
Automating image-based mesh generation and manipulation
tasks in cardiac modeling workflows using Meshtool

Aurel Neica,c,*, Matthias A.F. Gsella, Elias Karabelasa,b, Anton J. Prassla, Gernot Planka

aGottfried Schatz Research Center: Division of Biophysics, Medical University of Graz, Graz,
Austria

bDepartment of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences,
King’s College London, London, United Kingdom

cNumeriCor GmbH, Graz, Austria

Abstract

Advanced cardiac modeling studies rely on the ability to generate and functionalize personalized

in silico models from tomographic multi-label image stacks. Eventually, this is used for building

virtual cohorts that capture the variability in size, shape, and morphology of individual hearts.

Typical modeling workflows involve a multitude of interactive mesh manipulation steps, rendering

model generation expensive. Meshtool is software specifically designed for automating all

complex mesh manipulation tasks emerging in such workflows by implementing algorithms for

tasks describable as operations on label fields and/or geometric features. We illustrate how

Meshtool increases efficiency and reduces costs by offering an automatable, high performance

mesh manipulation toolbox.

Keywords

Mesh manipulation; Geometric smoothing; Mesh generation

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
*Corresponding author at: NumeriCor GmbH, Graz, Austria. aurel.neic@numericor.at (A. Neic).

Software metadata

Current software version v15

Permanent link to executables of this version No precompiled release

Legal Software License GPLv3

Computing platforms/Operating Systems Linux and OS X

Installation requirements & dependencies None

If available, link to user manual - if formally published include a reference to the publication in the reference list

Support email for questions aurel.neic@numericor.at

1https://www.ansys.com/products/platform/ansys-meshing.

Declaration of competing interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Europe PMC Funders Group
Author Manuscript
SoftwareX. Author manuscript; available in PMC 2020 June 30.

Published in final edited form as:
SoftwareX. 2020 ; 11: . doi:10.1016/j.softx.2020.100454.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

http://creativecommons.org/licenses/by/4.0/
https://www.sciencedirect.com/science/article/pii/S235271101930295X
https://www.ansys.com/products/platform/ansys-meshing

1 Motivation and significance

The development of Meshtool was motivated by demands of modern cardiac modeling

applications. These pose a set of specific challenges on meshing technology for both the

representation of cardiac anatomy as well as for the functionalization of the biophysical

models used to describe cardiac behavior. The workflows for generating advanced in silico
models consist of numerous processing stages, turning medical images into discrete mesh-

based representations suitable for solving physical problems, see Fig. 1. Generation of

meshes from segmented medical images has been identified as a key enabling technology in

the chain of workflows. Many advanced software solutions, like Tetgen [1], CGAL [2], or

ANSYS® Meshing,1 have been under constant development in both industry and academia.

However, these were mostly geared towards regular engineering applications where the

geometry of objects is represented by CAD-constructed surfaces, and to a much lesser

extent, towards image-based meshing application where geometric and anatomical

information is based on volumetric data encoded in segmented multi-label image stacks [3].

An additional specific demand in cardiac modeling stems from the multiphysics nature of

cardiac function. Depending on which aspect of cardiac function is under investigation, be it

electro-physiology, mechanics, hemodynamics or perfusion, the requirements for spatial

discretization vary markedly with resolutions ranging from 1 mm to 100 μm. Therefore, in

an initial meshing step, the spatial resolution shall be chosen to allow a sufficiently accurate

– within the limits of uncertainty of segmentation of clinical input data – and smooth

representation of the organ. Label fields, which encode the membership to specific cardiac

structures, will then be transferred onto the mesh [4]. Any physics or problem-specific

adjustments shall be carried out subsequently, on demand when needed, in a fully automated

fashion to meet the requirements of the physical problem being solved.

For the sake of model functionalization any current cardiac multiphysics modeling study

relies on the ability to extract sub-meshes, including corresponding label fields as well as

scalar, vector-valued or tensor-valued data defined on a given sub-mesh, carry out operations

on extracted sub-meshes, and reinsert sub-meshes and manipulated data back into a

reference mesh.

