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Abstract

Advanced cardiac modeling studies rely on the ability to generate and functionalize personalized 

in silico models from tomographic multi-label image stacks. Eventually, this is used for building 

virtual cohorts that capture the variability in size, shape, and morphology of individual hearts. 

Typical modeling workflows involve a multitude of interactive mesh manipulation steps, rendering 

model generation expensive. Meshtool is software specifically designed for automating all 

complex mesh manipulation tasks emerging in such workflows by implementing algorithms for 

tasks describable as operations on label fields and/or geometric features. We illustrate how 

Meshtool increases efficiency and reduces costs by offering an automatable, high performance 

mesh manipulation toolbox.
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1 Motivation and significance

The development of Meshtool was motivated by demands of modern cardiac modeling 

applications. These pose a set of specific challenges on meshing technology for both the 

representation of cardiac anatomy as well as for the functionalization of the biophysical 

models used to describe cardiac behavior. The workflows for generating advanced in silico 
models consist of numerous processing stages, turning medical images into discrete mesh-

based representations suitable for solving physical problems, see Fig. 1. Generation of 

meshes from segmented medical images has been identified as a key enabling technology in 

the chain of workflows. Many advanced software solutions, like Tetgen [1], CGAL [2], or 

ANSYS® Meshing,1 have been under constant development in both industry and academia. 

However, these were mostly geared towards regular engineering applications where the 

geometry of objects is represented by CAD-constructed surfaces, and to a much lesser 

extent, towards image-based meshing application where geometric and anatomical 

information is based on volumetric data encoded in segmented multi-label image stacks [3].

An additional specific demand in cardiac modeling stems from the multiphysics nature of 

cardiac function. Depending on which aspect of cardiac function is under investigation, be it 

electro-physiology, mechanics, hemodynamics or perfusion, the requirements for spatial 

discretization vary markedly with resolutions ranging from 1 mm to 100 μm. Therefore, in 

an initial meshing step, the spatial resolution shall be chosen to allow a sufficiently accurate 

– within the limits of uncertainty of segmentation of clinical input data – and smooth 

representation of the organ. Label fields, which encode the membership to specific cardiac 

structures, will then be transferred onto the mesh [4]. Any physics or problem-specific 

adjustments shall be carried out subsequently, on demand when needed, in a fully automated 

fashion to meet the requirements of the physical problem being solved.

For the sake of model functionalization any current cardiac multiphysics modeling study 

relies on the ability to extract sub-meshes, including corresponding label fields as well as 

scalar, vector-valued or tensor-valued data defined on a given sub-mesh, carry out operations 

on extracted sub-meshes, and reinsert sub-meshes and manipulated data back into a 

reference mesh.
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A recently emerging trend is the use of cardiac models in industrial application such as the 

design of cardiac devices for the optimization of device-based therapies. Such applications, 

labeled as medical device development tools (MDDT) by regulatory bodies, require the 

fusion of descriptions of device geometries, typically defined as CAD surface models, with 

volumetric meshes of heart and torso. The stimulation electrodes of cardiac devices such as 

pacemakers are implanted in specific domains of the heart, usually in the blood-filled 

cavities, in vessels or subcutaneously within the torso. Considering the cost of the entire 

model generation workflow – from multi-label image data sets to multidomain meshes – the 

ability to integrate CAD-based device descriptions with pre-existing meshes of the heart 

without re-meshing all domains is highly advantageous.

Moreover, for capturing biological variability, current studies attempt to build virtual cohorts 
consisting of larger number of models. Modeling applications of this high throughput 

critically depend on a high degree of automation, as the use of interactive meshing 

environments is too tedious, time-consuming and expensive in terms of man power needed. 

Departing from a well defined image-based geometric description of a heart where all 

anatomical structures are classified in the form of label fields, a baseline mesh at a given 

target resolution can be generated without any need for operator interaction in a fully 

automated fashion. As such, all further downstream manipulations of the baseline mesh, 

such as resolution adjustments or the integration of physics-specific data fields, should also 

be automated and controlled abstractly based on label field operations.

