
On CDCL-Based Proof Systems
with the Ordered Decision Strategy

Nathan Mull1(B), Shuo Pang2, and Alexander Razborov1,2,3

1 Department of Computer Science, University of Chicago, Chicago, USA
{nmull,razborov}@cs.uchicago.edu

2 Department of Mathematics, University of Chicago, Chicago, USA
{spang,razborov}@math.uchicago.edu

3 Steklov Mathematical Institute, Moscow, Russia

Abstract. We prove that CDCL SAT-solvers with the ordered decision
strategy and the DECISION learning scheme are equivalent to ordered
resolution. We also prove that, by replacing this learning scheme with its
opposite, which learns the first possible non-conflict clause, they become
equivalent to general resolution. In both results, we allow nondetermin-
ism in the solver’s ability to perform unit propagation, conflict analysis,
and restarts in a way that is similar to previous works in the litera-
ture. To aid the presentation of our results, and possibly future research,
we define a model and language for CDCL-based proof systems – par-
ticularly those with nonstandard features – that allow for succinct and
precise theorem statements.

1 Introduction

Since their conception, SAT-solvers have become significantly more efficient, but
they have also become significantly more complex. Consequently, there has been
increasing interest in understanding their theoretical limitations and strengths.
Much of the recent literature has focused on the relationship between CDCL
SAT-solvers1 and the resolution proof system. Beame et al. [5] were the first
to study this relationship and many followed suit (see [3,6,7,11,13–15,17–20]
among others). In particular, Pipatsrisawat and Darwiche [18] show that, under
a few assumptions, CDCL with the nondeterministic decision strategy (i.e., when
the solver has to choose a variable to assign, it chooses both the variable and
its assigned value nondeterministically) polynomially simulates resolution. An
obvious question arises from this result: how much does the theoretical effi-
ciency of CDCL depend on nondeterminism in the decision strategy? Along
these lines, Atserias et al. [3] (concurrently with [18]) show that CDCL with
the random decision strategy (i.e., both the variable and assigned value are cho-
sen uniformly at random) simulates bounded-width resolution, under essentially
1 In this paper, we focus solely on solvers which implement conflict-driven clause

learning (CDCL). We refer to such solvers as CDCL SAT-solvers, CDCL solvers, or
just CDCL for short.

c© Springer Nature Switzerland AG 2020
L. Pulina and M. Seidl (Eds.): SAT 2020, LNCS 12178, pp. 149–165, 2020.
https://doi.org/10.1007/978-3-030-51825-7_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51825-7_12&domain=pdf
https://doi.org/10.1007/978-3-030-51825-7_12


150 N. Mull et al.

the same assumptions as those in [18]. More recently, Vinyals [20] has shown
that CDCL with the VSIDS decision strategy – among other common dynamic
decision strategies – does not simulate general resolution. We attempt to make
progress on this question by studying a simple decision strategy that we call the
ordered decision strategy. This strategy is identical to the one studied by Beame
et al. [4] in the context of DPLL without clause learning. It is defined natu-
rally: when the solver has to choose a variable to assign, it chooses the smallest
unassigned variable according to some fixed order and chooses its assigned value
nondeterministically. If unit propagation is used, the solver may assign variables
out of order; a unit clause does not necessarily correspond to the smallest unas-
signed variable. This possibility of “cutting the line” is precisely what makes
the situation more subtle and nontrivial. Thus, our motivating question is the
following:

Is there a family of contradictory CNFs {τn}∞
n=1 that possess polyno-

mial size resolution refutations but require superpolynomial time for CDCL
using the ordered decision strategy?

We also note in passing that this question may be motivated as a way of
understanding the strength of static decision strategies such as MINCE [1] and
FORCE [2].

Our Contributions. A proof system that captures any class of CDCL solvers
should be no stronger than general resolution, and if it captures solvers with
the ordered decision strategy, it should be reasonably expected to be at least as
strong as ordered resolution with respect to the same order. Our main results
show that, depending on the learning scheme employed, both of these extremes
are attained. More specifically, we prove

1. CDCL with the ordered decision strategy and a learning scheme we call
DECISION-L is equivalent to ordered resolution (Theorem1). In particular,
it does not simulate general resolution.

2. CDCL with the ordered decision strategy and a learning scheme we call
FIRST-L is equivalent to general resolution (Theorem 2).

Remark 1. As the name suggests, DECISION-L is the same as the so-called DECI-
SION learning scheme.2 FIRST-L is a learning scheme designed to directly simu-
late particular resolution steps in the presence of certain forms of nondetermin-
ism, and is similar to FirstNewCut [5]. In the full version of this paper [16], we
also prove linear width lower bounds which, combined with the second result,
create a sharp contrast with the size-width relationship for general resolution
proved by Ben-Sasson and Wigderson [8].

In these two results, the CDCL solver may arbitrarily choose the conflict/unit
clause if there are several, may elect not to do conflict analysis/unit propagations

2 The name DECISION-L better fits the naming conventions of our model.



On CDCL-Based Proof Systems with the Ordered Decision Strategy 151

at all, and may restart at any time. This substantial amount of nondeterminism
allows us to identify two proof systems that are, more or less straightforwardly,
equivalent to the corresponding CDCL variant. Determining the exact power of
these systems constitutes our main technical contribution.

