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Abstract
Colistin is the last resort for the treatment of infections with carbapenem-resistant (CR) Gram-negative bacteria particu-
larly Acinetobacter baumannii (CRAB). Currently, both colistin-resistant and -heteroresistant A. baumannii isolates have 
been reported globally. We therefore investigated the colistin heteroresistance rate in 75 non-duplicate colistin-susceptible 
CRAB clinical isolates from a Thai university collected in 2016. Minimum inhibitory concentrations (MICs) of colistin for 
all isolates were determined by broth microdilution method and carbapenemase genes were detected by PCR methods. All 
isolates were genotyped by ERIC-PCR method and screened for colistin heteroresistance by modified population analysis 
profile (PAP) method. The colistin MIC range for the 75 isolates was 0.5–2 µg/mL, with MIC50 and MIC90 of 1 and 2 µg/mL, 
respectively. Thirty-three isolates (44%) were considered colistin-heteroresistant with subpopulations growing at 3–8 μg/mL 
of colistin. After three daily passages of the subpopulations on antibiotic-free medium, their colistin MICs ranged from 4 
to > 32 µg/mL, with MIC50 and MIC90 of 32 and > 32 µg/mL, respectively. Eight different ERIC-PCR profiles were obtained 
among the 33 isolates and all carried blaOXA-23-like. The high rate of colistin heteroresistance in the CRAB isolates highlights 
the possibility of treatment failure of CRAB infections by colistin due to the selection of colistin-resistant subpopulations.

Keywords  Acinetobacter baumannii · Carbapenemase genes · Colistin heteroresistance · ERIC-PCR · Population analysis 
profile

Introduction

Acinetobacter baumannii is frequently associated with life-
threatening nosocomial infections and also causes outbreaks 
particularly in intensive care units (Lee et al. 2017). It is 
included in the six highest-urgency risky microorganisms, 
the ESKAPE group, by the Infectious Diseases Society 

of America (IDSA) (Boucher et al. 2017). The increasing 
worldwide prevalence of multi-drug resistant (MDR) A. bau-
mannii, particularly carbapenem-resistant (CRAB) strains, 
is of great concern since the treatment options become 
limited. The “old” antibiotics including polymyxin B and 
colistin (polymyxin E) have now been reused as the last 
resort antibiotics for the treatment of serious infections with 
carbapenem-resistant Gram-negative bacteria. However, the 
increased use of colistin and improper understanding of its 
pharmacokinetics and pharmacodynamics have led to the 
emergence of colistin-resistant Gram-negative bacilli (Poirel 
et al. 2017). A systematic review conducted on the stud-
ies across 41 countries showed that the global prevalence 
rates of colistin resistance in A. baumannii were 0.2–17.5% 
(Pormohammad et  al. 2019) with the levels as high as 
30.6% in Korea (Ko et al. 2007). Colistin heteroresistance, 
which is defined as the presence of resistant subpopula-
tions within susceptible isolates, was also reported in this 
organism (Li et al. 2006) with the rates ranging from 18.7 
to 100% (Cai et al. 2012). Treatment of infections caused by 
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colistin-heteroresistant isolates may result in the selection of 
colistin-resistant subpopulations, thus leading to therapeutic 
failures (Hawley et al. 2008).

In 2011, 10% of A. baumannii clinical isolates from a 
university hospital in central Thailand were colistin-resistant 
(Naksena et al. 2012). In our hospital, this organism was the 
most common causative agent (approximately 20–30%) of 
hospital-acquired pneumonia and ventilator-associated pneu-
monia during 2008 and 2009 (Reechaipichitkul et al. 2013). 
In this period, carbapenem resistance rate was more than 
90% in A. baumannii isolates, thus leading to an increased 
use of colistin as a therapeutic option. In the same study, the 
colistin resistance rate in A. baumannii was 0.6%. However, 
there has been little information about colistin heteroresist-
ance in Thai clinical isolates. The recommended colistin 
susceptibility testing, broth microdilution (BMD) method, 
is laborious and unable to detect colistin-heteroresistant 
strains in routine laboratory. A current standard method for 
detection of colistin heteroresistance is a population analy-
sis profile (PAP) method, which is also laborious and time-
consuming (Li et al. 2006; Sherman et al. 2019). Therefore, 
we investigated colistin heteroresistance rate in our colistin-
susceptible CRAB clinical isolates by the PAP method. This 
would be baseline data and useful information for clinicians 
to be aware of the interpretation of colistin susceptibility 
results and use with caution.