Code metadata

Current code version v15

Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX_2019_291

Legal Code License GPLv3

Code versioning system used git

Software code languages, tools, and services used C++, OpenMP, make

Compilation requirements, operating environments & dependencies GNU, Intel or clang C++compiler with 2011 standard support, GNU
make

If available Link to developer documentation/manual https://bitbucket.org/aneic/meshtool/src/master/README.md

Support email for questions aurel.neic@numericor.at

Neic et al. Page 2

SoftwareX. Author manuscript; available in PMC 2020 June 30.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

https://github.com/ElsevierSoftwareX/SOFTX_2019_291
https://bitbucket.org/aneic/meshtool/src/master/README.md
https://www.sciencedirect.com/science/article/pii/S235271101930295X

A recently emerging trend is the use of cardiac models in industrial application such as the

design of cardiac devices for the optimization of device-based therapies. Such applications,

labeled as medical device development tools (MDDT) by regulatory bodies, require the

fusion of descriptions of device geometries, typically defined as CAD surface models, with

volumetric meshes of heart and torso. The stimulation electrodes of cardiac devices such as

pacemakers are implanted in specific domains of the heart, usually in the blood-filled

cavities, in vessels or subcutaneously within the torso. Considering the cost of the entire

model generation workflow – from multi-label image data sets to multidomain meshes – the

ability to integrate CAD-based device descriptions with pre-existing meshes of the heart

without re-meshing all domains is highly advantageous.

Moreover, for capturing biological variability, current studies attempt to build virtual cohorts
consisting of larger number of models. Modeling applications of this high throughput

critically depend on a high degree of automation, as the use of interactive meshing

environments is too tedious, time-consuming and expensive in terms of man power needed.

Departing from a well defined image-based geometric description of a heart where all

anatomical structures are classified in the form of label fields, a baseline mesh at a given

target resolution can be generated without any need for operator interaction in a fully

automated fashion. As such, all further downstream manipulations of the baseline mesh,

such as resolution adjustments or the integration of physics-specific data fields, should also

be automated and controlled abstractly based on label field operations.

The software Meshtool was developed to meet these specific demands of cardiac modeling

applications. It offers all capabilities needed in pre-processing workflows – such as uniform

mesh refinement, mesh re-sampling, mesh and data extraction and insertion, local re-

meshing for geometry integration and the ability to be fully automated – with solid

performance characteristics and robust problem size scaling. This renders it a versatile tool

for automating anatomical model building and functionalization workflows [4]. Having this

ability is instrumental in currently emerging in silico modeling studies where a large number

of models [5,6] – on the order of tens to hundreds – have to be constructed and

functionalized by fitting model predictions to observed data [7,8]. Being able to generate

large virtual cohorts is poised to leverage in silico modeling as a medical device

development tool (MDDT) [9] and render advanced clinical application feasible where

modeling software is used as a medical device (SaMD) [5,6]. Meshtool has been adopted

quickly within our collaborative network which led to a number of publication over a broad

range of applications [9–11].

2 Software description

2.1 Software architecture

Meshtool is written in C++(2011 standard support required). It has no external library

dependencies, which leads to a very simple compilation process. The only required third-

party code is the open-source tetrahedral mesh generation library Tetgen, which is used for

partial re-meshing. The Tetgen library has been integrated into the Meshtool repository and

its compilation process. This streamlines the overall compilation process, simplifies code

distribution and improves reproducibility of the software builds.

Neic et al. Page 3

SoftwareX. Author manuscript; available in PMC 2020 June 30.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

The base of the software is formed by a set of structures and classes that hold the

computational data. Contiguous blocks of data are stored with the templated mt_vector

class, which is designed similarly to the std::vector container of the standard C++library.

Most higher-level containers, such as mesh, graph and mapping classes, use mt_vector for

storing internal data. Accelerated data lookup is either implemented by the C++standard

library std::set and std::map containers, or, when ordering is not relevant, by custom

hashmap::unordered_set and hashmap::unordered_map implementations.

The core of the software is formed by the different utility classes and functions. Essentially,

these algorithms represent the main building blocks from which the Meshtool modes are

built. Algorithms that hold a state through multiple computation steps are mostly

implemented as classes. Examples for such algorithms are the edge splitting and collapsing

algorithms in mt_edge_collapser and mt_edge_splitter, which hold the edge list

and other state variables between multiple re-sampling operations. On the other hand, state-

less algorithms are implemented as functions. Many algorithms use graphs derived from the

mesh connectivity for mesh traversal.

The top layer is formed by the different Meshtool modes, each implemented in an individual

source file. Each mode is designed as a self-contained unit, that could also be an own

executable. In fact, some modes that are deemed too specific and not general enough to be

part of Meshtool, are compiled as separate executables in the standalones subdirectory.

