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Abstract

PP2A is an essential protein phosphatase that regulates most cellu-
lar processes through the formation of holoenzymes containing
distinct regulatory B-subunits. Only a limited number of PP2A-
regulated phosphorylation sites are known. This hampers our
understanding of the mechanisms of site-specific dephosphoryla-
tion and of its tumor suppressor functions. Here, we develop phos-
phoproteomic strategies for global substrate identification of
PP2A-B56 and PP2A-B55 holoenzymes. Strikingly, we find that
B-subunits directly affect the dephosphorylation site preference of
the PP2A catalytic subunit, resulting in unique patterns of kinase
opposition. For PP2A-B56, these patterns are further modulated by
affinity and position of B56 binding motifs. Our screens identify
phosphorylation sites in the cancer target ADAM17 that are regu-
lated through a conserved B56 binding site. Binding of PP2A-B56 to
ADAM17 protease decreases growth factor signaling and tumor
development in mice. This work provides a roadmap for the identi-
fication of phosphatase substrates and reveals unexpected mecha-
nisms governing PP2A dephosphorylation site specificity and tumor
suppressor function.
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Introduction

It has been appreciated for over 40 years that multisite phosphoryla-

tion is a major mechanism for regulating protein function (Cohen,

2000). Historically, the differential phosphorylation of a protein was

attributed to the actions of tightly regulated kinase activities. In this

scenario, kinases are the major determinants of multisite phospho-

rylation with protein phosphatases being promiscuous counterac-

tors. Kinases achieve specificity through a deep catalytic cleft that

recognize specific amino acid consensus sequences flanking the

phosphorylation site as well as through interactions with short

linear motifs (SLiMs) in substrates (Miller & Turk, 2018). Our under-

standing of kinase function has been greatly facilitated by combin-

ing specific inhibitors with phosphoproteomics allowing global

substrate identification. However, our understanding of phosphatase

substrates is currently limited due to lack of specific inhibitors.

Phosphoprotein phosphatase 2A (PP2A) accounts for the major-

ity of phosphoserine and phosphothreonine dephosphorylation in

eukaryotic cells and regulates many aspects of cellular physiology

(Virshup & Shenolikar, 2009; Nilsson, 2019). PP2A is a heterotrimer

composed of a catalytic C-subunit, a scaffolding A-subunit, and a

regulatory B-subunit. The B-type subunits belong to four distinct

gene families, B (B55), B0 (B56), B″ (PR72), and B‴ (PR93), each

encoding two to five isoforms (Virshup & Shenolikar, 2009; Wlodar-

chak & Xing, 2016). The B55 and B56 families are the largest of the

regulatory subunit families comprising four and five human

isoforms, respectively.

Recent discoveries have shown that PP2A similarly to kinases

interacts with substrates and substrate specifying proteins through

SLiMs (Cundell et al, 2016; Hertz et al, 2016; Wang et al, 2016; Wu

et al, 2017). In the case of PP2A-B56, a series of biochemical and
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structural studies have revealed that proteins containing LxxIxE type

of motifs engage a conserved binding pocket on all isoforms of B56

regulatory subunits (Hertz et al, 2016; Wang et al, 2016). For PP2A-

B55, clusters of basic residues surrounding the phosphorylation site

likely bind to a conserved acidic surface on the B55 subunit (Cun-

dell et al, 2016). However, once bound to their substrates to which

extent and how the PP2A holoenzymes selectively dephosphorylate

individual sites is not known. One possibility is that substrate bind-

ing per se provides the proper three-dimensional positioning (key-

in-lock model) of the PP2A active site for some phosphorylation

sites but not others (Xu et al, 2006, 2008; Cho & Xu, 2007). Alterna-

tively, it has been suggested that, like kinases, phosphatases may

favor certain amino acid sequences immediately surrounding the

phosphorylation site (Ubersax & Ferrell, 2007; Saraf et al, 2010;

McCloy et al, 2015). However, only a small number of phosphoryla-

tion sites have been experimentally linked to specific PP2A holoen-

zymes making it difficult to conclude on general principles of

phosphorylation site specificity. Furthermore, a direct comparison

of substrates for two PP2A holoenzymes would be needed to deter-

mine whether regulatory subunits only act as targeting subunits or

have additional roles in site-specific dephosphorylation. Uncovering

this would have important implications for understanding how

phosphorylation-mediated signaling is regulated.

Results

Development of a specific PP2A-B56 inhibitor

To understand principles of PP2A specificity, we focused on PP2A-

B56 which is a major tumor suppressor (Janssens et al, 2005; Eich-

horn et al, 2009). Proteins containing LxxIxE motifs engage a

conserved binding pocket on B56 regulatory subunits with varying

micromolar affinities depending on the exact amino acid composi-

tion of the motif (Hertz et al, 2016; Wang et al, 2016; Wu et al,

2017). We recently showed that high-affinity LxxIxE motifs, when

expressed in vivo, inhibit dephosphorylation by PP2A-B56 of the

Ebola VP30 transcription factor (Kruse et al, 2018), probably by

acting like a competitive inhibitor displacing PP2A-B56 from its

substrate. Provided sufficient specificity and potency, we reasoned

that such an inhibitor could be used to displace PP2A-B56 from all

cellular LxxIxE containing interactors and, thus, to interrogate the

phosphoproteome regulated by this phosphatase. To test this, we

designed a series of constructs containing 1, 2, or 4 copies of a func-

tional high-affinity LxxIxE motif separated by spacer sequences and

fused these to either polyhistidine (His-tag) or yellow fluorescent

protein (YFP) (Fig 1A). Constructs containing 4 copies of a non-

binding AxxAxA motif were included as controls. The His-tagged

inhibitor series were expressed and purified from Escherichia coli,

and their binding to recombinant B56a was analyzed using isother-

mal titration calorimetry (ITC). Indeed, both the binding affinities

(KD) and the stoichiometry (number of B56 molecules bound per

inhibitor) increased with the number of LxxIxE motifs (Figs 1A and

B, and EV1A). Prolonged mitosis is a well-established mitotic

phenotype of interfering with PP2A-B56 function (Foley et al, 2011;

Suijkerbuijk et al, 2012; Kruse et al, 2013). To assess the potency of

the inhibitor series in cells, the YFP-tagged constructs were trans-

fected into HeLa cells and progression through mitosis was

monitored by live-cell microscopy. A clear correlation between

phenotype severity and inhibitor copy number was observed

(Fig 1C). Based on these results, we focused on the YFP-tagged 4x

(LxxIxE) B56 inhibitor and the corresponding 4x(AxxAxA) control

inhibitor. To determine the specificity of the B56 inhibitor, it was

affinity-purified from HeLa cells and interacting proteins were iden-

tified by quantitative label-free mass spectrometry (MS). Strikingly,

all components of the PP2A-B56 holoenzyme were strongly enriched

in elutes from B56 inhibitor samples compared to control inhibitor

samples (Fig 1D and Table EV1). This includes the five isoforms of

B56 regulatory subunits and the two isoforms of each of the cata-

lytic and scaffold subunits. NSF (N-ethylmaleimide-sensitive fusion

protein), a vesicle-fusing ATPase, was the only other protein that

bound specifically to the B56 inhibitor. Thus, the B56 inhibitor

displays excellent specificity toward the PP2A-B56 holoenzyme

family. We also concluded from this experiment that most proteins

directly interacting with PP2A-B56 engage the LxxIxE binding

pocket for effective binding.