There are a couple points of interpretation to emphasize here. First, the
implicit separation between CDCL solvers and general resolution in the first
result applies to actual SAT-solver implementations, albeit with heuristics that
are not usually used in practice, and could, in principle, be demonstrated by
experiment. In contrast, the second result does not say anything substantial
about actual SAT-solver implementations. But we also note that this is not
unprecedented. The correspondence between proof systems and algorithms con-
sidered here is very similar to the correspondence between regWRTI and a vari-
ant of CDCL with similar features called DLL-LEARN, both introduced by Buss
et al. [11]; nonstandard sources of nondeterminism manifest themselves naturally
when translating CDCL into a proof system. Both lower and upper bounds on
these systems are valuable; even if upper bounds do not apply directly to prac-
tice, they demonstrate, often nontrivially, what convenient features of simple
proof systems must be dropped to potentially prove separations.

Finally, in order to aid the above work – and, perhaps, even facilitate further
research in the area – we present a model and language for studying CDCL-based
proof systems. This model is not meant to be novel, and is heavily influenced
by previous work [3,13,17]. However, the primary goal of our model is to high-
light possible nonstandard sources of nondeterminism in variants of CDCL, as
opposed to creating a model completely faithful to applications. Our second
result (Theorem 2) can be written in this language as:

For any order π, CDCL(FIRST-L, π-D) is polynomially equivalent to general
resolution.

Due to space limitations, not all proofs are provided and there may be excluded
details or remarks that, though not essential, are useful in understanding possible
subtleties in the constructions and arguments. After presenting the preliminary
material in Sect. 2, we give an nearly complete account of our first result men-
tioned above in Sect. 3, and reflect very briefly on our second result in Sect. 4.
We refer the reader to the full version of this paper [16] for complete proofs and
extended discussion.

2 Preliminaries

Throughout the paper, we assume that the set of propositional variables is fixed
as V

def= {x1, . . . , xn}. A literal is either a propositional variable or its negation.
We will sometimes use the abbreviation x0 for x̄ and x1 for x (so that the Boolean
assignment x = a satisfies the literal xa). A clause is a set of literals, thought
of as their disjunction, in which no variable appears together with its negation.
For a clause C, let Var(C) denote the set of variables appearing in C. A CNF is
a set of clauses thought of as their conjunction. For a CNF τ , let Var(τ) denote



152 N. Mull et al.

the set of variables appearing in τ , i.e., the union of Var(C) for all C ∈ τ . We
denote the empty clause by 0. The width of a clause is the number of literals
in it.

The resolution proof system is a Hilbert-style proof system whose lines are
clauses and that has only one resolution rule

C ∨ xa
i D ∨ x1−a

i

C ∨ D
, a ∈ {0, 1}. (1)

We will sometimes denote the result of resolving C∨xa
i and D∨x1−a

i by Res(C∨
xa

i ,D ∨ x1−a
i ).

The size of a resolution proof Π, denoted as |Π|, is the number of lines in
it. For a CNF τ and a clause C, let SR(τ � C) denote the minimal possible size
of a resolution proof of the clause C from clauses in τ (∞ if C is not implied by
τ). Likewise, let w(τ � C) denote the minimal possible width of such a proof,
defined as the maximal width of a clause in it. For a proof Π that derives C
from τ , the clauses in τ that appear in Π are called axioms, and if C = 0 then
Π is called a refutation. Let Var(Π) denote the set of variables appearing in Π,
i.e., the union of Var(C) for C appearing in Π.

Note that the weakening rule

C

C ∨ D

is not included by default. In the full system of resolution it is admissible in
the sense that SR(τ � 0) does not change if we allow it. But this will not be
the case for some of the CDCL-based fragments we will be considering below.
Despite this, it is often convenient in analysis to consider intermediate systems
that do allow the weakening rule. We make it clear when we do this by adding
the annotation ‘+ weakening’ to the system.

Resolution Graphs. Our results depend on the careful analysis of the structure
of resolution proofs. It will, for example, be useful for us to maintain structural
properties of the proof while changing the underlying clauses and derivations.

Definition 1. For a resolution + weakening proof Π, its resolution graph,
G(Π), is an acyclic directed graph representing Π in the natural way: each clause
in Π has a distinguished node, and for each node there are incoming edges from
the nodes corresponding to the clauses from which it is derived. The set of nodes
of G(Π) is denoted by V (Π), and the clause at v ∈ V (Π) is denoted by cΠ(v).3

In the following collection of definitions, let Π be an arbitrary resolution +
weakening proof and let S be an arbitrary subset of V (Π). A vertex u is above
a vertex v in G(Π), written u > v, if there is a directed path from v to u.
We also say v is below u. Moreover, v is a parent of u if (v, u) is an edge in

3 We do not assume that cΠ is injective; we allow the same clause to appear in the
proof several times.



On CDCL-Based Proof Systems with the Ordered Decision Strategy 153

G(Π). S is independent if any two of its nodes are incomparable. The maximal
and minimal nodes of S are maxΠ S

def= {v ∈ S | ∀u ∈ S (¬(v < u))} and
minΠ S

def= {v ∈ S | ∀u ∈ S (¬(v > u))}, respectively. The upward closure and
downward closure of S in G(Π) are uclΠ(S) def= {v ∈ V (Π) | ∃w ∈ S (v ≥ w)}
and dclΠ(S) def= {v ∈ V (Π) | ∃w ∈ S (v ≤ w)}, respectively. S is parent-complete
if it contains either both parents or neither parent of each of its nodes. S is path-
complete if it contains all nodes along any path in G(Π) whose endpoints are
in S. A resolution graph is connected if |maxΠ V (Π)| = 1, i.e., it has a unique
sink. These definitions behave naturally, as demonstrated by the following useful
proposition, which is easily verified.

Proposition 1. Let S ⊆ V (Π) be a nonempty set of nodes that is both parent-
complete and path-complete. Then the induced subgraph of G(Π) on S is the
graph of a subproof in Π of maxΠ S from minΠ S.