The software Meshtool was developed to meet these specific demands of cardiac modeling 

applications. It offers all capabilities needed in pre-processing workflows – such as uniform 

mesh refinement, mesh re-sampling, mesh and data extraction and insertion, local re-

meshing for geometry integration and the ability to be fully automated – with solid 

performance characteristics and robust problem size scaling. This renders it a versatile tool 

for automating anatomical model building and functionalization workflows [4]. Having this 

ability is instrumental in currently emerging in silico modeling studies where a large number 

of models [5,6] – on the order of tens to hundreds – have to be constructed and 

functionalized by fitting model predictions to observed data [7,8]. Being able to generate 

large virtual cohorts is poised to leverage in silico modeling as a medical device 

development tool (MDDT) [9] and render advanced clinical application feasible where 

modeling software is used as a medical device (SaMD) [5,6]. Meshtool has been adopted 

quickly within our collaborative network which led to a number of publication over a broad 

range of applications [9–11].

2 Software description

2.1 Software architecture

Meshtool is written in C++(2011 standard support required). It has no external library 

dependencies, which leads to a very simple compilation process. The only required third-

party code is the open-source tetrahedral mesh generation library Tetgen, which is used for 

partial re-meshing. The Tetgen library has been integrated into the Meshtool repository and 

its compilation process. This streamlines the overall compilation process, simplifies code 

distribution and improves reproducibility of the software builds.
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The base of the software is formed by a set of structures and classes that hold the 

computational data. Contiguous blocks of data are stored with the templated mt_vector 

class, which is designed similarly to the std::vector container of the standard C++library. 

Most higher-level containers, such as mesh, graph and mapping classes, use mt_vector for 

storing internal data. Accelerated data lookup is either implemented by the C++standard 

library std::set and std::map containers, or, when ordering is not relevant, by custom 

hashmap::unordered_set and hashmap::unordered_map implementations.

The core of the software is formed by the different utility classes and functions. Essentially, 

these algorithms represent the main building blocks from which the Meshtool modes are 

built. Algorithms that hold a state through multiple computation steps are mostly 

implemented as classes. Examples for such algorithms are the edge splitting and collapsing 

algorithms in mt_edge_collapser and mt_edge_splitter, which hold the edge list 

and other state variables between multiple re-sampling operations. On the other hand, state-

less algorithms are implemented as functions. Many algorithms use graphs derived from the 

mesh connectivity for mesh traversal.

The top layer is formed by the different Meshtool modes, each implemented in an individual 

source file. Each mode is designed as a self-contained unit, that could also be an own 

executable. In fact, some modes that are deemed too specific and not general enough to be 

part of Meshtool, are compiled as separate executables in the standalones subdirectory.

Fig. 2 gives an example of a Meshtool mode architecture, by depicting the flowchart, with 

the main data-structures and functions, used for surface extractions.

2.2 User interface

Meshtool is operated through a command-line interface (CLI) and can be used in a 

completely automated manner. Still, it provides the user with progress outputs and time-to 

completion estimates when used interactively.

In order to improve usability, the CLI interface is structured similarly to those of the git 
version control system or the Linux package management tool apt: The user calls Meshtool 

with the desired mode as the first program parameter, before setting mode-specific options 

with the subsequent parameters. As such, the set of options the user is exposed to is reduced 

to only those relevant to the selected mode.

Many modes consist of two words, usually a verb and an object, for example extract 

surface or interpolate nodedata. If the user specifies only the first word of a two 

word mode, Meshtool prints all modes starting with the first word. Calling a Meshtool mode 

with none or insufficient options, displays the mode-specific options in a help message. This 

design allows the user to briefly query the availability and usage of different modes without 

having to memorize help-specific options. Still, Meshtool also offers a help mode that lists 

all available modes along with a short description. The most important modes are listed in 

Table 1.
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2.3 Software functionalities

The Meshtool utility consists of an agglomeration of currently over forty modes, tuned for 

optimal inter-operability and automatibility. Rather than presenting all of them, we restrict 

ourselves to a small subset that we deem representative. We want to emphasize, that the goal 

of Meshtool is to provide users with a wide variety of mesh manipulation tools, that can be 

combined and automated in a consistent manner. We do not claim that any single tool 

represents the cutting edge in its category and therefore refrain from direct comparisons to 

the state-of-the-art.