Next, we tested whether the B56 inhibitor is able to displace

PP2A-B56 interactors. To this end, YFP-B56a was transfected into

HeLa cells stably expressing mCherry-tagged B56 inhibitor or

control inhibitor. Purifications of YFP-B56a were subsequently

analyzed by quantitative label-free MS (Fig 1E and Table EV2) or

Western blotting (WB) (Fig 1F) probing with antibodies against

Separase, Kif4A, BubR1, and Axin1, which all contain validated

LxxIxE motifs (Hertz et al, 2016). Both MS and WB analyses

revealed that YFP-B56a enriched from cells expressing the B56 inhi-

bitor shows a significant decrease in interactor binding compared to

YFP-B56a enriched from cells expressing the control inhibitor.

In summary, we have developed a competitive inhibitor with

excellent potency and specificity toward PP2A-B56.

Identification of PP2A-dependent phosphorylation sites

We next used this inhibitor to identify in vivo substrates of PP2A-

B56. Stable HeLa cell lines allowing rapid induction of the B56 or

control inhibitor were synchronized at either G1/S or in mitosis

(M), and cells were collected and processed for quantitative phos-

phoproteomics analysis (Figs 2A and B, and EV2A and B). Using

this approach, we identified and quantified a total of 13,515 and

27,745 phosphorylation sites in G1/S and M, respectively (Fig 2A

and B, Table EV3). Of these sites, 548 and 398 were significantly

increased in phosphorylation upon B56 versus control inhibitor

expression (log2 ratio > 0.8 (1.75-fold), P-value < 0.05, phosphory-

lation site localization probability > 75%) in G1/S and M, respec-

tively. The phosphorylation sites that increased were located on 651

proteins of which 34 contain a validated or predicted LxxIxE motif

(Hertz et al, 2016; Wu et al, 2017). It was previously shown that

LxxIxE containing proteins can act as scaffolds for the recruitment

of other proteins for dephosphorylation (Suijkerbuijk et al, 2012;

Qian et al, 2017; Kruse et al, 2018). Using the STRING database

(Jensen et al, 2009), we found that an additional 491 of the 651

proteins identified in our screen are direct interactors of proteins

with validated or predicted LxxIxE docking motifs. Thus, the major-

ity of up-regulated phosphorylation sites are present on LxxIxE

containing proteins or on their immediate interactors strongly

supporting the notion that the identified phosphorylation sites are

PP2A-B56 targets.
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In general, dephosphorylation of a site was a specific event that

did not affect all phosphorylation sites on a protein. Comparison of

log2 ratios of B56-dependent dephosphorylation sites versus other

phosphorylation sites on the same protein was not correlated

(R = 0.1113; Fig EV2C). To explore the mechanism for this differen-

tial site specificity, the chemical nature of the phosphorylation sites

dephosphorylated by PP2A-B56 was investigated. Over- and under-

representation of amino acids surrounding the up-regulated

phosphorylation site were determined by comparison with all phos-

phorylation sites identified in the respective screens (Colaert et al,

2009). This revealed a preference for basic amino acids upstream of

the dephosphorylation site (Fig 2C and D). Interestingly, we found a

strong deselection for phosphorylation sites containing a proline

residue in the +1 position. In contrast, no preference pattern was

observed when we analyzed the 184 and 163 phosphorylation sites

that were significantly decreased in phosphorylation upon B56

versus control inhibitor expression (log2 ratio > 0.8 (1.75-fold),

P-value < 0.05, phosphorylation site localization probability > 75%)

in G1/S and M, respectively (Fig EV2D). Furthermore, among all

increased phosphorylation sites co-identified in both G1/S and M

datasets, the overlap of PP2A-B56-regulated sites was only 4%

(Fig EV2E). This indicates unique B56 substrates in mitosis and G1/
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Figure 1. Development of a PP2A-B56 specific inhibitor.

A, B Schematic of the B56 inhibitor series and affinities and stoichiometry’s for B56a measured by ITC. Global direct fitting shown for one experiment (reverse). Each dot
is the integrated heat per injection, and the error bars represent uncertainty with this integrated value. The experiment was done in both direct (B56 in cell) and
reverse (B56 in syringe) with similar results.

C Time from nuclear envelope breakdown (NEBD) to mitotic exit of cells expressing the indicated B56 inhibitors with each circle representing a single cell. Only cells
with similar expression levels of the various B56 inhibitor constructs were analyzed. Median time is indicated by red line. A representative result from at least three
independent experiments is shown. At least 25 cells were counted per condition in the experiment shown. A Mann–Whitney U-test was used for statistical analysis
(ns: non-significant, ***P ≤ 0.001).

D Volcano plot representing mass spectrometry identified proteins co-purifying with B56 inhibitor versus control inhibitor from HeLa cells. PP2A-B56 subunits
co-purifying with the B56 inhibitor are indicated.

E, F Competition assay in HeLa cells stably expressing RFP-tagged B56 inhibitor (LxxIxE) or control inhibitor (AxxAxA). YFP-B56a was transfected into and subsequently
purified from these cell lines. Loss of binding of indicated proteins determined by either mass spectrometry (pink—B56 SLiM-containing protein and known B56
interactor; blue—known B56 interactor, green—B56 SLiM-containing protein) (E) or Western blotting (F).
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S, yet the datasets reveal remarkably similar phosphorylation site

consensus motif preferences.

The phosphorylation site preference of PP2A-B56 was further

investigated by two independent experimental methods. First, we

performed an in vitro peptide phosphatase assay that sampled phos-

phopeptides purified from cells. Purified PP2A-B56a holoenzyme

was added and dephosphorylation kinetics followed by mass spec-

trometry (Figs 2F and EV2F, Table EV4). Second, we added an

LxxIxE inhibitor peptide or a control peptide to cell extracts and

determined inhibition of dephosphorylation after 5 and 15 min

(Figs 2G and EV2G, Table EV5). Both approaches confirmed the

apparent preference for basophilic and a deselection of proline-

directed phosphorylation sites. Moreover, neither of the PP2A-B56

phosphoproteomics screens revealed a preference of this phos-

phatase for phosphorylated threonines over phosphorylated serines.

These findings are in stark contrast to previous observations that

proline-directed phosphorylation sites are excellent substrates of

PP2A-B55, another major PP2A holoenzyme species, and that this

phosphatase shows a clear preference for phosphothreonine over

phosphoserine (Agostinis et al, 1992; Cundell et al, 2016; Godfrey

et al, 2017). To investigate this difference further, we identified

PP2A-B55-regulated phosphorylation sites by adding thiophosphory-

lated Arpp19, a potent mitotic PP2A-B55 inhibitor (Gharbi-Ayachi

et al, 2010; Mochida et al, 2010), or thiophosphorylated Arpp19

S62A as a control to mitotic cell extracts and compared these

samples quantitatively by mass spectrometry or Western blotting

with a-pTP antibodies (Fig EV2H). This identified 1405 PP2A-B55

up-regulated sites (log2 ratio > 0.8 (1.75-fold), P-value < 0.05, phos-

phorylation site localization probability > 75%) of which less than

1.3% was shared with the sites identified in the PP2A-B56 datasets.

