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Abstract

We evaluated whether provision and promotion of improved sanitation hardware (toilets and child 

feces management tools) reduced rotavirus and human fecal contamination of drinking water, 

child hands, and soil among rural Bangladeshi compounds enrolled in a cluster-randomized trial. 

We also measured host-associated genetic markers of ruminant and avian feces. We found 

evidence of widespread ruminant and avian fecal contamination in the compound environment; 

non-human fecal marker occurrence scaled with animal ownership. Strategies for controlling non- 

human fecal waste should be considered when designing interventions to reduce exposure to fecal 

contamination in low-income settings. Detection of a human- associated fecal marker and 

rotavirus was rare and unchanged by provision and promotion of improved sanitation to 

intervention compounds. The sanitation intervention reduced ruminant fecal contamination in 

drinking water and general (non-host specific) fecal contamination in soil but overall had limited 

effects on reducing fecal contamination in the household environment.

INTRODUCTION

Lack of sanitation access in low-income rural settings has been linked to diarrheal illness(1) 

and impaired growth in children under 5 years old.(2) Recent evidence has also connected 

unsanitary living conditions to child environmental enteropathy.(3)
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Microbial contamination on hands,(4–10) water,(7, 11–13) soil,(14, 15) and household 

floors(4) has been documented in areas with poor sanitation. However, the majority of 

studies has measured microbial contamination using fecal indicator bacteria (FIB) such as 

Escherichia coli (EC) and enterococci (ENT). FIB are found in feces of many animal hosts 

and even in natural reservoirs.(16–18) There have been far fewer studies that measure 

microbial contamination using enteric pathogens or host-associated genetic markers of fecal 

contamination.

Previous intervention trials have investigated whether provision of sanitation hardware has 

improved water quality and hand contamination as measured by FIB.(2, 19, 20) The results 

of those studies have been equivocal with most showing no change in contamination, which 

could indicate limited effects of the sanitation intervention on environmental contamination 

(although two of these trials had low rates of latrine adoption). Another possible explanation 

for the equivocal results is that the outcomes of interest (FIB) are not primarily from human 

feces but rather from animal feces.(21) In this case, proper disposal of human feces through 

latrine provision may not necessarily reduce overall FIB contamination.

This study evaluated whether provision and promotion of improved sanitation to rural 

Bangladeshi compounds reduced the incidence of a human-associated fecal genetic marker 

and rotavirus RNA in stored drinking water, in courtyard soil, and on child hands. In 

addition, we assessed the occurrence of ruminant and avian-associated fecal genetic markers 

to infer whether animals contribute to microbial contamination in the domestic environment.

Materials and Methods

Environmental sample collection was nested within the WASH Benefits trial in rural 

Bangladesh,(22) a randomized controlled trial designed to measure the effect of improved 

water quality, sanitation, hand washing, and nutritional interventions on child diarrhea and 

growth. We collected environmental samples (stored drinking water, soil, and child hand 

rinse) from a subset of compounds in the control and sanitation arms of the study; 497 

compounds (249 from the control arm and 248 from the sanitation arm) were included.

A compound consisted of 3–10 households comprised of typically blood relatives, with a 

shared courtyard. Each compound had at least one child under 5 years of age. Groups of 

adjacent compounds were assigned to clusters, and clusters were randomly assigned to the 

sanitation versus control arm within geographical strata. In sanitation arm compounds, each 

household lacking a hygienic latrine was provided with a concrete ring-based dual-pit latrine 

that had a slab, a water seal, and a superstructure for privacy. The sanitation intervention also 

included a potty for young children and a metal scoop for removal of child and animal feces 

from the environment and their safe disposal in the latrine. A behavior change program 

encouraged regular use of hardware components through weekly compound visits 

throughout the study. The sanitation hardware and behavior intervention were designed after 

a 2 year pilot test with documented high user uptake of the selected interventions.(22) The 

control arm received no hardware or behavior change intervention.
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Microbial Source Tracking (MST) Marker Validation

We conducted a MST marker validation study to choose the most sensitive and specific MST 

markers for use in the study setting. MST marker validation has been completed in a handful 

of large studies,(23–26) but local testing is recommended before implementation in new 

geographic settings.(24, 27)

Fecal samples were collected from 20 chickens, 20 ducks, 20 cows, 20 goats, and 15 humans 

in the study communities. Three or four individual fecal specimens of the same animal 

species were combined at equal masses to form a 2.0 g composite (Table S1); the result was 

five composite samples per species. The composite samples were made into fecal slurries, 

and EC and ENT were enumerated in the slurries using defined substrate assays (IDEXX, 

Westbrook, MN). For quantitative polymerase chain reaction (QPCR) analysis, 2 mL of 

slurry was filtered through membrane filters seated in disposable filter funnels. Further 

details are given in the Supporting Information.