Fig. 2 gives an example of a Meshtool mode architecture, by depicting the flowchart, with

the main data-structures and functions, used for surface extractions.

2.2 User interface

Meshtool is operated through a command-line interface (CLI) and can be used in a

completely automated manner. Still, it provides the user with progress outputs and time-to

completion estimates when used interactively.

In order to improve usability, the CLI interface is structured similarly to those of the git
version control system or the Linux package management tool apt: The user calls Meshtool

with the desired mode as the first program parameter, before setting mode-specific options

with the subsequent parameters. As such, the set of options the user is exposed to is reduced

to only those relevant to the selected mode.

Many modes consist of two words, usually a verb and an object, for example extract

surface or interpolate nodedata. If the user specifies only the first word of a two

word mode, Meshtool prints all modes starting with the first word. Calling a Meshtool mode

with none or insufficient options, displays the mode-specific options in a help message. This

design allows the user to briefly query the availability and usage of different modes without

having to memorize help-specific options. Still, Meshtool also offers a help mode that lists

all available modes along with a short description. The most important modes are listed in

Table 1.

Neic et al. Page 4

SoftwareX. Author manuscript; available in PMC 2020 June 30.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

2.3 Software functionalities

The Meshtool utility consists of an agglomeration of currently over forty modes, tuned for

optimal inter-operability and automatibility. Rather than presenting all of them, we restrict

ourselves to a small subset that we deem representative. We want to emphasize, that the goal

of Meshtool is to provide users with a wide variety of mesh manipulation tools, that can be

combined and automated in a consistent manner. We do not claim that any single tool

represents the cutting edge in its category and therefore refrain from direct comparisons to

the state-of-the-art.

Set operation based surface extraction—In cardiac electrophysiology mesh

generation, landmark surfaces are defined as the set intersection of specific anatomical

regions. For example, the endocardial surface can be extracted by computing the set

intersection of the ventricular tissue and the enclosed blood pool. In an automated mesh

generation workflow the labeling of specific regions is standardized to facilitate the

automated extraction of all landmark surfaces of interest such as epicardium, endocardium,

apex or basal plane.

The Meshtool mesh extraction mode allows to compute set union, intersection and

difference on surfaces. A surface can be defined by the user in two ways: Either by a set of

region labels, which define a submesh boundary surface, or directly with a surface file.

The surface resulting from the set operation can be further restricted to areas accessible via

edge traversal from chosen seed locations. Edge traversal can be further configured through

options such as traversal distance or the definition of a critical curvature of edges above

which further traversal is blocked. Fig. 3A shows an example of epicardial, endocardial and

base surface extraction on a rabbit heart of ≈ 5000k elements and ≈ 800k vertices. Each

surface extraction required about two seconds on a workstation computer.

Shrinkage-free mesh and data smoothing—A common observation when applying a

basic smoothing scheme like Gaussian smoothing to a data-set, be it mesh vertex

coordinates, scalar data or vector valued data, is that the entries in the data set converge

towards the global average with each successive smoothing iteration. In the context of mesh

surfaces, this effect is observed as mesh volume shrinkage.

In order to counter this effect, shrinkage-free smoothing algorithms have been formulated

[12,13]. The central idea is to move towards the local average in one iteration, and then

move away from the local average in the next. The overall effect is that of a low-pass filter

and as such, mesh volume is preserved. The Mesh-tool modes smooth mesh, smooth

surface and smooth data use Taubin’s method [12] to apply low-pass filters to meshes

and/or data.

When meshes are smoothed, Meshtool decomposes the volumetric domain, if applicable,

into volumetric, surface and line manifolds. Average positions for a vertex are computed

only with respect to the vertices in its respective manifold set. This approach is vital for

achieving smooth surface and line interfaces when smoothing volumetric meshes.

Neic et al. Page 5

SoftwareX. Author manuscript; available in PMC 2020 June 30.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

The implemented mesh smoother can also track the mesh quality. In essence, smoothing

updates are only applied as long as a quality threshold is not crossed. This allows for robust

application of mesh smoothing without risking mesht quality deterioration beyond the

specified threshold. Currently mesh quality tracking is only supported for tetrahedral

meshes. The implemented quality metrics are volume-edge ratio [14] and minimal dihedral

sine [15]. For more details we refer to [16].