Moreover, these results confirmed the differential preference of

PP2A-B55 and PP2A-B56 for proline-directed motifs and the previ-

ously reported preference of PP2A-B55 for phosphothreonine over

phosphoserine (Fig 2E and Table EV6). Comparison of all increased

phosphorylation sites in the PP2A-B56 G1/S and M as well as the

PP2A-B55 datasets supports the notion that while basophilic, acido-

philic, and proline-directed sites can be dephosphorylated by the

two phosphatase holoenzymes, PP2A-B56 and PP2A-B55 show a

clear difference in their relative preferences (Fig 2H).

Differential phosphorylation site preference of PP2A-B56
and PP2A-B55

Next, we wanted to investigate whether the observed dephosphory-

lation site patterns are inherent properties of the two PP2A holoen-

zymes. In principle, preference of certain phosphorylation sites as

observed in the phosphoproteomics analysis could be biased by

PP2A holoenzymes localizing to specific subcellular compartments

enriched for certain kinases. First, we established an in vitro phos-

phatase assay with purified PP2A-B56a and PP2A-B55a holoen-

zymes using synthetic phosphopeptides with phosphorylation sites

surrounded by amino acids conforming to physiologically relevant

basophilic (PKC), acidophilic (PLK1), or proline-directed (CDK1)

kinase consensus sequences (Fig 3A). Kinetic analysis revealed that

the Michaelis–Menten constant Km was roughly similar for PP2A-

B56 and PP2A-B55 toward the three different phosphopeptides. On

the other hand, the catalytic efficiency (Kcat/Km) of PP2A-B56

toward the proline-directed phosphopeptide was 50- to 100-fold

lower compared to the acidophilic and basophilic ones, whereas this

difference was not observed for the PP2A-B55 holoenzyme.

The PP2A-B55 phosphoproteomics experiment (Fig 2E) predicts

a preference for basic amino acids and a deselection of acidic resi-

dues C-terminal to the phosphorylated TP sites. Deselection of basic

amino acid residues was observed N-terminal to the TP sites. A

panel of synthetic peptides with a variable content of amino acid

residues flanking the phosphorylated TP site almost completely

recapitulated this in vitro (Fig 3B). The PP2A-B56 iceLogos predict a

preference for basic amino acids N-terminal to the phosphorylation

site and a deselection of prolines in the +1 position, whereas no

phosphothreonine over phosphoserine preference was observed

(Fig 2C, D, F and G). A series of phosphopeptides designed to test

this confirmed that PP2A-B56 shows reduced dephosphorylation of

phosphorylation sites with a proline in the +1 position (Fig 3C).

However, the preference for basic amino acids N-terminal to the

phosphorylation site could not be confirmed. Rather, in vitro, PP2A-

B56 seems to dephosphorylate phosphorylation sites with basic,

acidic, or non-charged amino acids in this position equally well and

thus a proline in the +1 position seems to be the major determinant

for PP2A-B56 activity in vitro. Finally, comparing a set of peptides

distinguished only by the presence of either phosphorylated serine

or threonine amino acid residues revealed no particular difference

in preference by PP2A-B56 toward these phosphorylation sites con-

firming the in vivo iceLogo representations (Fig 3D).

In conclusion, we find that the B56 and B55 regulatory subunits

directly affect the phosphorylation site preference of their respective

PP2A holoenzyme catalytic subunits, resulting in unique patterns of

kinase opposition.

Positional cues and substrate binding strength guide site-specific
dephosphorylation by PP2A-B56

Our phosphoproteomic results revealed that most PP2A-B56-regu-

lated phosphorylation sites are present on proteins containing

LxxIxE docking motifs or on their direct interactors. This prompted

◀ Figure 2. Phosphorylation site preference of PP2A-B56.

A, B Schematic of synchronization protocol for G1/S (A) or mitotic (B) arrested cells and accompanying volcano plot of phosphorylation sites quantified. The
phosphorylation sites showing an increase in the presence of the B56 inhibitor are shown in light gray. Phosphorylation sites in a protein containing an LxxIxE
motif are colored pink.

C–E IceLogo representation of over- and underrepresented amino acid residues surrounding phosphorylation sites for the indicated experiments (letter coloring is
standard iceLogo color output).

F, G IceLogo representation of over- and underrepresented amino acid residues surrounding phosphorylation sites for the experiments indicated in Fig EV2F and G,
respectively (letter coloring is standard iceLogo color output).

H Distribution of phosphorylation site consensus motifs surrounding B56- or B55-dependent up-regulated phosphorylation sites (top panel) in comparison with all
phosphorylation sites (bottom panel) in the indicated experiment (proline-directed: pS/TP; basic: R/KxxpS/T, R/KxpS/T, R/KpS/T; acidic: D/E/NxpS/T, D/EpS/T, pS/TD/E,
pS/TxD/E; x—any amino acid).

ª The Authors The EMBO Journal 39: e103695 | 2020 5 of 18

Thomas Kruse et al The EMBO Journal



deeper investigation into how the position or affinity of an LxxIxE

motif in relation to a phosphorylation site might contribute to the

observed differential dephosphorylation by PP2A-B56.

For this purpose, we turned to the transcription factor FoxO3,

which binds to PP2A-B56 through a conserved LxxIxE motif (resi-

dues 448-MQTIPE-453; Fig 4A; Hertz et al, 2016). Consistently,

FoxO3 S413 and S425 were among the up-regulated phosphorylation

sites in the G1/S phosphoproteomic dataset (Table EV3).

Furthermore, dephosphorylation of FoxO3 by PP2A-B56 in an

LxxIxE-dependent manner was previously observed to promote its

nuclear translocation (Singh et al, 2010; Hertz et al, 2016).

First, a YFP-FoxO3 construct where the endogenous B56 LxxIxE

docking site is mutated (FoxO3 2A) was generated. In this construct,

motifs of low (L; KD � 17 lM), intermediate (I; KD � 1.2 lM), or

high (H; KD � 0.08 lM) affinity for PP2A-B56 were fused to the

C-terminus of FoxO3 (Fig 4A). The ability of the engineered FoxO3
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Figure 3. Differential phosphorylation site preference of PP2A-B56 and PP2A-B55.

A Michaelis–Menten kinetic parameters of purified PP2A-B56a and PP2A-B55a holoenzymes were determined against the indicated phosphopeptides. Mean and
standard deviation shown in plots as black bars (n = 3 independent experiments).