DNA was extracted from filters using a modified MoBio (Carlsbad, CA) PowerWater RNA 

Isolation Kit.(5) For each extraction batch (10–20 samples), an extraction blank control was 

included. DNA was used as a template in QPCRs for three human-associated (BacHum,(28) 

HumM2,(26) and HF183Taqman(29)) MST markers, three ruminant-associated (BacCow,

(28) BacR,(30) and Rum2Bac(31)) MST markers, and one avian-associated (Avian 

GFD(32)) MST marker. These markers were chosen because they performed well in 

previous studies.(23, 24, 33) The sensitivity and specificity of the markers were determined 

using metrics described previously.(4, 23) The most sensitive and specific host-associated 

MST markers were selected to analyze the environmental samples (see the Supporting 

Information for more details).

Environmental Sampling and Survey

Environmental sampling occurred from November 2013 to March 2014. At each enrolled 

compound, field staff collected a stored drinking water sample, a hand rinse from one child 

under 5 years old,(7) and a soil sample from the compound’s courtyard where the youngest 

child under 5 years old had most recently played or spent time according to a compound 

resident. Respondents were asked how many ruminant and avian (e.g., chickens, ducks, and 

geese) species were owned by the compound.

Samples were preserved on ice, and processing begun within 12 h. Samples were analyzed 

for EC and fecal coliform (FC) using IDEXX defined substrate assays. Aliquots of the water 

and hand rinse samples were membrane filtered to collect nucleic acids from bacteria and 

viruses and the filters archived using the same technique that was used for the fecal slurries. 

In addition, laboratory process control blanks were processed (see the Supporting 

Information). Soil was archived in centrifuge tubes and stored at −80 °C. Filters and soil 

were tested for rotavirus RNA,(34) general Bacteroidales DNA (GenBac3),(35) and select 

host-associated MST markers. GenBac3 targets fecal bacteria in the Bacteriodetes class.(26, 

35)
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DNA and RNA were co-extracted from the water and hand rinse filters using the same 

method as for the fecal samples. DNA and RNA were co-extracted from soil samples using a 

protocol developed in this study (further described in the Supporting Information). The 

recoveries of bacterial DNA and viral RNA from soil using the extraction method are 

estimated to be 50 and 10%, respectively, while recoveries from filters were previously 

estimated to be 7 and 17%, respectively.(36)

The nucleic acid extracts from environmental samples were assessed for substances that 

inhibit QPCR using a spike and dilute method;(37) results informed the dilution level of 

extract to run during QPCR. All samples were run in duplicate. Each QPCR plate included a 

standard curve run in triplicate as well as triplicate no-template controls. Environmental 

samples were scored as positive if at least one of the two replicates amplified, even if the 

concentration was below the lower limit of quantification (LLOQ). Lowest detectable 

concentration (LDC) and LLOQ values were calculated by converting one copy (cp) per 

reaction and 10 cp per reaction (the most dilute standard that consistently amplified), 

respectively, to appropriate units (cp per 100 mL, cp per two hands, and cp per gram of dry 

soil). Linear regression using respective instrument run specific standard data was used to 

estimate molecular marker concentrations. The Supporting Information contains further 

details.

To compare the occurrence of MST markers between the control and sanitation groups, we 

used logistic regression for binary outcomes and linear regression for continuous outcomes; 

all models included indicator variables for each pair-matched cluster (minus a reference 

cluster) as well as robust standard errors to account for geographic clustering of 

observations.(22)

Results and Discussion

Quality Assurance and Control

HumM2 and Avian-GFD were not detected in no-template controls, or extraction or 

laboratory processing blanks. BacR was detected at levels below the LLOQ in two of 78 

extraction blanks (these were co-extracted with hand rinse samples). GenBac3 was detected 

in 50% of the extraction blanks and 41 of 111 laboratory processing blanks, with most of 

these below or near the LLOQ (see the Supporting Information). This cross contamination is 

likely a result of the extraordinarily high levels of GenBac3 present in the samples and has 

been observed by others.(23) The LDC and LLOQ values for the environmental samples 

were 50 and 500 cp/100 mL of water, 125 and 1250 cp/two hands, and approximately 400 

and 4000 cp/g of soil (exact value depended on moisture content), respectively.