Ordered Resolution. Fix now an order π ∈ Sn. For any literal xa
k, define

π(xa
k) def= π(k). For k ∈ [n], let Vark

π denote the k smallest variables according to
π. A clause C is k-small with respect to π if Var(C) ⊆ Vark

π.
The proof system π-ordered resolution is the subsystem of resolution defined

by imposing the following restriction on the resolution rule (1):

∀l ∈ C ∨ D (π(l) < π(xi)).

In the literature this system is usually defined differently, namely in a top-down
manner (see, e.g., [10]). It is easy to see, however, that our version is equivalent.

CDCL-Based Proof Systems. Our approach to modeling CDCL is, in a sense,
the opposite of what currently exists in the literature. Rather than attempting
to model CDCL solver implementations as closely as possible and allowing non-
determinism in various features, we rigorously describe a basic model that is
very liberal and nondeterministic and intends to approximate the union of most
conceivable features of CDCL solvers. Then models of actual interest will be
defined by their deviations from the basic model. Due to space limitations, we
present our model rather tersely (see the full version of this paper [16] for further
details).

A few more definitions are in order before proceeding. A unit clause is a clause
consisting of a single literal. An assignment is an expression of the form xi = a
where 1 ≤ i ≤ n and a ∈ {0, 1}. A restriction ρ is a set of assignments in which all
variables are pairwise distinct. Let Var(ρ) denote the set of all variables appear-
ing in ρ. Restrictions naturally act on clauses, CNFs, and resolution proofs; we
denote the result of this action by C|ρ, τ |ρ, and Π|ρ, respectively. An annotated
assignment is an expression of the form xi

∗= a where 1 ≤ i ≤ n, a ∈ {0, 1}, and
∗ ∈ {d, u}. See Definition 3 below for details about these annotations.

The underlying structure of our model is a labeled transition system whose
states represent data maintained by a CDCL solver during runtime and whose



154 N. Mull et al.

labeled transitions are possible actions taken by a solver during runtime. We
first define explicitly what constitutes a state.

Definition 2. A trail is an ordered list of annotated assignments in which all
variables are pairwise distinct. A trail acts on clauses, CNFs, and proofs just in
the same way as does the restriction obtained from it by disregarding the order
and the annotations on assignments. For a trail t and an annotated assignment
xi

∗= a such that xi does not appear in t, we denote by [t, xi
∗= a] the trail obtained

by appending xi
∗= a to its end. t[k] is the kth assignment of t. A prefix of a

trail t = [xi1
∗1= a1, . . . , xir

∗r= ar] is any trail of the form [xi1
∗1= a1, . . . , xis

∗s= as]
where 0 ≤ s ≤ r and is denoted by t[≤ s]. Λ is the empty trail.

A state is a pair (τ, t), where τ is a CNF and t is a trail. The state (τ, t) is
terminal if either C|t ≡ 1 for all C ∈ τ or τ contains 0. All other states are
nonterminal. We let Sn denote the set of all states (recall that n is reserved for
the number of variables), and let Son ⊆ Sn be the set of all nonterminal states.

We now describe the core of our (or, for that matter, any other) model, that
is, transition rules between states.

Definition 3. For a (nonterminal) state S = (τ, t) ∈ S
o
n, we define the finite

set Actions(S) and the function TransitionS : Actions(S) −→ Sn; the fact
TransitionS(A) = S′ will be usually abbreviated to S

A=⇒ S′. Those are described
as follows:

Actions(S) def= D(S)
.∪ U(S)

.∪ L(S),

where the letters D,U,L have the obvious meaning4.

– D(S) consists of all annotated assignments xi
d= a such that xi does not

appear in t and a ∈ {0, 1}. We naturally let

(τ, t) xi
d
=a=⇒ (τ, [t, xi

d= a]). (2)

– U(S) consists of all those assignments xi
u= a for which τ |t contains the unit

clause xa
i ; the transition function is given by the same formula (2) but with

a different annotation:

(τ, t) xi
u
=a=⇒ (τ, [t, xi

u= a]). (3)

– As should be expected, L(S) is the most sophisticated part of the definition
(cf. [3, Section 2.3.3]). Let t = [xi1

∗1= a1, . . . , xir

∗r= ar]. By reverse induction
on k = r + 1, . . . , 1 we define the set Ck(S) that, intuitively, is the set of
clauses that can be learned by backtracking up to the prefix t[≤ k]. We let

Cr+1(S) def= {D ∈ τ | D|t = 0}
4 Restarts will be treated as a part of the learning scheme.



On CDCL-Based Proof Systems with the Ordered Decision Strategy 155

be the set of all conflict clauses.
For 1 ≤ k ≤ r, we do the following: if the kth assignment of t is of the form
xik

d= ak, then Ck(S) def= Ck+1(S). Otherwise, it is of the form xik

u= ak, and
we build up Ck(S) by processing every clause D ∈ Ck+1(S) as follows.

• If D does not contain the literal xak
ik

then we include D into Ck(S)
unchanged.

• If D contains xak
ik

, then we resolve D with all clauses C ∈ τ such that
C|t[≤k−1] = xak

ik
and include all the results in Ck(S). The clause D itself

is not included.

To make sure that this definition is sound, we have to guarantee that C and D are
actually resolvable (that is, they do not contain any other conflicting variables
but xik

). For that we need the following observation, easily proved by reverse
induction on k, simultaneously with the definition:

Claim. D|t = 0 for every D ∈ Ck(S).
Finally, we let

C(S) def=
r⋃

k=1

Ck(S),

L(S) def=

⎧
⎪⎨

⎪⎩

{(0, Λ)} 0 ∈ C(S)
{(C, t∗) |C ∈ (C(S) \ τ) and

t∗ is a prefix of t such that C|t∗ �= 0} otherwise

(4)

and

(τ, t)
(C,t∗)
=⇒ (τ ∪ {C}, t∗).