Set operation based surface extraction—In cardiac electrophysiology mesh 

generation, landmark surfaces are defined as the set intersection of specific anatomical 

regions. For example, the endocardial surface can be extracted by computing the set 

intersection of the ventricular tissue and the enclosed blood pool. In an automated mesh 

generation workflow the labeling of specific regions is standardized to facilitate the 

automated extraction of all landmark surfaces of interest such as epicardium, endocardium, 

apex or basal plane.

The Meshtool mesh extraction mode allows to compute set union, intersection and 

difference on surfaces. A surface can be defined by the user in two ways: Either by a set of 

region labels, which define a submesh boundary surface, or directly with a surface file.

The surface resulting from the set operation can be further restricted to areas accessible via 

edge traversal from chosen seed locations. Edge traversal can be further configured through 

options such as traversal distance or the definition of a critical curvature of edges above 

which further traversal is blocked. Fig. 3A shows an example of epicardial, endocardial and 

base surface extraction on a rabbit heart of ≈ 5000k elements and ≈ 800k vertices. Each 

surface extraction required about two seconds on a workstation computer.

Shrinkage-free mesh and data smoothing—A common observation when applying a 

basic smoothing scheme like Gaussian smoothing to a data-set, be it mesh vertex 

coordinates, scalar data or vector valued data, is that the entries in the data set converge 

towards the global average with each successive smoothing iteration. In the context of mesh 

surfaces, this effect is observed as mesh volume shrinkage.

In order to counter this effect, shrinkage-free smoothing algorithms have been formulated 

[12,13]. The central idea is to move towards the local average in one iteration, and then 

move away from the local average in the next. The overall effect is that of a low-pass filter 

and as such, mesh volume is preserved. The Mesh-tool modes smooth mesh, smooth 

surface and smooth data use Taubin’s method [12] to apply low-pass filters to meshes 

and/or data.

When meshes are smoothed, Meshtool decomposes the volumetric domain, if applicable, 

into volumetric, surface and line manifolds. Average positions for a vertex are computed 

only with respect to the vertices in its respective manifold set. This approach is vital for 

achieving smooth surface and line interfaces when smoothing volumetric meshes.
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The implemented mesh smoother can also track the mesh quality. In essence, smoothing 

updates are only applied as long as a quality threshold is not crossed. This allows for robust 

application of mesh smoothing without risking mesht quality deterioration beyond the 

specified threshold. Currently mesh quality tracking is only supported for tetrahedral 

meshes. The implemented quality metrics are volume-edge ratio [14] and minimal dihedral 

sine [15]. For more details we refer to [16].

Fig. 3B shows an example of how smooth interfaces between different mesh regions can be 

achieved by volumetric smoothing considering surface and line manifolds. The depicted left-

ventricle mesh consist of ≈ 2500k elements and ≈ 400k vertices. The smoothing was 

performed in fifteen seconds on a desktop workstation. The mesh quality histograms 

indicate that quality-aware smoothing has a positive effect on mesh quality, while also 

smoothing the geometry.

Mesh re-sampling—Meshes consisting of triangles or tetrahedra can be re-sampled to 

different resolutions using the resample mesh and resample surface modes. The user 

specifies the minimum, maximum or average edge lengths desired for the re-sampled target 

mesh. The re-sampling algorithm then uses iterative edge-bisection [17] and edge collapsing 

algorithms [18] to change mesh resolution to the targeted range.

The re-sampling algorithm consists of two main steps: In the first step, edges longer than the 

maximum size threshold are split iteratively. In the second step, edges smaller than the 

specified minimum size threshold are iteratively collapsed. Some edges may not be collapse-

able due to quality considerations and as such the minimum size threshold may not be 

enforceable on all edges.

When collapsing edges, the two main challenges are the preservation of mesh quality and 

shape. Mesh quality is preserved by dismissing collapse attempts that would result in 

intersections of elements or degenerated elements. Mesh shape preservation can be 

controlled through a user-set parameter that sets a threshold on the acceptable surface 

normal change during edge collapse.

For meshes with tagged element regions, Meshtool allows to restrict the re-sampling to sets 

of region tags. Fig. 4 shows different re-sampling operations on a rabbit heart slice mesh of 

≈ 500k elements and ≈ 110k vertices. The re-sampling operations required between seven 

and thirteen seconds on a desktop workstation. The element quality histograms indicate that 

overall mesh quality was slightly reduced by the re-sampling.