B–D In vitro dephosphorylation by the PP2A-B55a and PP2A-B56a holoenzymes of panels of phosphorylated peptides as indicated. Mean and standard deviation shown
in plots as black bars (n = 3 independent experiments).
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constructs to interact with PP2A-B56 was compared to that of wild-

type (wt) FoxO3 and 2A. The L-C, I-C, and H-C FoxO3 variants

bound approximately 0.5-, 4-, or 10-fold more PP2A-B56 than wt

FoxO3, whereas no binding to PP2A-B56 was observed for FoxO3

2A (Fig 4B). Thus, binding between FoxO3 and PP2A-B56 was

preserved when engrafting motifs onto ectopic FoxO3 sites allowing

for the investigation of positional and compositional B56 motif-

phosphorylation site relationships.

The engineered FoxO3 variants were expressed in HeLa cells and

probed with a commercially available phosphoantibody against

pS413 or a phosphoantibody produced in-house against pS253 (see

Fig EV3A for validation of the pS253 antibody). The wt FoxO3

showed decreased levels of phosphorylation on S413 and S253

compared to FoxO3 2A as expected (Fig 4C and D). Dephosphoryla-

tion of pS413 and pS253 in L-C is comparable to that observed for

FoxO3 2A. Furthermore, even though FoxO3 I-C binds approxi-

mately fourfold more PP2A-B56 than wt FoxO3, only a slightly

reduced or similar dephosphorylation pattern of pS413 and pS253 is

observed when compared to wt FoxO3 (Fig 4C and D). Even though

distance in the primary amino acid sequence does not necessarily

translate to distance in the tertiary structure, these results may

reflect that at least S413 is closer to the endogenous FoxO3 LxxIxE

motif (amino acids 448–453) compared to the motifs moved to the

C-terminus (amino acid 673). On the other hand, the FoxO3 H-C

variant, which binds roughly 10-fold more PP2A-B56 than wt

FoxO3, showed a comparable dephosphorylation pattern with

respect to pS413 and increased dephosphorylation of S253. These

observations suggest that the decrease in dephosphorylation from

moving PP2A-B56 motifs out of their natural context (L-C) can be

partially (I-C) or fully (H-C) compensated for by motifs with increas-

ing binding strength.

Phosphorylation of FoxO3 at T32, S253, and S644 promotes its

retention in the cytoplasm (Brunet et al, 1999). Various extracellular

stimuli lead to dephosphorylation by PP2A-B56 and subsequent

translocation to the nucleus (Brunet et al, 1999; Hu et al, 2004;

Singh et al, 2010).

Consistently, the nuclear/cytoplasmic distribution ratio of the

respective YFP-FoxO3 constructs correlated with the amount of

bound PP2A-B56, with FoxO3 H-C localizing primarily to the

nuclear compartment (Fig 4E). This suggests that the appropriate

combination of motif position and binding affinity of the FoxO3

LxxIxE motif is important for the proper regulation of its nuclear/

cytoplasmic distribution.

Next, we investigated whether these results could be recapitu-

lated in vitro. To this end, we focused on the PP2A-B56 substrate

Cdc20 that we also identified in the phosphoproteomic analyses

(Table EV3; Lee et al, 2017; Fujimitsu & Yamano, 2020). We have

previously shown that a short fragment of Cdc20 fused to GST

(GST-Cdc20 49-78) can be utilized for efficient in vitro dephosphory-

lation (Hein et al, 2017; Ueki et al, 2019). Cdc20 49–78 contains

three TP phosphorylation sites (T55, T59, and T70) that can be

phosphorylated by Cdk1. This Cdc20 fragment was engineered to

contain a PP2A-B56 binding LxxIxE motif at varying distances

(1× = 12 aa, 2× = 70 aa, and 4× = 130 aa, with respect to T70) from

the phosphorylation sites (Fig 4F). In addition, we replaced the

LxxIxE motif with AxxAxA in the 1× construct as a control. While

the dephosphorylation rates of Cdc20 1× and 2× were similar, Cdc20

4× exhibited slower dephosphorylation kinetics. To probe the

importance of binding affinity, the 1× GST-CDC20 fragment was

engineered to contain either a higher (KD = 1 lM) or lower

(KD = 17 lM) affinity LxxIxE motif (Fig EV3B). The lower affinity

construct showed slower dephosphorylation kinetics than the corre-

sponding higher affinity construct. Taken together, these in vitro

and in vivo experiments do not favor a model where a strict three-

dimensional positioning (key-in-lock model) of the B56 docking

motif is the sole determinant for the phosphatase to dephosphory-

late certain phosphosites on the substrate. If this was the case,

moving the docking motif to structurally remote positions such as

the C-terminus of FoxO3 should abolish dephosphorylation and this

is not what is observed. Rather, the overall conclusion from these

experiments is that a combination of motif position and binding

strength is important parameters, which determine phosphatase

activity toward specific phosphosites on the substrate.

PP2A-B56 is a regulator of ADAM17 phosphorylation status and
shedding activity

The PP2A-B56 phosphoproteomic screens identified phosphory-

lated T735 (1.75-fold change; B56 inhibitor WT/3A, P < 0.0001)

and S791 (1.21-fold change; B56 inhibitor WT/3A, P < 0.002) of

the essential transmembrane metalloproteinase ADAM17 as sites of

PP2A-B56 dephosphorylation. Interestingly, T735 and S791 are in

close proximity to a highly conserved putative LxxIxE motif

located in the cytoplasmic C-terminal tail of ADAM17 (759-

MDTIQE-764) (Fig 5A). This suggests a mechanistic basis for the

observed activity of PP2A-B56 toward phosphorylated ADAM17.

To interrogate this further, we performed ITC experiments using

purified B56a and measured binding to a synthetic ADAM17

peptide containing the putative LxxIxE motif. We measured a KD

of 7 lM, while no binding was detected to a peptide containing a

point mutation (I762A) in the interaction motif. A peptide where

the MDTIQE sequence was engineered for optimal binding (LDTI-

QEEE) showed a KD of 0.9 lM (Figs 5B and EV4A). In all the

following experiments, we use the murine ortholog of ADAM17,

but will refer to the corresponding human amino acid numbering

throughout. To validate the ITC measurements in cells, constructs

encoding full-length Myc-tagged ADAM17 wt, ADAM17 I762A, or

the ADAM17 variant with improved binding motif (LEE) were

transfected into a HeLa cell line stably expressing YFP-B56a. YFP-
B56a was immunopurified using a YFP affinity column and bind-

ing monitored by an anti-Myc antibody in a subsequent WB assay

(Fig 5C). Binding was observed for wt ADAM17, but not for the

I762A mutant showing that ADAM17 encodes a bona fide PP2A-

B56 binding motif in its cytoplasmic C-terminal tail. As expected,

the LEE variant showed increased binding to PP2A-B56 compared

to wt ADAM17. To establish a firm connection between PP2A-B56

binding and dephosphorylation of ADAM17, the C-terminal cyto-

plasmic part (V724-C827) of ADAM17 wt, I762A, and LEE

ADAM17 were fused to GST, purified, and in vitro-phosphorylated

with protein kinase A (PKA) (Fig EV4B). GST alone was not phos-

phorylated showing that the phosphosignal detected is specific for

ADAM17 (Fig EV4B). Subsequent exposure of PKA-phosphorylated

GST-ADAM17 (V724-C827) fragments to recombinant PP2A-B56a
revealed that dephosphorylation of the I762A construct was slower

and dephosphorylation of the LEE construct was faster when

compared to wt GST-ADAM17 (Fig 5D). Thus, PP2A-B56 can
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regulate phosphorylation status of the ADAM17 C-terminal tail

through binding to its LxxIxE motif.