This completes the description of the basic model.

The transition graph Γn is the directed graph on Sn defined by erasing
the information about actions; thus (S, S′) ∈ E(Γn) if and only if S′ ∈
im(TransitionS). It is easy to see (by double induction on (|τ |, n − |t|)) that
Γn is acyclic. Moreover, both the set {(S,A) | A ∈ Actions(S)} and the function
(S,A) �→ TransitionS(A) are polynomial-time5 computable. These observations
motivate the following definition.

Definition 4. Given a CNF τ , a partial run on τ from the state S to the state
T is a sequence

S = S0
A0=⇒ S1

A1=⇒ . . . SL−1
AL−1=⇒ SL = T, (5)

where Ak ∈ Actions(Sk). In other words, a partial run is a labeled path in Γn.
A successful run is a partial run from (τ, Λ) to a terminal state. A CDCL

5 That is, polynomial in the size of the state S, not in n.



156 N. Mull et al.

solver is a partial function6 μ on S
o
n such that μ(S) ∈ Actions(S) whenever μ(S)

is defined. The above remarks imply that when we repeatedly apply a CDCL solver
μ starting at any initial state (τ, Λ), it will always result in a finite sequence like
(5), with T being a terminal state (successful run) or such that μ(T ) is undefined
(failure).

Theoretical analysis usually deals with classes (i.e., sets) of individual solvers
rather than with individual implementations. We define such classes by priori-
tizing and restricting various actions.

Definition 5. A local class of CDCL solvers is described by a collection of
subsets AllowedActions(S) ⊆ Actions(S) where S ∈ S

o
n. It consists of all those

solvers μ for which μ(S) ∈ AllowedActions(S), whenever μ(S) is defined.

We will describe local classes of solvers in terms of amendments pre-
scribing what actions should be removed from the set Actions(S) to form
AllowedActions(S). The examples presented below illustrate how familiar
restrictions look in this language. Throughout their description, we fix a nonter-
minal state S = (τ, t).

ALWAYS-C If τ |t contains the empty clause, then D(S) and U(S) are removed
from Actions(S). In other words, this amendment requires the solver to per-
form conflict analysis if it can do so.

ALWAYS-U If τ |t contains a unit clause, then D(S) is removed from Actions(S).
This amendment insists on unit propagation, but leaves to nondeterminism
the choice of the unit to propagate if there are several choices. Note that as
defined, ALWAYS-U is a lower priority amendment than ALWAYS-C: if both
a conflict and a unit clause are present, the solver must do conflict analysis.

DECISION-L In the definition (4), we shrink C(S) \ τ to C1(S) \ τ .
FIRST-L In the definition (4), we shrink C(S)\τ to those clauses that are obtained

by resolving a conflict clause with one other clause in τ . Such clauses are the
first learnable clauses encountered in the process from Definition 3.

π-D, where π ∈ Sn is an order on the variables We keep in D(S) only
the two assignments xi

d= 0, xi
d= 1, where xi is the smallest variable with

respect to π that does not appear in t. Note that this amendment does not
have any effect on U(S), and our main technical contributions can be phrased
as answering under which circumstances this “loophole” can circumvent the
severe restriction placed on the set D(S).

NEVER-R In the definition (4), we require that t∗ is the longest prefix of t satis-
fying C|t∗ �= 0 (in which case C|t∗ is necessarily a unit clause). As described,
this amendment does not model nonchronological backtracking or require that
the last assignment in the trail is a decision. However, this version is easier to
state and it is not difficult to modify it to have the aforementioned properties.

WIDTH-w, where w is an integer In the definition (4), we keep in C(S) \ C

only clauses of width ≤ w. Note that this amendment still allows us to use
wide clauses as intermediate results within a single clauses learning step.

6 It is possible for Actions(S) to be empty.



On CDCL-Based Proof Systems with the Ordered Decision Strategy 157

Thus, our preferred way to specify local classes of solvers and the correspond-
ing proof systems is by listing one or more amendments, with the convention that
their effect is cumulative: an action is removed from Actions(S) if and only if it
should be removed according to at least one of the amendments present. More
formally,

Definition 6. For a finite set A1, . . . ,Ar of polynomial-time computable7

amendments, we let CDCL(A1, . . . ,Ar) be the (possibly incomplete) proof sys-
tem whose proofs are those successful runs in which none of the actions Ai is
affected by any of the amendments A1, . . . ,Ar.

Using this language, the main result from [18] can be very roughly summa-
rized as

CDCL(DECISION-L, ALWAYS-C, ALWAYS-U) is polynomially equivalent to
general resolution.

The open question asked in [3, Section 2.3.4] can be reasonably interpreted as
whether CDCL(ALWAYS-C, ALWAYS-U, WIDTH-w) is as powerful as width-w
resolution, perhaps with some gap between the two width constraints. Our width
lower bound mentioned in the introduction can be cast in this language as

For any fixed order π on the variables and every ε > 0 there exist
contradictory CNFs τn with w(τn � 0) ≤ O(1) not provable in CDCL
(π-D,WIDTH-(1 − ε)n).

Finally, we would like to mention the currently open question about the exact
strength of CDCL without restarts. This is one of the most interesting open
questions in the area and has been considered heavily in the literature (see
[6,9,11,12,15,19] among others). It may be abstracted as

Does CDCL(ALWAYS-C, ALWAYS-U, NEVER-R) (or at least CDCL(NEVER-
R)) simulate general resolution?

For both open questions mentioned above, we have taken the liberty of removing
those amendments that do not appear immediately relevant.

At this point, since we discuss our main results in the introduction, we for-
mulate them here more or less matter-of-factly.