3 Illustrative examples

In this example we integrate a defibrillation coil surface geometry originating from a CAD 

program (≈ 18k elements and ≈ 9k vertices), into an existing MRI-based geometry of a 

human torso with segmented lungs and heart (≈ 48000k elements and ≈ 8000k vertices), see 

Fig. 5.
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The example makes use of the sub-mesh extraction, surface extraction, re-meshing and mesh 

merging modes of Meshtool. The input data is a torso mesh and the coil surface geometry, 

already transformed into the desired location in the right-ventricle blood pool.

TORSO=torso.vtk

COIL=coil.rv.vtk

In the first step, we extract the volume blood pool volume overlapping with the coil. 

Meshtool outputs the overlap torso.ovlp.vtk, depicted in Fig. 5B and its complement to 

the full mesh torso.ovlp.compl.vtk.

meshtool extract overlap -msh1=$TORSO -msh2=$COIL \

-submsh=torso.ovlp.vtk -mode=1 -size=3.0

We want to re-mesh the extracted overlap volume, such that it includes the coil geometry. 

This is done by passing the surface meshes of the bloodpool overlap and the coil to the 

generate mesh mode of Meshtool.

Therefore, we next extract the surface of the overlap. If a mesh output format is specified 

with the option -ofmt, Meshtool will not only generate a surface definition (i.e. a list of 

element faces) in torso.ovlp.surf, but also a surface triangle mesh 

torso.ovlp.surfmesh.vtk.

meshtool extract surface -msh=torso.ovlp.vtk \

-surf=torso.ovlp -ofmt=vtk_bin

Now we call the mesh generation mode. With the -ins_tag we define the region IDs for the 

elements inside each input surface. The result is depicted in Fig. 5C.

BLOODPOOL_TAG=90

RV_COIL_TAG=502

meshtool generate mesh -surf

  =torso.ovlp.surfmesh.vtk,$COIL \

-ins_tag=$BLOODPOOL_TAG,$RV_COIL_TAG -outmsh

  =rv.meshed.vtk -scale=1.8

In the final step we insert the newly meshed volume into the complement to the input torso 

mesh. The complement was generated in the initial overlap extraction.

meshtool merge meshes -msh1=torso.ovlp.compl.vtk \

-msh2=rv.meshed.vtk -outmsh=torso.final.vtk
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This example executed in 2 min and 30 s on a desktop workstation.

4 Impact

The ability to generate, in a highly automated fashion, anatomical models of high geometric 

fidelity from labeled image stacks, and functionalize these with appropriate parameter fields, 

is of major importance in cardiac modeling endeavors. Advanced studies rely on virtual 

cohorts comprising a larger number of in silico models which match anatomy and function 

of their in vivo counterparts with high fidelity. Applied research using such models has been 

hampered in the past by the high costs involved. A large number of processing steps must be 

executed involving interactive mesh manipulation procedures of expert users at each stage. 

Meshtool provides all necessary mesh manipulation algorithms which are needed to generate 

anatomy models and assign all geometry-dependent parameter fields in a fully automated 

fashion. It should be noted, that this ability relies heavily on the detailed classification of 

voxels in the input image stack as all operations must be abstractly describable based on 

labels and/or geometric features. Depending on the type of model and the level of geometric 

detail required for a particular application, the segmentation and labeling of the input 

meshes may constitute a challenge on its own [19].

The integration of Meshtool constitutes a step change in the ability of our lab to generate 

geometrically accurate functionalized in silico models of individual hearts. Due to the 

anatomical variability between individuals, any cardiac modeling study that aims to 

investigate mechanisms of cardiac function in a broader sense, depends critically on the 

availability of larger virtual populations that cover this variability. A software such as 

Meshtool is indispensable in efficient large-scale cardiac modeling endeavors as it turns 

model generation from an expensive procedure requiring days of attention of highly trained 

expert users into a basic commodity that achieves these goals in an inexpensive manner and 

can be operated by non-expert users with ease. The Meshtool-based automation of the model 

building pipelines also led to a noticeable reduction in model errors by avoiding any error-

prone interactive manipulations. This improved model quality and avoided the costs of 

failure at the later simulation stages due to faulty meshes introduced by manual mesh 

manipulation. In such cases the manipulation step causing the problem needed to be 

identified and corrected. Owing to dependency of the building pipelines, all subsequent 

processing steps had to be repeated, again involving manual work of operators. The 

corrected meshes which are, typically, of size at the order of gigabytes of data, had to be re-

uploaded to remote HPC facilities to re-execute simulations. With Meshtool these costs can 

be fully avoided.