Materials and methods

Clinical isolates

A total of 75 non-duplicate colistin-susceptible CRAB iso-
lates obtained from patients in Srinagarind Hospital, Khon 
Kaen University, Thailand between January and November 
in 2016 were included. They were from sputum or tracheal 
aspirates (46 isolates), pus (10 isolates), blood (3 isolates), 
drain fluid (2 isolates), others (urine, pleural fluid, tip cut 
down and stump, 1 isolate for each) and unknown sources 
(10 isolates). They were identified by conventional biochem-
ical tests including glucose, citrate and malonate utilization, 
growth at 41 and 44 °C and the presence of hemolysis (Bou-
vet and Grimont 1986), and then confirmed by the presence 
of an intrinsic blaOXA-51-like (Turton et al. 2006). All isolates 
were kept in skimmed milk with 15% glycerol at − 20 °C 
for further analysis.

MIC determination

Antimicrobial agents tested were amikacin and merope-
nem (Siam Bheasach, Bangkok, Thailand), gentamicin, 
ciprof loxacin, cefotaxime, ceftazidime and colistin 
(Sigma-Aldrich, St. Louis, MO, USA), imipenem (MSD, 

Whitehouse Station, NJ, USA), fosfomycin (Meiji Seika 
Pharma, Tokyo, Japan) and tigecycline (Pfizer Inc., Phil-
adelphia, PA, USA). MICs of these antimicrobials were 
determined by agar dilution method except for that of 
colistin using the BMD method (CLSI 2019). The MICs 
were interpreted according to the criteria of CLSI (2019) 
except for tigecycline using those of the European Com-
mittee on Antimicrobial Susceptibility Testing (EUCAST) 
breakpoint (EUCAST 2019). Escherichia coli ATCC 
25922 was used as an antimicrobial-susceptible control 
strain.

Detection of carbapenemase genes

All isolates were screened for an intrinsic blaOXA-51-like, 
OXA carbapenemase (blaOXA-23, blaOXA-24, blaOXA-58 and 
blaOXA-235) and metallo-β-lactamase (blaNDM, blaIMP and 
blaVIM) genes by PCR methods (Higgins et al. 2013; Poirel 
et al. 2011).

Modified population analysis profile (PAP) method

All isolates were screened for colistin heteroresistance by 
the modified PAP method described by Li et al. (2006). A 
volume of 50 µL of each tenfold serial dilution (final inoc-
ulum of 102 to 108 CFU/mL) of bacterial suspension was 
spread onto Mueller Hinton agar (MHA) plates (Oxoid, 
Basingstoke, Hampshire, England) containing various con-
centrations of colistin (0, 0.5, 1, 2, 3, 4, 5, 6 and 8 µg/mL). 
Bacterial colonies were counted after 48-h incubation at 
37 °C. Colistin heteroresistance was defined as the pres-
ence of a colistin-susceptible isolate with MIC of ≤ 2 µg/mL 
in which detectable colistin-resistant subpopulations were 
able to grow in the presence of > 2 µg/mL of colistin (Yau 
et al. 2009). Colistin MICs for the heteroresistant subpopu-
lations were determined by the BMD method after 3 daily 
subculturing on antibiotic-free MHA plates. Pseudomonas 
aeruginosa ATCC 27853 was used as a colistin-susceptible 
control strain.

Strain typing

The genetic relatedness of all isolates was investigated by 
enterobacterial repetitive intergenic consensus-PCR (ERIC-
PCR) (Versalovic et al. 1991). The fingerprints were veri-
fied by BioNumerics software (version 7.6, Applied Maths, 
Belgium) using the Dice coefficient and the unweighted pair 
group method of averages (UPGMA) with 1% optimization 
and 1% position tolerance. Isolates showing ≥ 80% similarity 
were considered clonally related (Ezadi et al. 2019).
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Results

Antimicrobial susceptibility

All 75 CRAB isolates were susceptible to colistin with MICs 
ranging from 0.5 to 2 µg/mL (MIC50 and MIC90 of 1 and 
2 µg/mL, respectively). Apart from colistin, amikacin was 
the second agent mostly active against the CRAB isolates 
with 25.3% susceptibility, whereas susceptibility to tigecy-
cline was 2.7% only (Table 1).