Theorem 1. For any fixed order π on the variables, the system CDCL
(DECISION-L, π-D) is polynomially equivalent to π-ordered resolution.

Theorem 2. For any fixed order π on the variables, the system CDCL
(FIRST-L, π-D) is polynomially equivalent to general resolution.

7 An amendment is polynomial-time computable if determining whether an action
in Action(S) is allowed by the amendment is polynomial-time checkable, given the
state S.



158 N. Mull et al.

3 CDCL(DECISION-L, π-D) =p π-Ordered Resolution

The proof of Theorem 1 is divided into two parts: we prove that each system is
equivalent to an intermediate system we call π-half-ordered resolution.

Recall that, for the system π-ordered resolution, the variable that is resolved
on must be π-maximal in each antecedent. In π-half-ordered resolution, this is
required of at least one of the antecedents. That is, π-half-ordered resolution is
the subsystem of resolution defined by imposing the restriction

(∀l ∈ C (π(l) < π(xi))) ∨ (∀l ∈ D (π(l) < π(xi)))

on the resolution rule (1). Clearly, π-half-ordered resolution simulates π-ordered
resolution but, somewhat surprisingly, it doesn’t have any additional power
over it.

Theorem 3. For any fixed order π on the variables, π-ordered resolution is
polynomially equivalent to π-half-ordered resolution.

We prove Theorem 3 by applying a sequence of transformations to a π-half-
ordered refutation that, with the aid of the following definition, can be shown
to make it incrementally closer to a π-ordered resolution refutation.

Definition 7. A resolution refutation is π-ordered up to k if it satisfies the
property that if any two clauses are resolved on a variable xi ∈ Vark

π, then all
resolution steps above it are on variables in Varπ(i)−1

π .

The π-ordered refutations are then precisely those that are π-ordered up to
n − 1. Now in order for these transformations not to blow up the size of the
refutation, we need to carefully keep track of its structure throughout the process.
As such, the proof of Theorem 3 depends heavily on resolution graphs and related
definitions introduced in Sect. 2.

Proof. Let Π be a π-half-ordered resolution refutation of τ . Without loss of
generality, assume π = id; otherwise, rename variables. We will construct by
induction on k (satisfying 0 ≤ k ≤ n − 1) a π-half-ordered resolution refutation
Πk of τ which is ordered up to k. For the base case, let Π0

def= Π. Suppose
now Πk has been constructed. Without loss of generality, assume that Πk is
connected; otherwise, take the subrefutation below any occurrence of 0.

Consider the set of nodes whose clauses are k-small. Note that this set
is parent-complete. We claim that it is also upward-closed and, hence, path-
complete. Indeed, let u be a parent of v and assume that cΠk

(u) is k-small. Then,
since we disallow weakenings, cΠk

(v) is obtained by resolving on a variable xi ∈
Vark

π. Since Πk is ordered up to k, it follows that Var(cΠk
(v)) ⊆ Vari−1

π ⊆ Vark
π;

otherwise, some variable in cΠk
(v) would have remained unresolved on a path

connecting v to the sink (here we use the fact that Πk is connected). Hence
cΠk

(v) is also k-small.



On CDCL-Based Proof Systems with the Ordered Decision Strategy 159

By Proposition 1, this set defines a subrefutation of the clauses labeling the
independent set

Lk
def= minΠk

{v | cΠk
(v) is k -small}. (6)

Furthermore, Lk splits Πk into two parts, i.e., V (Πk) = uclΠk
(Lk) ∪

dclΠk
(Lk) and Lk = uclΠk

(Lk) ∩ dclΠk
(Lk). Let D denote the subproof on

dclΠk
(Lk) and let U denote the subrefutation on uclΠk

(Lk). Note that D is
comprised of all nodes in Π that are labeled by a clause that is not k-small or
belong to Lk, and U is comprised of all nodes labeled by a k-small clause. In
particular, all axioms are in D, all resolutions in U are on the variables in Vark

π,
and, since Πk is ordered up to k, all resolutions in D are on the variables not in
Vark

π. Define

M
def= minD{w | cΠk

(w) is the result of resolving two clauses on xk+1}. (7)

If M is empty, Πk+1
def= Πk. Otherwise, suppose M = {w1, . . . , ws} and

define Ai
def= uclD({wi}). We will eliminate all resolutions on xk+1 in D by the

following process, during which the set of nodes stays the same, while edges
and clause-labeling function possibly change. More precisely, we update D in
s rounds, defining a sequence of π-half-ordered resolution + weakening proofs
D1,D2, . . . , Ds. Initially D0

def= D. Fix now an index i. Let ci−1 denote the
clause-labeling cDi−1 . To define the transformation of Di−1 to Di, we need the
following structural properties of Di−1, which are easily verified by induction
simultaneously with the definition.

Claim. In the following properties, let u and v be arbitrary vertices in V (D).

a. If v is not above u in D, then the same is true in Di−1;
b. the clause ci−1(v) is equal to cD(v) or cD(v) ∨ xk+1 or cD(v) ∨ xk+1;
c. if v /∈ ⋃i−1

j=1 Aj then ci−1(v) = cD(v) and, moreover, this clause is obtained in
Di−1 with the same resolution as in D;

d. Di−1 is a π-half-ordered resolution + weakening proof.

Let us construct Di from Di−1. By property (c) and the fact that M is inde-
pendent, the resolution step at wi is unchanged from D to Di−1. Let w′ and w′′

denote the parents of wi in D and let cD(w′) = B∨xk+1 and cD(w′′) = C∨xk+1.
Since Πk is π-half-ordered, either B or C is k-small. Assume without loss of gen-
erality that B is k-small.