MST Marker Validation

We evaluated MST marker sensitivity and specificity using both a binary and a quantitative 

assessment approach(23) (Figure S1 and Table S2). In brief, the binary approach assesses 

the percent of target and nontarget fecal samples where the MST marker was and was not 

detected to calculate the sensitivity and specificity, respectively; a cutoff of 80% was used to 

define good performance.(23) The quantitative approach takes into account the 
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concentration of marker detected in tested feces and requires higher marker concentrations 

in target versus nontarget feces (see the Supporting Information).

Of the three tested human-associated MST markers, HumM2 was specific via the 

quantitative assessment approach and sensitive via the binary assessment approach. The 

other human MST markers (HF183 and BacHum) were not specific by either assessment 

approach. Previous work in urban Bangladesh (Dhaka) found that none of these three 

human-associated markers was specific(4) and that an assay not tested herein (HF183 

SYBR) was sensitive and specific.(38) A large method evaluation study in the United States 

found that HF183 and HumM2 were sensitive and specific but that BacHum lacked 

specificity.(23) The different outcomes of these validation studies underscore the need for 

local validation before human-associated MST assays are applied to environmental samples.

(27)

Of the three ruminant-associated MST markers, BacR performed the best; it was the only 

marker that was sensitive and specific as determined by both assessment approaches. The 

high specificity of ruminant-associated assays has been observed in multiple geographic 

settings.(24)

In the study presented here, the avian-associated marker was specific via the quantitative 

assessment approach and sensitive via the binary approach. Tested in the United States and 

Australia, the marker performed with good sensitivity and specificity.(32, 39) In another 

study conducted in urban Bangladesh, it was neither sensitive nor specific.(4)

Given their good sensitivity and specificity in our study area (rural Bangladesh), we used 

HumM2, BacR, and avian-GFD markers to assess the presence of human, ruminant, and 

avian fecal contamination in the environmental samples, respectively.

Environmental Fecal Contamination

Across all compounds, EC and FC concentrations were on the order of 10 MPN/two hands, 

10 MPN/100 mL of stored water, and 105 MPN/g of soil. GenBac3 concentrations were on 

the order of 106 cp/two hands, 104 cp/100 mL of water, and 106 cp/g of soil (Tables S3 and 

S4).

The number of samples positive for each MST marker and rotavirus is reported in aggregate 

and by study arm (Table 1 and Table S4). HumM2 and rotavirus were present in 0–9% of 

samples from the three environmental matrices. Mattioli et al.(5) found similar rotavirus 

prevalence (3–9% of samples tested) in hand rinses and stored water in Tanzania. A previous 

study in Bangladesh found a prevalence of rotavirus in tubewell water (40%) substantially 

higher than what we found in stored drinking water (0.6%).(40) The difference may be due 

to a number of factors, including different detection limits; Ferguson et al.(40) filtered 2–8 L 

of tubewell water, while we processed 100 mL of stored water.

Percent positive also shown by sanitation arm (N = 248) vs control (N = 249). The p value 

indicates whether the presence of a marker is associated with the study arm as indicated by 

logistic regression with robust standard errors.
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bIf we exclude observations with positive extraction blanks, the total number of positive 

samples was 258 (56.7%); the difference between arms remained insignificant (p = 0.154).

BacR was prevalent in all sample matrices; 22% of water samples and more than 50% of soil 

and hand rinse samples were positive. The high prevalence of ruminant fecal contamination 

may be due to the use of cow dung for domestic fuel. Avian-GFD was present in 9% of 

water, 16% of hand rinse, and 33% of soil samples.

Ruminant-associated and avian GFD markers were more frequently detected than human 

markers in the compounds (z-test; p < 0.05 for all matrices). This suggests that ruminant and 

avian species contribute general indicators of fecal pollution such as EC, ENT, and GenBac3 

to the compound environment. The low occurrence of the human-associated marker in 

human feces relative to the occurrence of non-human-associated markers in non-human 

feces (Figure S1) confounds the direct comparison of MST marker prevalence data and may 

contribute to the reduced detection of human-associated markers relative to other markers.

(41) Although it is difficult to compare across sample types because of different units of 

measure, all MST markers assessed in this study were more prevalent in soil than in water or 

hand rinses. Results suggest ingestion of animal fecal matter is probable when children 

intentionally or accidentally consume soil.(42)

Effect of Sanitation Intervention on Marker Occurrence

Mean GenBac3 concentrations were reduced in soil (mean difference = 0.2 log unit; p = 

0.02) in sanitation compared to control compounds, suggesting the intervention reduced 

levels of general fecal contamination in compound soil, albeit modestly. GenBac3 in hand 

rinse samples (p = 0.35) and water samples (p = 0.33) was not different between sanitation 

and control compounds (Table S3). Results did not change after accounting for the low 

levels of GenBac3 contamination (see the Supporting Information).