In a process termed ectodomain shedding, the extracellular

ADAM17 protease domain cleaves over 90 cell surface anchored

proteins such as cytokines and growth factors leading to the release

of their extracellular part as bioactive compounds (Zunke & Rose-

John, 2017). ADAM17 shedding activity can be stimulated by phos-

phorylation of its intracellular C-terminal tail, and T735 and S808

phosphorylations enhance ADAM17-mediated shedding of epider-

mal growth factor receptor (EGFR) ligands (Soond et al, 2005; Xu &

Derynck, 2010).

To probe the role of PP2A-B56 in regulating ADAM17 shedding

activity, we established a genetic complementation system. Endoge-

nous ADAM17 was removed using CRISPR/Cas9 technology in the

colon cancer cell line DLD-1 allowing for functional complementa-

tion with exogenous ADAM17 (Fig EV4C–F). We established stable

cell lines expressing ADAM17 wt, I762A, and LEE at equal levels

that were correctly processed and equally transported to the cells

surface (Figs 5E and EV4G). These cell lines were exposed to oxida-

tive stress or X-ray irradiation, conditions known to induce

ADAM17 activity, and shedding of the ADAM17 substrate amphireg-

ulin (AREG) was monitored (Fig 5F). Interestingly, an inverse rela-

tionship between ADAM17 activity and PP2A-B56 binding was

observed and this result was validated in an independent DLD-1 null

clone (Fig EV4H).

Finally, we wanted to probe the effect of PP2A-B56 on the phos-

phorylation status of ADAM17 in this set-up. To this end, ADAM17

wt and I762A were immunopurified from cells exposed to oxidative

stress. Mass spectrometry analysis of the ADAM17 band excised

from the gel showed that in ADAM17 I762A, which does not bind

PP2A-B56, phosphorylation of both T735 and S808 was up-regu-

lated compared to ADAM17 wt (Fig 5G and Table EV7). Thus,

PP2A-B56 regulates physiologically relevant phosphorylation sites

on ADAM17 to modulate its shedding activity. We anticipate that

PP2A-B56 when bound to ADAM17 regulates several phosphoryla-

tion sites in the C-terminal tail as well as the phosphorylation status

of binding partners such as iRhom1/2 and that this collectively

controls shedding.

PP2A-B56 is a regulator of ADAM17-mediated growth factor
signaling and tumorigenesis

Enhanced ADAM17 activity results in increased shedding of

several epidermal growth factor receptor (EGFR) ligands and

hyperactivation of EGFR signaling. Therefore, we tested the activa-

tion of EGFR signaling in the ADAM17 wt, I762A, and LEE cell lines

as measured by EGFR Tyr1068 autophosphorylation after exposure

to oxidative stress (Fig 6A). Strong binding between PP2A-B56 and

ADAM17 correlated with low levels of EGFR autophosphorylation

compared to the wt situation and the reverse was observed for the

ADAM17 I762A cell line. Consistently, proliferation rates and inva-

sion potential were decreased in the ADAM17 LEE cell line

compared to the ADAM17 wt and ADAM17 I762A cell lines (Fig 6B

and C).

Next, we investigated whether the binding of PP2A-B56 to

ADAM17 influences in vivo tumor growth. As ADAM17-induced

autocrine and paracrine signaling may influence the tumor microen-

vironment, we chose a syngeneic, orthotopic tumor model (DuPré

et al, 2007). Similar to the DLD-1 cell system, we removed endoge-

nous ADAM17 using CRISPR/Cas9 from the mouse breast cancer

cell line 4T1 and exogenously expressed the different ADAM17 vari-

ants (Figs 6D, and EV4I and J). We then injected these cells into the

mammary fat pad of BALB/c mice and monitored tumor growth.

We found that tumors bearing the ADAM17 LEE variant grew signif-

icantly slower than ADAM17 I762A tumors (Fig 6E). Interestingly,

none of the mice injected with ADAM17 LEE cells reached tumor

endpoint criteria, as opposed to ADAM17 wt or I762A injected mice,

which exhibited only 50% survival by the end of the experiment

(Fig 6F).

Excessive ADAM17-mediated EGFR activation plays an important

role in epithelial cancers (Ardito et al, 2012; Schmidt et al, 2018).

Consistently, we show that PP2A-B56 binding to ADAM17 reduces

EGFR Tyr1068 autophosphorylation and suppresses in vivo tumor

growth.

Discussion

From the perspective of basic PP2A biology, the most striking obser-

vation from our study is that the identity of the regulatory B-subunit

affects the phosphorylation site preference of the holoenzyme cata-

lytic subunit. Although previous work has hinted at this (Agostinis

et al, 1992; Saraf et al, 2010), our global in vivo substrate mapping

strategy and side-by-side comparison of two PP2A holoenzymes

proves this to be a key basic principle of PP2A phosphatase func-

tion. This principle explains the need for an inhibitory mechanism

toward PP2A-B55 during mitosis, while PP2A-B56 can remain

active, as it has limited activity toward Cdk1 substrates, the major

◀ Figure 4. Mechanistic basis for site-specific dephosphorylation by PP2A-B56.

A Schematics of engineered FoxO3 constructs. KD measurements of the LxxIxE motifs fused to the C-terminus of FoxO3 were performed previously (Hertz et al, 2016;
Kruse et al, 2018).

B The indicated YFP-FoxO3 constructs were transfected into HeLa cells, purified using YFP resin and PP2A-B56 binding determined by Western blotting. PP2A-A;
scaffold subunit.

C, D YFP-FoxO3 constructs were transfected into HeLa cells, and lysates (pS413) or YFP purifications (pS253) were subjected to Western blotting and probed with the
indicated phosphoantibodies. Quantifications arise from five (pS413) or three (pS253) independent experiments. Mean and standard deviation shown in plots as
black bars.

E Steady-state localization of the indicated YFP-FOXO3 variants in HeLa cells. Each data point represents quantification from a single cell. A representative result
from at least three independent experiments is shown. At least 25 cells were counted per condition in the experiment shown. Scale bar is 10 lm. Mann–Whitney
test significance values; *P < 0.02, ***P < 0.0002.

F Dephosphorylation by the PP2A-B56a holoenzyme complex of substrates with increasing length between phosphorylation sites and binding motifs as depicted.
Engineered substrates containing three TP sites were phosphorylated with radioactive ATP using Cdk1 and incubated with the PP2A-B56a holoenzyme. Removal of
radioactive phosphate was monitored over time. Mean and standard deviation from 3 experiments are shown.
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proline-directed mitotic kinase. How the B-subunits can affect active

site specificity will be an important question to solve and likely

involves unique direct interactions with the catalytic subunit.