Carbapenemase genes

All isolates contained the intrinsic blaOXA-51-like. Carbap-
enemase genes were found in 74 isolates (98.7%): 67 iso-
lates with blaOXA-23-like, 2 isolates with blaNDM-like, 1 iso-
late with blaOXA-58-like, 3 isolates with both blaOXA-23-like 
and blaOXA-58-like, and 1 isolate with both blaOXA-23-like and 
blaNDM-like.

Colistin heteroresistance by modified PAP

Modified PAP analysis showed the growth of subpopulations 
in the presence of > 2 µg/mL of colistin (Fig. 1). Of the 75 
colistin-susceptible isolates, 35 isolates (46.7%) with colis-
tin MICs of 1 (11 isolates) and 2 µg/mL (24 isolates) were 
identified as colistin-heteroresistant. After 3 daily passages 
through an antibiotic-free medium, colistin heteroresistance 
phenotype was maintained in 33 isolates (44%). They were 
from sputum or tracheal aspirates (25 isolates), pus (4 iso-
lates), blood, drain fluid, tip cut down and tissue (1 isolate 
for each). The colistin MIC range for the 33 subpopulation 
isolates was 4- > 32 µg/mL, with MIC50 and MIC90 of 32 
and > 32 µg/mL, respectively (Table 2).

Strain typing

Cluster analysis using 80% similarity cut-off for clonal relat-
edness of the 75 CRAB isolates revealed 12 different ERIC-
PCR patterns, 8 clusters and 4 singletons (data not shown). 
Thirty-eight isolates (50.7%) belonged to the same cluster. 
Among the 33 colistin-heteroresistant isolates, 6 clusters and 
2 singletons were obtained (Fig. 2).

Discussion

Multidrug resistance (MDR) to currently available antibiot-
ics in Gram-negative bacteria is the major problem of public 
health worldwide. A critical problem is the increasing preva-
lence of carbapenem resistance, particularly by the mecha-
nism of carbapenemase production (Codjoe and Donkor 
2017). In this study, most of the CRAB isolates harbored 
one or two OXA carbapenemase genes, blaOXA-23-like and/
or blaOXA-58-like, similar to previous studies from Thailand 

Table 1   MICs of various 
antimicrobials for the 75 
colistin-susceptible CRAB 
isolates

S susceptible, I intermediate, R resistant
a MICs of all antimicrobials tested were determined by the agar dilution method except for those of colistin 
using the BMD method

Antimicrobial agents
(concentrations tested, µg/mL)

MICs (µg/mL)a %

Ranges MIC50 MIC90 S I R

Amikacin (0.5–64) ≤ 0.5 to 64  > 64  > 64 25.3 1.3 73.4
Gentamicin (0.25–32) ≤ 0.25 to 32  > 32  > 32 10.7 2.7 86.6
Ciprofloxacin (0.004–32) 2–32  > 32  > 32 0 1.3 98.7
Ceftazidime (0.125–256) 8–256  > 256  > 256 1.3 1.3 97.4
Imipenem (0.125–256) 16–256 64 64 0 0 100
Meropenem (0.125–256) 16–256 64 128 0 0 100
Fosfomycin (0.25–256) 64–256 128 256 10.7 53.3 36
Tigecycline (0.031–32) 0.5–16 4 8 2.7 – 97.3
Colistin (0.125–32) 0.5–2 1 2 100 – 0

Fig. 1   Population analysis profiles of the CRAB clinical isolates with 
heteroresistant subpopulations (isolates A132, A212 and A275) and 
colistin susceptibility (isolate A87), and colistin-susceptible control 
strain (P. aeruginosa ATCC 27853)
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(Lertsrisatit et al. 2017; Leungtongkam et al. 2018). In 
agreement with other reports, blaOXA-23-like was the major 
resistance determinant (40–100%) among the CRAB iso-
lates, indicating that carbapenem monotherapy is now no 
longer used as a therapeutic option against the MDR A. 
baumannii infections (Ezadi et al. 2019; Salehi et al. 2018).