The sanitation intervention did not significantly affect the frequency of HumM2 or rotavirus 

detection in stored water, soil, hands, or any compound sample relative to the control (Table 

1). Latrine access was high in both treatment and control compounds after the intervention; 

however, the treatment group had greater access to improved latrines (98% vs 66%) and to 

latrines with safe drainage (99% vs 73%) (Table S5). Our study documents a limited effect 

of improving and promoting basic latrines and sanitation practices on human fecal 

contamination in the household environment.

Association between Non-human MST Marker Occurrence, Sanitation Intervention, and 
Animal Ownership

Ownership of ruminant and avian species was common among compounds; 78% of 

compounds owned at least one ruminant (median of 3). BacR occurrence was twice as likely 

[odds ratio (OR) = 2.4; p < 0.001] in hand rinses from compounds that owned at least one 

ruminant than in samples from compounds without ruminants; in soil samples, BacR 

occurrence was 4 times greater among ruminant owners (OR = 4.1; p < 0.001). This analysis 

for BacR in hand rinses (as well as all other BacR hand rinse analyses) was repeated 

excluding samples co-extracted with a positive extraction blank, and the results were 

Boehm et al. Page 6

Environ Sci Technol Lett. Author manuscript; available in PMC 2020 June 30.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



unchanged. A study in Dhaka, Bangladesh, also found that owning ruminants was associated 

with the presence of BacR in households.(4)

Ninety-four percent of the households owned at least one avian species (median of 10). 

Avian-GFD marker occurrence frequency was greater in soil (OR = 1.6; p = 0.025), in hand 

rinses (OR = 1.5; p = 0.077), and in stored water (OR = 1.8; p = 0.082) from compounds that 

owned ≥10 avian species than in the same samples from compounds that owned <10.

Ruminant marker BacR was more likely detected in stored water in the control versus 

sanitation compounds (Table 1), although the proportion of compounds owning ruminants 

was not different between the two groups (χ2 test; p > 0.05). This result could be explained 

by the use of the provided sanitary scoops by the sanitation compounds to reduce the amount 

of ruminant feces in the environment that eventually entered the water supply.

Although exposure to non-human feces is considered a lower risk than exposure to the same 

amount of human feces,(43, 44) there is evidence that non-human feces can still present a 

substantial health risk. A recent systematic review reported a positive association between 

diarrheal illness and domestic animal husbandry.(45) A study in rural India reported similar 

magnitudes of increased risk of diarrhea associated with domestic animal contamination 

compared to human contamination in the household environment.(19) Non-human feces can 

harbor a number of zoonotic organisms, including bacteria (toxigenic E. coli, 

Campylobacter, and Salmonella) and protozoa (Cryptosporidium), that cause diarrheal 

illness.(46) Notably, three of the four pathogens that cause most cases of severe to moderate 

child diarrhea in low-income countries are zoonotic.(46) Biomarkers of environmental 

enteropathy have also been linked to children sleeping in the proximity of animals.(47) 

Future interventions to reduce fecal contamination in the household environment must 

consider control of animal feces, particularly in settings where domestic animal ownership is 

prevalent.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1.

Number Positive (# pos) and Percent Positive (%) for All Households (N = 497 for most) of the Human-

Associated, Ruminant-Associated, and Avian-Associated Markers, and Rotavirus RNA in Water, Hand Rinse 

(hands), and Soil Samplesa

sample type all # pos all % sanitation # pos sanitation % control # pos control % p value

soil avian 165 33.3 81 32.8 84 33.7 0.992

water avian 46 9.3 19 7.7 27 11.0 0.263

hands avian 80 16.2 40 16.2 40 16.3 0.809

soil ruminant 331 66.7 163 66.0 168 67.5 0.974

water ruminant 108 21.9 42 17.0 66 26.8 0.004

hands ruminantb 267 54.2 131 53.0 136 55.3 0.465

soil human 44 8.9 21 8.5 23 9.2 0.842

water human 0 0.0 0 0.0 0 0.0 na

hands human 12 2.4 7 2.8 5 2.0 0.158

soil rotavirus 7 1.4 5 2.0 2 0.8 0.229

water rotavirus 3 0.6 2 0.8 1 0.4 0.978

hands rotavirus 30 6.1 16 6.5 14 5.7 0.817
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