± 5.0 37.3 ± 21.7 27.7 ± 6.3 47.7 ± 13.0 16.5 ± 0.2 35.3 ± 13.3 32.0 ± 10.7 81.4 ± 4.1 44.6 ± 0.7 168
ResNet18 FV RF 63.7 ± 2.3 37.0 ± 5.7 78.7 ± 12.7 52.5 ± 21.1 73.3 ± 4.0 64.3 ± 5.0 61.8 ± 6.8 61.0 ± 9.7 69.3 ± 7.3 92.7 ± 2.0 66.4 ± 2.1 167
AlexNet FV SVM 93.7 ± 2.3 53.7 ± 16.3 90.7 ± 4.0 59.6 ± 15.2 77.7 ± 14.3 87.7 ± 9.7 82.8 ± 6.9 97.3 ± 1.3 81.3 ± 10.0 91.1 ± 2.5 82.4 ± 0.2 1541
InceptionV3 FV SVM 46.0 ± 14.0 45.0 ± 20.3 58.3 ± 3.0 42.2 ± 20.4 24.0 ± 5.3 43.7 ± 3.7 13.0 ± 1.1 26.7 ± 5.0 76.7 ± 3.7 41.3 ± 1.9 41.3 ± 1.9 1511
ResNet18 FV SVM 71.3 ± 11.3 35.3 ± 1.3 59.3 ± 10.3 51.6 ± 31.1 77.0 ± 8.3 76.7 ± 4.7 57.5 ± 0.5 73.3 ± 4.7 77.7 ± 9.7 94.5 ± 1.3 71.3 ± 1.5 1535