Fig. 3B shows an example of how smooth interfaces between different mesh regions can be

achieved by volumetric smoothing considering surface and line manifolds. The depicted left-

ventricle mesh consist of ≈ 2500k elements and ≈ 400k vertices. The smoothing was

performed in fifteen seconds on a desktop workstation. The mesh quality histograms

indicate that quality-aware smoothing has a positive effect on mesh quality, while also

smoothing the geometry.

Mesh re-sampling—Meshes consisting of triangles or tetrahedra can be re-sampled to

different resolutions using the resample mesh and resample surface modes. The user

specifies the minimum, maximum or average edge lengths desired for the re-sampled target

mesh. The re-sampling algorithm then uses iterative edge-bisection [17] and edge collapsing

algorithms [18] to change mesh resolution to the targeted range.

The re-sampling algorithm consists of two main steps: In the first step, edges longer than the

maximum size threshold are split iteratively. In the second step, edges smaller than the

specified minimum size threshold are iteratively collapsed. Some edges may not be collapse-

able due to quality considerations and as such the minimum size threshold may not be

enforceable on all edges.

When collapsing edges, the two main challenges are the preservation of mesh quality and

shape. Mesh quality is preserved by dismissing collapse attempts that would result in

intersections of elements or degenerated elements. Mesh shape preservation can be

controlled through a user-set parameter that sets a threshold on the acceptable surface

normal change during edge collapse.

For meshes with tagged element regions, Meshtool allows to restrict the re-sampling to sets

of region tags. Fig. 4 shows different re-sampling operations on a rabbit heart slice mesh of

≈ 500k elements and ≈ 110k vertices. The re-sampling operations required between seven

and thirteen seconds on a desktop workstation. The element quality histograms indicate that

overall mesh quality was slightly reduced by the re-sampling.

3 Illustrative examples

In this example we integrate a defibrillation coil surface geometry originating from a CAD

program (≈ 18k elements and ≈ 9k vertices), into an existing MRI-based geometry of a

human torso with segmented lungs and heart (≈ 48000k elements and ≈ 8000k vertices), see

Fig. 5.

Neic et al. Page 6

SoftwareX. Author manuscript; available in PMC 2020 June 30.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

The example makes use of the sub-mesh extraction, surface extraction, re-meshing and mesh

merging modes of Meshtool. The input data is a torso mesh and the coil surface geometry,

already transformed into the desired location in the right-ventricle blood pool.

TORSO=torso.vtk

COIL=coil.rv.vtk

In the first step, we extract the volume blood pool volume overlapping with the coil.

Meshtool outputs the overlap torso.ovlp.vtk, depicted in Fig. 5B and its complement to

the full mesh torso.ovlp.compl.vtk.

meshtool extract overlap -msh1=$TORSO -msh2=$COIL \

-submsh=torso.ovlp.vtk -mode=1 -size=3.0

We want to re-mesh the extracted overlap volume, such that it includes the coil geometry.

This is done by passing the surface meshes of the bloodpool overlap and the coil to the

generate mesh mode of Meshtool.

Therefore, we next extract the surface of the overlap. If a mesh output format is specified

with the option -ofmt, Meshtool will not only generate a surface definition (i.e. a list of

element faces) in torso.ovlp.surf, but also a surface triangle mesh

torso.ovlp.surfmesh.vtk.

meshtool extract surface -msh=torso.ovlp.vtk \

-surf=torso.ovlp -ofmt=vtk_bin

Now we call the mesh generation mode. With the -ins_tag we define the region IDs for the

elements inside each input surface. The result is depicted in Fig. 5C.

BLOODPOOL_TAG=90

RV_COIL_TAG=502

meshtool generate mesh -surf

 =torso.ovlp.surfmesh.vtk,$COIL \

-ins_tag=$BLOODPOOL_TAG,$RV_COIL_TAG -outmsh

 =rv.meshed.vtk -scale=1.8

In the final step we insert the newly meshed volume into the complement to the input torso

mesh. The complement was generated in the initial overlap extraction.

meshtool merge meshes -msh1=torso.ovlp.compl.vtk \

-msh2=rv.meshed.vtk -outmsh=torso.final.vtk

Neic et al. Page 7

SoftwareX. Author manuscript; available in PMC 2020 June 30.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

This example executed in 2 min and 30 s on a desktop workstation.