Recall that there is no resolution in D on variables in Vark
π. Thus, for all

v ∈ Ai, it follows that B is a subclause of cD(v), and by property (b), we have
the following crucial property:

For all v ∈ Ai, B is a subclause of ci−1(v). (8)

By property (a), Ai remains upward closed in Di−1. Accordingly, as the first
step, for any v �∈ Ai we set ci(v):=ci−1(v) and we leave its incoming edges
unchanged.



160 N. Mull et al.

Next, we update vertices v ∈ Ai in an arbitrary D-topological order main-
taining the property that ci(v) = ci−1(v) or ci(v) = ci−1(v)∨xk+1. In particular,
ci(v) = ci−1(v) whenever ci−1(v) contains the variable xk+1.

First we set ci(wi):=ci−1(wi) ∨ xk+1 and replace the incoming edges by a
weakening edge from w′′. This is possible since ci−1(wi) = cD(wi) by property
(c) and, hence, does not contain xk+1 by virtue of being in M .

For v ∈ Ai \ {wi}, we proceed as follows.

1. If xk+1 ∈ ci−1(v), keep the clause but replace incoming edges with a weaken-
ing edge (w′, v). This is well-defined by (8). Also, since w′ < w < v in D, we
maintain property (a).

2. If ci−1(v) = Res(ci−1(u), ci−1(w)) on xk+1 where xk+1 ∈ ci−1(u), set
ci(v):=ci−1(v) ∨ xk+1 – equivalently, ci−1(v) ∨ ci(u) – and replace incoming
edges by a weakening edge (u, v).

3. If ci−1(v) is weakened from ci−1(u) and xk+1 �∈ ci−1(v), set ci(v):=ci−1(v) ∨
ci(u). In other words, we append the literal xk+1 to ci(v) if and only if this
was previously done for ci(u).

4. Otherwise, xk+1 /∈ ci−1(v) and ci−1(v) = Res(ci−1(u), ci−1(w)) on some x�

where 	 > k + 1. In particular, xk+1 /∈ Var(ci−1(u)) ∪ Var(ci−1(w)). Set
ci(v):=Res(ci(u), ci(w)) that is, like in the previous item, we append xk+1 if
and only if it was previously done for either ci(v) or ci(w). Since 	 > k + 1,
this step remains π-half-ordered.

This completes our description of Di. It is straightforward to verify that Ds

is a π-half-ordered resolution + weakening proof without resolutions on xk+1.
To finally construct Πk+1, we reconnect Ds to U along Lk and then remove

any weakenings introduced in Ds. This may require adding new nodes, as it
may be the case that cs(v) �= cD(v) for some v ∈ Lk. But, in this case, it is
straightforward to verify, using (8), that there is a vertex w ∈ dclD(M) \ {M}
such that cD(v) = Res(cs(w), cs(v)) on xk+1, and this resolution is half-ordered.
In fact, w can be taken to be a parent in D of some nodes in M . Thus, when
necessary we add to Ds a new node ṽ labeled by Res(cs(w), cs(v)) and add the
edges (v, ṽ) and (w, ṽ).

Denote by Π̃k+1 the result of connecting Ds and U along the vertices in
Lk and this newly added collection of vertices. Since neither Ds nor U contain
resolutions on xk+1 except for those in the derivations of the clauses just added
to Ds, it follows that Π̃k+1 is a π-half-ordered resolution + weakening refutation
that is ordered up to k +1. Let Πk+1 be obtained by contracting all weakenings.

It only remains to analyze its size (note that a priori it can be doubled at
every step, which is unacceptable). Since

|Πk+1| ≤ |Πk| + |Lk|, (9)

we only have to control |Lk|. For that we will keep track of the invariant
|dclΠk

(Lk)|; more precisely, we claim that

|dclΠk+1(Lk+1)| ≤ |dclΠk
(Lk)|. (10)



On CDCL-Based Proof Systems with the Ordered Decision Strategy 161

Let us prove this by constructing an injection from dclΠk+1(Lk+1) to dclΠk
(Lk);

we will utilize the notation from above.
First note that the resolution + weakening refutation Π̃k+1 and its

weakening-free contraction Πk+1 can be related as follows. For every node
v ∈ V (Πk+1) there exists a node v∗ ∈ V (Π̃k+1) with c

˜Πk+1
(v∗) ⊇ cΠk+1(v)

which is minimal among those contracting to v. If v is an axiom node of Πk+1

then so is v∗ in Π̃k+1. Otherwise, if u and w are the two parents of v, and if u′ and
w′ are the corresponding parents of v∗ (v∗ may not be obtained by weakening
due to the minimality assumption), then c

˜Πk+1
(u∗) is a subclause of c

˜Πk+1
(u′)

and c
˜Πk+1

(w∗) is a subclause of c
˜Πk+1

(w′). We claim that (v �→ v∗) |dclΠk+1 (Lk+1)

(which is injective by definition) is the desired injection. We have to check that
its image is contained in dclΠk

(Lk).
Fix v ∈ dclΠk+1(Lk+1). Then by definition of Lk, either v is an axiom or

both its parents are not (k + 1)-small. By the above mentioned facts about the
contraction Π̃k+1 → Πk+1, this property is inherited by v∗. In particular, v∗ �∈
{w̃ | w ∈ Lk} as all nodes in this set have at least one (k + 1)-small parent due
to half-orderedness. Finally, since the corresponding clauses in D and Ds differ
only in the variable xk+1, v∗ cannot be in U , for the same reason (recall that all
axioms are in D). Hence v∗ ∈ V (Ds) = V (D) = dclΠk

(Lk).
Having thus proved (10), we conclude by the obvious induction that |Lk| ≤

|dclΠk
(Lk)| ≤ |dclΠ0(L0)| ≤ |Π|. Then (9) implies |Πn−1| ≤ n|Π|, as desired.

