Skip to main content
. 2020 Jun 30;10:10620. doi: 10.1038/s41598-020-67640-z

Table 1.

Related work.

Author Input features n Total Type of model AUC (%)
Artifical neural network models comparison
LaFreniere et al.21 Age, gender, BMI, sys/diast BP, high and low density lipoproteins, triglycerides, cholesterol, microalbumin, and urine albumin creatinine ratio 379,027 Backpropagation neural network 82
Polak and Mendyk22 Age, sex, diet, smoking and drinking habits, physical activity level and BMI 159,989 backpropagation (BP) and fuzzy network 75
Tang et al.23 Sys/diast BP, fasting plasma glucose, age, BMI, heart rate, gender, WC, diabetes, renal profile 2,092 Feed-forward, back-propagation neural network 76
Ture et al.24 Age, sex, hypertension, smoking, lipoprotein, triglyceride, uric acid, total cholesterol, BMI 694 Feed-forwardneural network 81
Lynn et al.25 Sixteen genes, age, BMI, fasting blood sugar, hypertension medication, no history of cancer, kidney, liver or lung 22,184 genes, 159 cases One-hidden-layer neural network 96.72
Sakr et al.6 Age, gender, race, reason for test, stress, medical history 23,095 Backpropagation neural network 64
López-Martínez et al.12 Age, gender, ethnicity, BMI, smoking history, kidney disease, diabetes 24,434 Three-hidden layer neural network 77