Based on the data presented here, we suggest a model for dif-

ferential dephosphorylation of individual phosphorylation sites by

PP2A-B56. First, the phosphatase is spatially positioned on LxxIxE

containing protein complexes through binding to the motif. This

establishes a gradient of phosphatase activity around accessible

phosphorylation sites. Second, the active range of this gradient is

determined by the binding strength of the motif. Finally, an addi-

tional regulatory layer to PP2A-B56 site-specific activity is achieved

by the preference for basophilic/acidophilic over proline-directed

phosphorylation sites. This model likely applies to other members

of the PPP phosphatase family that use SLiMs for binding to

substrates. Strikingly, this resembles in many ways how kinases

achieve specificity suggesting a common set of core selectivity prin-

ciples for these enzymes.

We show how these principles and their integration with our

phosphoproteomic data can be applied to identify novel direct

PP2A-B56 targets as exemplified by ADAM17. Activation of

ADAM17 involves multiple layers of regulation, of which phospho-

rylation of its C-terminus constitutes an important mechanism. Yet,
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Figure 5. PP2A-B56 is a regulator of ADAM17 phosphorylation status and shedding activity.

A Domain organization of ADAM17 and conservation of the PP2A-B56 binding motif.
B KD values obtained by ITC measurements with full-length recombinant B56a and indicated ADAM17 variant peptides.
C The indicated full-length murine Myc-ADAM17 derivatives were transfected into HeLa cells stably expressing YFP-B56a. YFP-B56a was purified (IP) and ADAM17

binding determined by Western blotting. PP2A-C; catalytic subunit, PP2A-A; scaffold subunit.
D Dephosphorylation by the PP2A-B56a holoenzyme complex of the indicated phosphorylated GST-ADAM17 (V724-C827) fragments. The GST-ADAM17 (V724-C827)

substrates were phosphorylated with radioactive ATP using protein kinase A and incubated with the PP2A-B56a holoenzyme. Removal of radioactive phosphate was
monitored over time. The mean and standard deviation of 4 independent experiments are shown.

E Protein expression of ADAM17 variants in the DLD-1 Adam17�/� cell line, determined by Western blot. GAPDH was used as an internal loading control.
F Amphiregulin (AREG) shedding measured by ELISA of conditioned media from untreated, H2O2 treated or irradiated with X-ray DLD-1 Adam17�/� cells (clone #1)

expressing full-length ADAM17 variants (wt, I762A or LEE). Two-sided, unpaired Student’s t-test was applied to test for significant differences *P < 0.05, **P < 0.01,
***P < 0.001. Mean and standard deviation indicated from at least three independent experiments.

G Exogenous wt and I762A full-length ADAM17 was immunopurified from Adam17�/� cells treated with H2O2 and subjected to label-free LC-MS/MS to determine
differential phosphorylation status of T735 and S808 (S811 in murine ADAM17).
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how ADAM17 becomes deactivated is not clear. Here, we have

revealed a novel inhibitory mechanism, whereby the PP2A-B56

holoenzyme reverts ADAM17 phosphorylations. We identified three

PP2A-B56-regulated sites on ADAM17 (Thr735, Ser791, and

Ser808), of which Thr735 and Ser808 have been shown to be phos-

phorylated in response to cellular stress and enhance ADAM17-

mediated shedding of EGFR ligands (Xu & Derynck, 2010; Prakasam

et al, 2014). In line with these findings, our cell-based assays con-

firmed that PP2A-B56 is a major regulator of stress-induced

ADAM17 activity. Moreover, modulating the interaction between

ADAM17 and PP2A-B56 had profound effects on in vivo tumor

growth. Thus, it is tempting to speculate that at least one of the roles

of PP2A-B56 as a tumor suppressor can be explained by its ability to

restrict ADAM17-mediated EGFR signaling.

Collectively, our work provides an important foundation for

understanding PP2A-regulated signaling in cells and future efforts

aimed at interrogating specific pathways regulated by distinct PP2A

holoenzymes.

Materials and Methods

Cell culture and reagents

Cancer cell lines DLD-1, HeLa, and 4T1 (provided by the

Barbara Ann Karmanos Cancer Institute) cells were maintained

in DMEM GlutaMAX containing 100 U/ml penicillin, 100 mg/ml

streptomycin, and 10% FCS (all from Thermo Fisher Scientific).

Stable HeLa cell lines were generated using the T-Rex

doxycycline-inducible Flp-In system (Invitrogen) and cultivated

like HeLa cells with the addition of 5 lg/ml blasticidin and

100 lg/ml hygromycin B. The DLD-1 and 4T1 cell lines were

regularly tested for mycoplasma infection and authenticated by

STR profiling (Eurofins). Escherichia coli DH5a and BL21(DE3)

strains were maintained and propagated using standard microbio-

logical procedures. The following drug concentrations were used:

thymidine 2.5 mM, nocodazole 150 ng/ll, and doxycycline

10 ng/ml unless otherwise stated.
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Figure 6. PP2A-B56 is a regulator of ADAM17-mediated growth factor signaling and tumorigenesis.

A EGFR activation in the ADAM17 variant expressing DLD-1 Adam17�/� cells upon H2O2 treatment, determined by Western blot and quantified as the ratio of EGFR
autophosphorylated at Tyr1068 to total EGFR. Two-sided, unpaired Student’s t-test was applied to test for significant differences *P < 0.05, **P < 0.01. Mean and
standard deviation indicated from three independent experiments.

B, C (B) Cell proliferation and (C) Matrigel invasion of the ADAM17 variant expressing DLD-1 Adam17�/� cells. Two-sided, unpaired Student’s t-test was applied to test
for significant differences *P < 0.05, **P < 0.01. Mean and standard deviation indicated from three independent experiments.

D Protein expression of the ADAM17 variants in the mouse breast cancer cell line 4T1 Adam17�/�, determined by Western blot. GAPDH was used as an internal
loading control.

E Average tumor volume � SEM of 4T1 Adam17�/� cells expressing the ADAM17 variants injected into the mammary fat pad of Balb/c mice (n = 10 for each group).
Indicated significances are between the I762A and LEE tumors. Two-sided, unpaired Student’s t-test was applied to test for significant differences *P < 0.05. Mean
and standard error of the mean indicated.