At last, we must show the equivalence holds for the corresponding CDCL
system. We provide a sketch of the proof.

Theorem 4. For any fixed order π on the variables, CDCL(π-D,DECISION-L)
is polynomially equivalent to π-half-ordered resolution.

Proof. As above, assume π = id. The fact that CDCL(π-D,DECISION-L) poly-
nomially simulates π-half ordered resolution is almost trivial. A π-half-ordered
resolution step deriving Res(C ∨ xi,D ∨ xi) can be directly simulated by con-
structing a trail t that falsifies C ∨ D and contains a single unit propagation on
xi. This is possible since C or D is i-small. Then C ∨ D can be easily learned
using t.

The other direction is just slightly more involved. It suffices to show that for

a learning step (τ, t)
(D,t∗)
=⇒ (τ ∪{D}, t∗), there is a short π-half-ordered resolution

proof of D from τ . Any learned clause can be thought of naturally as the result
of a sequence of resolutions; there are clauses C1, . . . , Ck+1 in τ and variables
xi1 , . . . , xik

assigned by unit propagation in t from which we can inductively
define

C ′
k+1

def= Ck+1 and C ′
j
def= Res(Cj , C

′
j+1)

where Cj and C ′
j+1 are resolvable on xij

and D = C ′
1. These resolutions may

not all be π-half-ordered, but they can be reordered and duplicated to derive
the same clause while maintaining π-half-orderedness. Formally, we define by



162 N. Mull et al.

double induction a different collection of derivable clause: for γ and j in [k + 1]
satisfying j < γ, Cγ,γ

def= Cγ and

Cγ,j
def=

{
Res(Cj,1, Cγ,j+1) Cj,1 and Cγ,j+1 are resolvable on xij

Cγ,j+1 otherwise.

Because of π-D, the only literals appearing in Cj that are potentially larger than
xij

(with respect to π) are the other variables assigned by unit propagation in t
and resolved on in the derivation of C ′

1. One can show that the clause Cj,1 is the
result of “washing out” these other literals so that xij

appears maximally. Since
all resolutions on are clauses of this form, they are all π-half-ordered. And for
the learning scheme DECISION-L, the learned clause C ′

1 contains only decision
variables in t, so this reorganizing of resolutions does not affect the final derived
clause; it can be verified that Ck+1,1 = C ′

1 = D. In total, this derivation of
Ck+1,1 (and, hence, D) is π-half ordered and has at most n2 resolutions.

4 CDCL(FIRST-L, π-D) =p General Resolution

This result is by far the most technical. It would have been impossible to give
a satisfying treatment in the space available, but in the interest of providing
some idea of its formal aspects, we briefly discuss our approach. As in the pre-
vious section, the proof is divided into two parts: we prove that each system is
equivalent to an intermediate system we call π-trail resolution.

Definition 8. Fix an order π on the variables. The proof system π-trail resolu-
tion is defined as follows. Its lines are either clauses or trails, where the empty
trail is an axiom. It has the following rules of inference:

t

[t, xi
d= a]

, (Decision rule)

where xi is the π-smallest index such that xi does not appear in t and a ∈ {0, 1}
is arbitrary;

t C

[t, xi
u= a]

, (Unit propagation rule)

where C|t = xa
i ;

C ∨ xa
i D ∨ x1−a

i t

C ∨ D
, (Learning rule)

where (C ∨ D)|t = 0, (xi
∗= a) ∈ t and all other variables of C appear before xi

in t.



On CDCL-Based Proof Systems with the Ordered Decision Strategy 163

Without the unit propagation rule, this is just π-half-ordered resolution,
modulo additional traffic in trails. It follows almost directly from its definition
that π-trail resolution is polynomially equivalent to CDCL(FIRST-L, π-D) (and
even CDCL(π-D)). Our main technical contribution is proving the following.

Theorem 5. For any fixed order π on the variables, π-trail resolution polyno-
mially simulates general resolution.

The key observation is that, due to the unit propagation rule, π-trail resolu-
tion becomes significantly more powerful when the underlying formula has many
unit clauses. Thus, we design the simulation algorithm to output a derivation of
all unit clauses appearing in the given refutation Π and then recursively apply it
to gain access to more unit clauses throughout the procedure. At first glance, it
might seem reasonable to recursively apply the simulation algorithm to various
restrictions of Π, but restriction as an operation has two flaws with regards to
our objectives. First, the results of different restrictions on proofs often overlap;
for example, when viewing restriction as an operation on resolution graphs, the
graphs of Π|xi=0 and Π|xi=1 will likely share vertices from G(Π). This leads to
an exponential blow-up in the size of the output if one is not careful. Second,
restrictions may collapse parts of the Π; for example, if ρ falsifies an axiom of
Π, then Π|ρ is the trivial refutation and it is impossible to extract anything
from it by recursively applying our simulation algorithm.

To make this approach feasible, we introduce a new operator, which may be
of independent interest, called variable deletion; it is an analogue of restriction
for sets of variables as opposed to sets of variable assignments. This operator has
the property that it always yields a nontrivial refutation (for proper subsets of
variables), and its size and structure are highly regulated by the size and struc-
ture of the input refutation. This allows for a surgery-like process; we simulate
small local pieces of the refutation and then stitch them together into a new
global refutation. For complete details, see the full version of this paper [16].

5 Conclusion

Our work continues the line of research aimed at better understanding theo-
retical limitations of CDCL solvers. We have focused on the impact of decision
strategies, and we have considered the simple strategy that always chooses the
first available variable under a fixed ordering. We have shown that, somewhat
surprisingly, the power of this model heavily depends on the learning scheme
employed and may vary from ordered resolution to general resolution.