4 Impact

The ability to generate, in a highly automated fashion, anatomical models of high geometric

fidelity from labeled image stacks, and functionalize these with appropriate parameter fields,

is of major importance in cardiac modeling endeavors. Advanced studies rely on virtual

cohorts comprising a larger number of in silico models which match anatomy and function

of their in vivo counterparts with high fidelity. Applied research using such models has been

hampered in the past by the high costs involved. A large number of processing steps must be

executed involving interactive mesh manipulation procedures of expert users at each stage.

Meshtool provides all necessary mesh manipulation algorithms which are needed to generate

anatomy models and assign all geometry-dependent parameter fields in a fully automated

fashion. It should be noted, that this ability relies heavily on the detailed classification of

voxels in the input image stack as all operations must be abstractly describable based on

labels and/or geometric features. Depending on the type of model and the level of geometric

detail required for a particular application, the segmentation and labeling of the input

meshes may constitute a challenge on its own [19].

The integration of Meshtool constitutes a step change in the ability of our lab to generate

geometrically accurate functionalized in silico models of individual hearts. Due to the

anatomical variability between individuals, any cardiac modeling study that aims to

investigate mechanisms of cardiac function in a broader sense, depends critically on the

availability of larger virtual populations that cover this variability. A software such as

Meshtool is indispensable in efficient large-scale cardiac modeling endeavors as it turns

model generation from an expensive procedure requiring days of attention of highly trained

expert users into a basic commodity that achieves these goals in an inexpensive manner and

can be operated by non-expert users with ease. The Meshtool-based automation of the model

building pipelines also led to a noticeable reduction in model errors by avoiding any error-

prone interactive manipulations. This improved model quality and avoided the costs of

failure at the later simulation stages due to faulty meshes introduced by manual mesh

manipulation. In such cases the manipulation step causing the problem needed to be

identified and corrected. Owing to dependency of the building pipelines, all subsequent

processing steps had to be repeated, again involving manual work of operators. The

corrected meshes which are, typically, of size at the order of gigabytes of data, had to be re-

uploaded to remote HPC facilities to re-execute simulations. With Meshtool these costs can

be fully avoided.

Meshtool has been adopted quickly beyond our lab by leading labs within the cardiac

modeling community. As Meshtool is shipped as an integral part of our in silico modeling

platform comprising the CARPentry simulator and carputils as a platform for definition and

execution of in silico experiments Meshtool is used by the entire community using our

modeling ecosystem. Based on download metrics and the user mailing lists there are about

120 users in about ten labs world wide, with about sixty highly active users producing

around twenty cardiac modeling research papers per year. Beyond the cardiac modeling

community Meshtool we are not aware of any academic use of Meshtool. However,

Neic et al. Page 8

SoftwareX. Author manuscript; available in PMC 2020 June 30.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Meshtool can be equally useful in any image-based modeling studies in other areas of

biological research where anatomical and functional features are derived from tomographic

images such as modeling other organs such as e.g. brain, lungs or liver.

Meshtool is available under an open source license and can be freely used in commercial

applications. There are no plans to market Meshtool as a standalone software, but it has been

integrated and is being used in workflows of commercial cardiac modeling endeavors.

5 Conclusions

Meshtool is software for mesh generation and manipulation that is tailored for automating

complex mesh manipulation tasks in image-based modeling building and functionalization

work-flows. Meshtool has been primarily designed for advanced cardiac modeling studies

that heavily rely on the ability to generate and functionalize a larger number of

individualized in silico models to build virtual cohorts that capture the vast variability of

cardiac anatomy in terms of size, shape and morphology. Integrating Meshtool in modeling

pipelines as used in the cardiac modeling community significantly increases efficiency

through automation to keep processing tractable, reduces costs in terms of time and man

power needed, and improves quality of models by minimizing inevitable errors due to

manual mesh manipulation.

Acknowledgments

This work was supported in part by the Austrian Science Fund FWF grants [I-2760-B30 (MG,GP) and F-3210-N18
(AN,EK,GP)].

References

[1]. Si H. Tetgen, a delaunay-based quality tetrahedral mesh generator. ACM Trans Math Softw. 2015;
41(2):11.

[2]. Fabri A, Giezeman G-J, Kettner L, Schirra S, Schönherr S. On the design of CGAL a
computational geometry algorithms library. Softw - Pract Exp. 2000; 30(11):1167–202.