Colistin has been used as the last resort for either MDR 
or extremely drug-resistant (XDR) A. baumannii infections 
(Cai et al. 2012). However, colistin resistance in this organ-
ism has been reported globally. Furthermore, colistin heter-
oresistance was also discovered in 15 of 16 (93.8%) colistin-
susceptible MDR A. baumannii isolates from Australia (Li 
et al. 2006). Hawley et al. (2008) described colistin heter-
oresistance in 19 MDR A. baumannii clinical isolates from 
Texas between 2003 and 2005 as defined by their growth 
on plates containing 8 μg/mL of colistin and giving colistin 
MICs of > 8 μg/mL, whereas Yau et al. (2009) reported the 
heteroresistance rate of 23% from Thailand in 2008. Colistin 
heteroresistance was also observed in 20 of 24 (83%) A. bau-
mannii isolates obtained between 2013 and 2015 from the 
USA (Srinivas et al. 2018). These isolates were from blood 

and respiratory tract, and susceptible to colistin with MICs 
of ≤ 0.25 to 0.5 µg/mL but grew on MHA containing 4 µg/
mL of colistin. Recently, 9 of 44 (20.5%) colistin-susceptible 
CRAB isolates from northern Iran have been identified as 
colistin-heteroresistant with subpopulations growing in the 
presence of 6–8 µg/mL of colistin (Ezadi et al. 2019). The 
colistin heteroresistance rates may be different due to inocu-
lum size applied (10–100 μL) and cut-off for identifying 
heteroresistant subpopulations (4 or ≥ 8 μg/mL) (Hawley 
et al. 2008; Li et al. 2006; Srinivas et al. 2018). Although 
colistin was the most active agent against the CRAB iso-
lates in this study, colistin heteroresistance was observed 
in 44% of them as detected by the modified PAP method. 
Unfortunately, colistin-heteroresistant A. baumannii strains 
cannot be discriminated from colistin-susceptible strains by 
the standard BMD susceptibility testing (Ezadi et al. 2019).

Impact of colistin heteroresistance on the clinical out-
comes is of concern. The pharmacokinetic study has dem-
onstrated that plasma colistin methanesulphonate concen-
trations usually achieve in the range of 1 to 4 µg/mL after 
intravenous administration (Li et al. 2005). However, the 
treatment with low dose of colistin may not be effective 
and can cause the selection of heteroresistance. Increased 
colistin dose also leads to its nephrotoxicity. Hawley et al. 
(2008) demonstrated a statistically higher rate of colistin 
heteroresistance (7 from 19 isolates, 36.8%) among MDR 
A. baumannii isolates from patients with previous colistin 
exposure. Rodriguez et al. (2009) described the selection of 
colistin-resistant subpopulations from a colistin-heteroresist-
ant A. baumannii isolate during the treatment with intrathe-
cal colistin in a case of postneurosurgical meningitis. Gazel 
and Otkun (2017) also demonstrated that after sub-inhibi-
tory exposure to colistin, heteroresistance or resistance had 
been developed in all CRAB isolates. In the present study, 
patients’ clinical data and treatment outcomes, which may 
provide important information for the treatment of patients 
infected with colistin-heteroresistant CRAB isolates, were 
not available. However, we found the high rate of colistin 
heteroresistance among our CRAB isolates. It is possible 
that the colistin-resistant subpopulations from these isolates 
may be selected after exposure to colistin, leading to ineffec-
tive treatment. Therefore, combination therapies of colistin 
with other agents were suggested for patients infected with 
MDR A. baumannii isolates (Gazel and Otkun 2017; Keng-
kla et al. 2018; Rodriguez et al. 2010).

The main mechanism of colistin resistance in A. bau-
mannii is the modification of lipopolysaccharide (LPS) by 
mutations in PmrA/PmrB two-component system (Ko et al. 
2017). These mutations cause upregulation of the pmr-
CAB operon, which results in the synthesis and addition of 
positively charged phosphoethanolamine to the LPS. An 
increase in positive charge of the LPS leads to a decrease in 
the binding between colistin (positive charge) and lipid A 

Fig. 2   Dendrogram of ERIC-PCR from the 33 colistin-heteroresistant 
CRAB clinical isolates generated by BioNumerics using the UPGMA 
and the Dice coefficient. Dashed line indicates 80% similarity cut-off
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(negative charge) of the LPS, thus resulting in colistin resist-
ance. Mutations in PmrB such as S144KLAGS, P170L and 
M308R, and that in PmrA such as M12I were responsible 
to colistin heteroresistance (Charretier et al. 2018). Unfor-
tunately, molecular resistance mechanisms of the colistin-
heteroresistant CRAB isolates were not investigated in the 
present study.

In conclusion, the rate of colistin heteroresistance was 
high (44%) among the CRAB clinical isolates from our hos-
pital. They were of different strains and their subpopulations 
exhibited high-level colistin resistance. This highlights that 
clinical use of colistin for the treatment of the CRAB infec-
tions may be failure because of the selection of heteroresist-
ant subpopulations.
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