Meshtool has been adopted quickly beyond our lab by leading labs within the cardiac 

modeling community. As Meshtool is shipped as an integral part of our in silico modeling 

platform comprising the CARPentry simulator and carputils as a platform for definition and 

execution of in silico experiments Meshtool is used by the entire community using our 

modeling ecosystem. Based on download metrics and the user mailing lists there are about 

120 users in about ten labs world wide, with about sixty highly active users producing 

around twenty cardiac modeling research papers per year. Beyond the cardiac modeling 

community Meshtool we are not aware of any academic use of Meshtool. However, 
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Meshtool can be equally useful in any image-based modeling studies in other areas of 

biological research where anatomical and functional features are derived from tomographic 

images such as modeling other organs such as e.g. brain, lungs or liver.

Meshtool is available under an open source license and can be freely used in commercial 

applications. There are no plans to market Meshtool as a standalone software, but it has been 

integrated and is being used in workflows of commercial cardiac modeling endeavors.

5 Conclusions

Meshtool is software for mesh generation and manipulation that is tailored for automating 

complex mesh manipulation tasks in image-based modeling building and functionalization 

work-flows. Meshtool has been primarily designed for advanced cardiac modeling studies 

that heavily rely on the ability to generate and functionalize a larger number of 

individualized in silico models to build virtual cohorts that capture the vast variability of 

cardiac anatomy in terms of size, shape and morphology. Integrating Meshtool in modeling 

pipelines as used in the cardiac modeling community significantly increases efficiency 

through automation to keep processing tractable, reduces costs in terms of time and man 

power needed, and improves quality of models by minimizing inevitable errors due to 

manual mesh manipulation.
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Fig. 1. 
Typical model building and functionalization workflow showing the processing stages of 

multi-label segmentation, re-rasterization to higher isotropic resolution, meshing and label 

transfer, definition of boundary conditions, computation of a coordinate system for 

navigation, assignment of structural properties such as fiber and sheet arrangements and 

mesh refinement for carrying out biophysical simulation.
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Fig. 2. 
Flowchart of a surface extraction operation. Each processing step displays its function name 

in the upper line and the key output data-structure in the lower line.
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Fig. 3. 
Examples for mesh smoothing and surface extraction. (A) The epicardium, endocardium and 

cardiac base surfaces are extracted from a rabbit ventricular heart model using set 

intersection and traversal from seed points with blocking sharp edges. (B) A volumetric 

mesh is smoothed to achieve smooth interfaces between the individual mesh regions. The 

top images show the mesh before smoothing, the bottom images show the mesh after 200 

smoothing iterations. The right column shows histograms of the element quality before (top) 

and after (bottom) smoothing. The used quality metric was the volume-edge ratio, with the 

quality 0 representing the worst and 1 the best element quality.
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Fig. 4. 
Re-sampling examples of a rabbit biventricular slice mesh. (A) Three regions of a mesh are 

re-sampled to different average resolutions. The white region is down-sampled from a mean 

resolution of 350 μm to 750 μm, the red region from 180 μm to 500 μm and the green region 

from 180 um to 300 μm. (B) Histograms of the element quality before (left) and after (right) 

re-sampling. The used quality metric was the volume-edge ratio, with the quality 0 

representing the worst and 1 the best element quality.
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Fig. 5. 
Medical device integration example. (A) The coil (in red) placement inside the right 

ventricle blood pool. (B) Extraction of the blood pool volume (in yellow) overlapping with 

the coil geometry. (C) Clip through the re-meshed blood pool and coil volumes. (D) Clip 

through the final torso with medical device mesh volume. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this 

article.)
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Table 1
The most important modes of Meshtool, grouped by category.

Category Modes

sub-mesh management extract mesh, insert submesh, map, restore mapping

data mapping extract data, insert data

mesh and data manipulation smooth mesh, smooth data, interpolate, merge meshes

mesh format conversion convert

surface extraction extract surface

re-meshing resample mesh, generate mesh, merge surface

image stack manipulation itk

mesh quality control clean quality

mesh info and statistics query
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