In practice, the fact that CDCL(DECISION-L, π-D,ALWAYS-C,ALWAYS-U)
is not as powerful as resolution supports the observation that CDCL solvers
with the ordered decision strategy are often less efficient than those with more
powerful decision strategies like VSIDS. But, although DECISION-L is an assert-
ing learning strategy, most solvers use more efficient asserting strategies like
1-UIP. A natural open question then is what can be proved if DECISION-L
is replaced with some other amendment modeling a different, possibly more



164 N. Mull et al.

practical asserting learning scheme? Furthermore, what is the exact strength of
CDCL(π-D,ALWAYS-C,ALWAYS-U)?

References

1. Aloul, F.A., Markov, I.L., Sakallah, K.A.: MINCE: a static global variable-ordering
for SAT and BDD. In: International Workshop on Logic and Synthesis, pp. 1167–
1172 (2001)

2. Aloul, F.A., Markov, I.L., Sakallah, K.A.: FORCE: a fast & easy-to-implement
variable-ordering heuristic. In: Proceedings of the 13th ACM Great Lakes Sympo-
sium on VLSI, pp. 116–119. ACM (2003)

3. Atserias, A., Fichte, J.K., Thurley, M.: Clause-learning algorithms with many
restarts and bounded-width resolution. J. Artif. Intell. Res. 40, 353–373 (2011)

4. Beame, P., Karp, R., Pitassi, T., Saks, M.: The efficiency of resolution and Davis-
Putnam procedures. SIAM J. Comput. 31(4), 1048–1075 (2002)

5. Beame, P., Kautz, H., Sabharwal, A.: Towards understanding and harnessing the
potential of clause learning. J. Artif. Intell. Res. 22, 319–351 (2004)

6. Beame, P., Sabharwal, A.: Non-restarting SAT solvers with simple preprocessing
can efficiently simulate resolution. In: Proceedings of the Twenty-Eighth AAAI
Conference on Artificial Intelligence, pp. 2608–2615 (2014)

7. Ben-Sasson, E., Johannsen, J.: Lower bounds for width-restricted clause learning
on small width formulas. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS,
vol. 6175, pp. 16–29. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14186-7 4

8. Ben-Sasson, E., Wigderson, A.: Short proofs are narrow - resolution made simple.
J. ACM 48(2), 149–169 (2001)

9. Bonet, M.L., Buss, S., Johannsen, J.: Improved separations of regular resolution
from clause learning proof systems. J. Artif. Intell. Res. 49, 669–703 (2014)

10. Bonet, M.L., Esteban, J.L., Galesi, N., Johannsen, J.: On the relative complexity of
resolution refinements and cutting planes proof systems. SIAM J. Comput. 30(5),
1462–1484 (2000)

11. Buss, S.R., Hoffmann, J., Johannsen, J.: Resolution trees with lemmas: resolu-
tion refinements that characterize DLL-algorithms with clause learning. Logical
Methods Comput. Sci. 4(4), 1–28 (2008)

12. Buss, S.R., Ko�lodziejczyk, L.A.: Small stone in pool. Logical Methods Comput.
Sci. 10(2), 1–22 (2014). https://lmcs.episciences.org/852/pdf

13. Elffers, J., Johannsen, J., Lauria, M., Magnard, T., Nordström, J., Vinyals, M.:
Trade-offs between time and memory in a tighter model of CDCL SAT solvers.
In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 160–176.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40970-2 11

14. Hertel, P., Bacchus, F., Pitassi, T., Van Gelder, A.: Clause learning can effectively
p-simulate general propositional resolution. In: Proceedings of the Twenty-Third
AAAI Conference on Artificial Intelligence, pp. 283–290 (2008)

15. Li, C., Fleming, N., Vinyals, M., Pitassi, T., Ganesh, V.: Towards a complexity-
theoretic understanding of restarts in SAT solvers. In: Pulina, L., Seidl, M. (eds.)
Theory and Applications of Satisfiability Testing - SAT 2020. LNCS, vol. 12178,
pp. 233–249. Springer, Cham (2020)

16. Mull, N., Pang, S., Razborov, A.: On CDCL-based proof systems with the ordered
decision strategy. arXiv preprint arXiv:1909.04135 (2019)

https://doi.org/10.1007/978-3-642-14186-7_4
https://doi.org/10.1007/978-3-642-14186-7_4
https://lmcs.episciences.org/852/pdf
https://doi.org/10.1007/978-3-319-40970-2_11
http://arxiv.org/abs/1909.04135


On CDCL-Based Proof Systems with the Ordered Decision Strategy 165

17. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories:
from an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T ). J.
ACM 53(6), 937–977 (2006)

18. Pipatsrisawat, K., Darwiche, A.: On the power of clause-learning SAT solvers as
resolution engines. Artif. Intell. 175(2), 512–525 (2011)

19. Van Gelder, A.: Pool resolution and its relation to regular resolution and DPLL
with clause learning. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS
(LNAI), vol. 3835, pp. 580–594. Springer, Heidelberg (2005). https://doi.org/10.
1007/11591191 40

20. Vinyals, M.: Hard examples for common variable decision heuristics. In: Proceed-
ings of the 34th AAAI Conference on Artificial Intelligence (AAAI 2020) (2020)

https://doi.org/10.1007/11591191_40
https://doi.org/10.1007/11591191_40

	On CDCL-Based Proof Systems with the Ordered Decision Strategy
	1 Introduction
	2 Preliminaries
	3 CDCL(DECISION-L, -D)=p-Ordered Resolution
	4 CDCL(FIRST-L, -D)=p General Resolution
	5 Conclusion
	References