F Survival curve of the tumor bearing mice injected with 4T1 Adam17�/� cells expressing the ADAM17 variants (n = 10 for each group). The indicated
significances are between the LEE and wt tumor bearing mice, and the LEE and I762A tumor bearing mice. Log-rank test was applied to test for
significant differences. *P < 0.05.
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CRISPR/Cas9 gene editing

DLD-1 Adam17 knockout cells were generated using the

CRISPR-Cas9 system. Guide RNAs (gRNA) were designed using the

WTSI genome editing tool (Hodgkins et al, 2015) and individually

inserted in the vector pSpCas9(BB)-2A-GFP, as described (Ran et al,

2013). To determine the gRNA editing efficiency, cells were trans-

fected with the pSpCas9(sgRNA)-2A-GFP vectors and verified by

Indel Detection by Amplicon Analysis (IDAA) (Lonowski et al,

2017). Human gRNA 5 AAAGCGAGTACACTGTAAAA-3, targeting

exon 4, and murine gRNA 5-ACAAAACTTGAGAGTCGTGG-3, target-

ing exon 3, showed the highest editing efficiencies and were subse-

quently transfected into DLD-1 and 4T1 cells, respectively. GFP-

positive cells were single cell-sorted, expanded, and tested by qPCR

and Western blot for Adam17 knockout. Additionally, we screened

positive clones for bi-allelic frameshifts using Sanger sequencing

(Eurofins).

Expression constructs and cell line generation

Standard cloning techniques were used throughout. Point muta-

tions were introduced by whole plasmid PCR. All constructs were

fully sequenced. Synthetic DNA encoding the various B56 inhibitor

sequences was purchased from GeneArt, Life Technologies. The

pcDNA3.1 plasmid containing the murine cDNA of ADAM17 was

provided by Prof. Dr. Stefan Rose-John (Kiel University, Kiel,

Germany), and the I765A and M762L, D768E, P769E (LEE)

mutants were generated by site-directed mutagenesis. ADAM17 wt,

I765A, and LEE inserts were cloned into the sleeping beauty trans-

poson vector v359 (Kowarz et al, 2015) and transfected into the

DLD-1 A17�/� or 4T1 A17�/� cells using Fugene HD (Promega),

and selected with 2 lg/ml puromycin (Sigma) for 6 days. For

induction of ADAM17 expression, 10 ng/ml doxycycline (Sigma)

was added to the cell culture medium and incubated for 24 h.

Detailed mutagenesis and cloning strategies are available upon

request.

Antibodies

The following antibodies were used at the indicated dilutions: c-Myc

(9E10, sc-40, 1:1,000, Santa Cruz Biotechnology), Separase (A302-

215A, 1:2,000, Bethyl Laboratories), KIF4A (A301-074A, 1:1,000,

Bethyl Laboratories), Axin1 (#2087, 1:1,000, Cell Signaling Technol-

ogy), B56a (610615, 1:3,000, BD Biosciences), BubR1 (A300-

995A,1:1,000, Bethyl Laboratories), PP2A catalytic subunit (05-

421, 1:2,000, Millipore), PP2A scaffold subunit (#2041, 1:1,000,

Cell Signaling Technology) GFP (ab290, 1:4,000, Abcam), FoxO3

pS413 (#8174, 1:1,000, Cell Signaling Technology), FoxO3 rabbit

polyclonal a-pS253 (Raised against peptide CAPRRRAV(pS)MDNS;

1:500, Moravian Biotechnology), Anti-RFP (1:1,000; MBL,

FM005), Anti-GFP (1:1,000; Roche, 11814460001), Rabbit anti-

ADAM17 (1:1,000, Abcam, 2051), Rabbit anti-ADAM17 (1:1,000,

Abcam, 39162), Rabbit anti-EGFR (1:1,000, cell signaling,

2232), Rabbit anti-pEGFR Y1068 (1:1,000, cell signaling, 2234),

Mouse anti-Transferrin receptor (1:1,000, Invitrogen, 136800),

Mouse anti-GAPDH (1:5,000, Sigma, G8795), rabbit anti-GFP

(1:3,000, Takara Bio Clontech, 632592), Donkey anti-rabbit-HRP

(1:2,000, GE Healthcare, NA934), Sheep anti-mouse-HRP

(1:2,000, GE Healthcare, NXA931), and H3pS10 (06-570, 1:1,000,

Millipore).

Protein expression and purification

Cdc20 and ADAM17 fusion proteins were cloned into pGEX-4T-1 to

generate N-terminally GST-tagged fusion proteins. Constructs were

transformed into BL21 (DE3) cells, and expression was induced by

addition of 0.5 mM IPTG at 18 degrees overnight. Following resus-

pension in buffer L (50 mM Tris pH 7.5; 300 mM NaCl; 10% glyc-

erol; 0.5 mM TCEP, 1× complete EDTA-free tablets (Roche)), the

sample was lysed using a high pressure homogenizer (Avestin).

Lysate was clarified by centrifugation and loaded on a GSTrap HP

5 ml column and washed with buffer L to baseline absorbance at

280 nm. The proteins were eluted with buffer L containing 20 mM

glutathione using a 20 CV gradient and the peak fractions pooled

and collected. The peak fractions were concentrated on a vivaspin

20 and loaded on a Superdex 75 16/60 GL column equilibrated with

buffer GF (50 mM NaP pH = 7.5; 150 mM NaCl; 10% glycerol;

0.5 mM TCEP). Relevant fractions were pooled and flash-frozen and

stored at �80.

The B56 inhibitors and ctrl inhibitor were cloned into the pET30

expression vector and expressed in E. coli BL21 (DE3) cells as

described above. Cells were suspended in buffer U (100 mM Tris

pH = 8.0; 300 mM NaCl; 7.4 M urea) and sonicated followed by

centrifugation for 2 × 25 min and sample filtered. The urea concen-

tration was lowered to 1 M by sequential dialysis (6 M-3 M-1 M

urea) followed by centrifugation. The lysate was filtered and applied

to a 5 ml Ni-NTA affinity column and bound proteins eluted with an

imidazole gradient. Peak fractions as measured by UV spectroscopy

were pooled and the NaCl concentration lowered to 50 mM NaCl

and applied to a MonoQ column. A gradient from 50 to 1,000 mM

NaCl was applied and peak fractions collected and pooled. Subse-

quently, the pool was run on a Superdex 75 16/60 column equili-

brated with (50 mM Tris pH = 7.5, 100 mM NaCl) and peak

fractions pooled. Recombinant B56a, GST-Arpp19, and MASTL were

produced as described previously (Hertz et al, 2016; Hein et al,

2017).

Isothermal titration calorimetry

Recombinant B56a and B56 inhibitors were extensively dialyzed

against ITC buffer 50 mM sodium phosphate pH 7.5, 200 mM NaCl,

0.5 mM TCEP. All experiments were performed on an Auto-iTC200

(Malvern Panalytical) instrument at 25°C. The B56a inhibitors were

loaded into the syringe and titrated into the calorimetric cell

containing B56a (direct titrations) or vice versa (reverse titrations).

