Skip to main content
. 2020 Jun 23;3:e7. doi: 10.1017/pen.2020.7

Table 2.

GEE models for basic predictors of average number of clicks (EEfRT)

Effect β se χ² p
Model 1
Reward magnitude 5.11 0.40 160.13 <.001
Probability 50%a 17.10 1.69 102.26 <.001
Probability 88%a 25.36 1.86 185.97 <.001
Probability 50%a × Reward magnitude 0.37 0.36 1.07 .302
Probability 88%a × Reward magnitude −1.04 0.35 8.58 .003
Trial −0.26 0.04 45.73 <.001
Hand 11.99 0.85 199.49 <.001
Block −1.52 0.85 3.22 .073
MaxMot-L 0.43 0.15 8.12 .004
MaxMot-R 0.22 0.11 4.19 .041
Model 2
MaxMot-L × Hand −0.16 0.08 3.52 .061
MaxMot-R × Hand 0.18 0.06 8.35 .004
Model 3
MaxMot-L × Reward −0.01 0.02 2.38 .683
MaxMot-R × Reward 0.03 0.02 0.17 .123
Model 4
MaxMot-L × Probability 50%a −0.01 0.06 0.05 .817
MaxMot-L × Probability 88%a −0.06 0.07 0.75 .386
MaxMot-R × Probability 50%a 0.07 0.08 0.84 .359
MaxMot-R × Probability 88%a 0.09 0.08 1.26 .262

Note. All models included probability (categorical), reward magnitude, trial number, block, hand as within-subjects variables, and MaxMot-L and MaxMot-R as between subject variables; χ² = Wald chi-square; β = regression coefficient; significant effects in bold.

a

Reference category: 12% probability.