[3]. Prassl AJ, Kickinger F, Ahammer H, Grau V, Schneider JE, Hofer E, Vigmond EJ, Trayanova NA,
Plank G, et al. Automatically generated, anatomically accurate meshes for cardiac
electrophysiology problems. IEEE Trans Biomed Eng. 2009; 56(5):1318–30. [PubMed:
19203877]

[4]. Crozier A, Augustin CM, Neic A, Prassl AJ, Holler M, Fastl TE, Hennemuth A, Bredies K,
Kuehne T, Bishop MJ, Niederer SA, et al. Image-based personalization of cardiac anatomy for
coupled electromechanical modeling. Ann Biomed Eng. 2016; 44:58–70. DOI: 10.1007/
s10439-015-1474-5 [PubMed: 26424476]

[5]. Arevalo HJ, Vadakkumpadan F, Guallar E, Jebb A, Malamas P, Wu KC, Trayanova NA.
Arrhythmia risk stratification of patients after myocardial infarction using personalized heart
models. Nat Commun. 2016; 7doi: 10.1038/ncomms11437

[6]. Prakosa A, Arevalo HJ, Deng D, Boyle PM, Nikolov PP, Ashikaga H, Blauer JJ, Ghafoori E, Park
CJ, Blake RC, Han FT, et al. Personalized virtual-heart technology for guiding the ablation of
infarct-related ventricular tachycardia. Nat Biomed Eng. 2018; 2:732–40. DOI: 10.1038/
s41551-018-0282-2 [PubMed: 30847259]

[7]. Augustin CM, Crozier A, Neic A, Prassl AJ, Karabelas E, Ferreira da Silva T, Fernandes JF,
Campos F, Kuehne T, Plank G. Patient-specific modeling of left ventricular electromechanics as a
driver for haemodynamic analysis. Europace. 2016; 18:iv121–9. DOI: 10.1093/europace/euw369
[PubMed: 28011839]

Neic et al. Page 9

SoftwareX. Author manuscript; available in PMC 2020 June 30.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

[8]. Gsell MAF, Augustin CM, Prassl AJ, Karabelas E, Fernandes JF, Kelm M, Goubergrits L, Kuehne
T, Plank G. Assessment of wall stresses and mechanical heart power in the left ventricle: finite
element modeling versus laplace analysis. Int J Numer Methods Biomed Eng. 2018;
34:e3147.doi: 10.1002/cnm.3147

[9]. Plancke A-M, Connolly A, Gemmell PM, Neic A, McSpadden LC, Whitaker J, O’Neill M, Rinaldi
CA, Rajani R, Niederer SA, Plank G, et al. Generation of a cohort of whole-torso cardiac models
for assessing the utility of a novel computed shock vector efficiency metric for ICD optimisation.
Comput Biol Med. 2019; 112doi: 10.1016/j.compbiomed.2019.103368

[10]. Neic A, Campos FO, Prassl AJ, Niederer SA, Bishop MJ, Vigmond EJ, Plank G. Efficient
computation of electrograms and ECGs in human whole heart simulations using a reaction-
eikonal model. J Comput Phys. 2017; 346:191–211. DOI: 10.1016/j.jcp.2017.06.020 [PubMed:
28819329]

[11]. Karabelas E, Gsell MAF, Augustin CM, Marx L, Neic A, Prassl AJ, Goubergrits L, Kuehne T,
Plank G. Towards a computational framework for modeling the impact of aortic coarctations
upon left ventricular load. Front Physiol. 2018; 9:538.doi: 10.3389/fphys.2018.00538 [PubMed:
29892227]

[12]. Taubin, G. Curve and surface smoothing without shrinkage. Computer vision, 1995.
Proceedings., fifth international conference on. IEEE; 1995. 852–7.

[13]. Vollmer, J, Mencl, R, Mueller, H. Improved laplacian smoothing of noisy surface
meshesComputer graphics forum. Vol. 18. Wiley Online Library; 1999. 131–8.

[14]. Parthasarathy V, Graichen C, Hathaway A. A comparison of tetrahedron quality measures. Finite
Elem Anal Des. 1994; 15(3):255–61. DOI: 10.1016/0168-874X(94)90033-7

[15]. Freitag LA, Ollivier-Gooch C. Tetrahedral mesh improvement using swapping and smoothing.
Internat J Numer Methods Engrg. 1997; 40(21):3979–4002. DOI: 10.1002/
(SICI)1097-0207(19971115)40:21<3979::AID-NME251>3.0.CO;2-9

[16]. Klingner, BM; Shewchuk, JR. Aggressive tetrahedral mesh improvement. Proceedings of the 16th
international meshing roundtable; Springer; 2008. 3–23.

[17]. Bedregal C, Rivara M-C. Longest-edge algorithms for size-optimal refinement of triangulations.
Comput Aided Des. 2014; 46:246–51.

[18]. Jia S, Tang X, Pan H. Fast mesh simplification algorithm based on edge collapse. Intelligent
control and automation Springer. 2006:275–86.

[19]. Payer, C, Štern, D, Bischof, H, Urschler, M. Multi-label whole heart segmentation using CNNs
and anatomical label configurationsStatistical atlases and computational models of the heart.
ACDC and MMWHS challenges. Pop, M, Sermesant, M, Jodoin, P-M, Lalande, A, Zhuang, X,
Yang, G, Young, A, Bernard, O, editors. Cham: Springer International Publishing; 2018. 190–8.

Neic et al. Page 10

SoftwareX. Author manuscript; available in PMC 2020 June 30.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Fig. 1.
Typical model building and functionalization workflow showing the processing stages of

multi-label segmentation, re-rasterization to higher isotropic resolution, meshing and label

transfer, definition of boundary conditions, computation of a coordinate system for

navigation, assignment of structural properties such as fiber and sheet arrangements and

mesh refinement for carrying out biophysical simulation.

Neic et al. Page 11

SoftwareX. Author manuscript; available in PMC 2020 June 30.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Fig. 2.
Flowchart of a surface extraction operation. Each processing step displays its function name

in the upper line and the key output data-structure in the lower line.

Neic et al. Page 12

SoftwareX. Author manuscript; available in PMC 2020 June 30.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Fig. 3.
Examples for mesh smoothing and surface extraction. (A) The epicardium, endocardium and

cardiac base surfaces are extracted from a rabbit ventricular heart model using set

intersection and traversal from seed points with blocking sharp edges. (B) A volumetric

mesh is smoothed to achieve smooth interfaces between the individual mesh regions. The

top images show the mesh before smoothing, the bottom images show the mesh after 200

smoothing iterations. The right column shows histograms of the element quality before (top)

and after (bottom) smoothing. The used quality metric was the volume-edge ratio, with the

quality 0 representing the worst and 1 the best element quality.

Neic et al. Page 13

SoftwareX. Author manuscript; available in PMC 2020 June 30.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Fig. 4.
Re-sampling examples of a rabbit biventricular slice mesh. (A) Three regions of a mesh are

re-sampled to different average resolutions. The white region is down-sampled from a mean

resolution of 350 μm to 750 μm, the red region from 180 μm to 500 μm and the green region

from 180 um to 300 μm. (B) Histograms of the element quality before (left) and after (right)

re-sampling. The used quality metric was the volume-edge ratio, with the quality 0

representing the worst and 1 the best element quality.

Neic et al. Page 14

SoftwareX. Author manuscript; available in PMC 2020 June 30.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Fig. 5.
Medical device integration example. (A) The coil (in red) placement inside the right

ventricle blood pool. (B) Extraction of the blood pool volume (in yellow) overlapping with

the coil geometry. (C) Clip through the re-meshed blood pool and coil volumes. (D) Clip

through the final torso with medical device mesh volume. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of this

article.)

Neic et al. Page 15

SoftwareX. Author manuscript; available in PMC 2020 June 30.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Neic et al. Page 16

Table 1
The most important modes of Meshtool, grouped by category.

Category Modes

sub-mesh management extract mesh, insert submesh, map, restore mapping

data mapping extract data, insert data

mesh and data manipulation smooth mesh, smooth data, interpolate, merge meshes

mesh format conversion convert

surface extraction extract surface

re-meshing resample mesh, generate mesh, merge surface

image stack manipulation itk

mesh quality control clean quality

mesh info and statistics query

SoftwareX. Author manuscript; available in PMC 2020 June 30.

	Abstract
	Table T2
	Motivation and significance
	Table T1
	Software description
	Software architecture
	User interface
	Software functionalities
	Set operation based surface extraction
	Shrinkage-free mesh and data smoothing
	Mesh re-sampling

	Illustrative examples
	Impact
	Conclusions
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Table 1