Control experiments with either the inhibitors or B56a injected in

the sample cell filled with buffer were carried out under the same

experimental conditions. These control experiments showed negligi-

ble heats of dilution in all cases. The titration sequence consisted of

a single 0.4 ll injection followed by 19 injections, 2 ll each, with

150 s spacing between injections to ensure that the thermal power

returns to the baseline before the next injection. The stirring speed

was 750 rpm. Couple of ITC binding isotherms for direct and

reverse titrations were globally fitted to a 1:1 model using the

AFFINImeter software thus yielding a single set of binding parame-

ters per interaction.
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Live-cell imaging

Live-cell analysis was performed on a DeltaVision Elite system using

a ×40 oil objective with a numerical aperture of 1.35 (GE Health-

care). The DeltaVision Elite microscope was equipped with a Cool-

SNAP HQ2 camera (Photometrics). Cells were seeded in eight-well

Ibidi dishes (Ibidi) and before filming, the media was changed to

Leibovitz’s L-15 (Life Technologies). Appropriate channels were

recorded for the times indicated. For transient transfections, DNA

constructs were transfected into HeLa cells using Lipofectamine

2000 (Life Technologies) 24 h prior to analysis. The nuclear/cyto-

plasmic distribution of YFP-FoxO3 was analyzed using SoftWoRx

(GE Healthcare) software.

Immunoprecipitations and displacement assay

Hela-FRT cell lines stably expressing mCherry wt or control (3A)

B56 inhibitor were transfected with YFP-B56a. Cells were arrested

in thymidine (2.5 mM) for 24 h and released into nocodazole

(200 ng/ml) for 18 h. The expression of the inhibitors was induced

24 h prior of collection with the addition of 4 ng/ml doxycycline.

Cells were collected by mitotic shake-off and lysed in low salt lysis

buffer (50 mM NaCl, 50 mM Tris pH 7.4, 1 mM EDTA, 1 mM DTT,

0.1% NP40) supplemented with protease and phosphatase inhibi-

tors (Roche) for 25 min on ice. Lysates were cleared for 15 min at

20,000 rcf and incubated with 20 ll pre-equalibrated GFP-trap beads

(ChromoTek) for 45 min at 4°C. Following three washes with lysis

buffer, the beads were eluted in 25 ll 2× loading buffer, boiled for

5 min, and separated by SDS–PAGE or subjected to quantitative

Mass spectrometry as described in the label-free LC-MS/MS analysis

section.

Cell cycle synchronization for G1/S and M
phosphoproteomics analyses

Stable HeLa Flp-In cells expressing either wild-type or mutant B56

inhibitor were arrested in either G1/S or mitotic phase of the cell

cycle. For G1/S arrest, cells were treated with 2 mM thymidine for

24 h with the induction of wild-type or mutant B56 inhibitor for the

last 12 h using 10 ng/ml doxycycline. A mitotic arrest was achieved

by treating the cells with 2 mM thymidine for 24 h, followed by

release into media containing 100 ng/ml nocodazole and 10 ng/ll
doxycycline and collected by mitotic shake-off. Cells were washed

once with PBS and snap-frozen. The amino acid sequence of the

4 × LxxIxE inhibitor is as follows: TGSTGSTGSTGSTGSLPRSSTLP

TIHEEEELSLCTGSTGSTGSTGSTGSLPRSSTLPTIHEEEELSLCTGSTGST

GSTGSTGSLPRSSTLPTIHEEEELSLCTGSTGSTGSTGSTGSLPRSSTLP

TIHEEEELSLC. The corresponding 4 × control inhibitor sequence is

as follows: TGSTGSTGSTGSTGSLPRSSTAPTAHAEEELSLCTGSTGST

GSTGSTGSLPRSSTAPTAHAEEELSLCTGSTGSTGSTGSTGSLPRSSTAP

TAHAEEELSLCTGSTGSTGSTGSTGSLPRSSTAPTAHAEEELSLC.

Label-free LC-MS/MS analysis

Pull-downs were analyzed on a Q-Exactive Plus quadrupole Orbi-

trap mass spectrometer (Thermo Scientific) equipped with an

Easy-nLC 1000 (Thermo Scientific) and nanospray source (Thermo

Scientific). Peptides were resuspended in 5% methanol/1% formic

acid and loaded on to a trap column [1 cm length, 100 lm inner

diameter, ReproSil, C18 AQ 5 lm 120 Å pore (Dr. Maisch, Ammer-

buch, Germany)] vented to waste via a micro-tee and eluted

across a fritless analytical resolving column (35 cm length,

100 lm inner diameter, ReproSil, C18 AQ 3 lm 120 Å pore) pulled

in-house (Sutter P-2000, Sutter Instruments, San Francisco, CA)

with a 45-min gradient of 5–30% LC-MS buffer B (LC-MS buffer

A: 0.0625% formic acid, 3% ACN; LC-MS buffer B: 0.0625%

formic acid, 95% ACN). The Q-Exactive Plus was set to perform

an Orbitrap MS1 scan (R = 70K; AGC target = 1e6) from 350 to

1,500 m/z, followed by HCD MS2 spectra on the 10 most abun-

dant precursor ions detected by Orbitrap scanning (R = 17.5K;

AGC target = 1e5; max ion time = 50 ms) before repeating the

cycle. Precursor ions were isolated for HCD by quadrupole isola-

tion at width = 1 m/z and HCD fragmentation at 26 normalized

collision energy (NCE). Charge state 2, 3, and 4 ions were

selected for MS2. Precursor ions were added to a dynamic exclu-

sion list � 20 ppm for 15 s. Raw data were searched using

COMET (release version 2014.01) in high-resolution mode (Eng

et al, 2013) against a target-decoy (reversed) (Elias & Gygi, 2007)

version of the human proteome sequence database (UniProt;

downloaded 2/2013, 40,482 entries of forward and reverse protein

sequences) with a precursor mass tolerance of � 1 Da and a frag-

ment ion mass tolerance of 0.02 Da, and requiring fully tryptic

peptides (K, R; not preceding P) with up to three mis-cleavages.

Static modifications included carbamidomethylcysteine, and vari-

able modifications included oxidized methionine. Searches were

filtered using orthogonal measures including mass measurement

accuracy (� 3 ppm), Xcorr for charges from +2 through +4, and

dCn targeting a < 1% FDR at the peptide level. Quantification of

LC-MS/MS spectra was performed using MassChroQ (Valot et al,

2011) and the iBAQ method (Schwanhäusser et al, 2011). Missing

values were imputed from a normal distribution in Perseus to

enable statistical analysis and visualization by volcano plot

(Tyanova et al, 2016). Statistical analysis was carried out in

Perseus by two-tailed Student’s t-test.

Phosphoproteomics analysis

Cell pellets were lysed in ice-cold lysis buffer [8 M urea, 25 mM

Tris–HCl pH 8.6, 150 mM NaCl, phosphatase inhibitors (2.5 mM

beta-glycerophosphate, 1 mM sodium fluoride, 1 mM sodium ortho-

vanadate, 1 mM sodium molybdate) and protease inhibitors

(1 mini-Complete EDTA-free tablet per 10 ml lysis buffer; Roche Life

Sciences)] and sonicated three times for 15 s each with intermittent

cooling on ice. Lysates were centrifuged at 15,000 × g for 30 min at

4°C. Supernatants were transferred to a new tube, and the protein

concentration was determined using a BCA assay (Pierce/Thermo

Fisher Scientific). Equal protein amounts are carried forward for

analysis. For reduction, DTT was added to the lysates to a final

concentration of 5 mM and incubated for 30 min at 55°C. After-

ward, lysates were cooled to room temperate and alkylated with

15 mM iodoacetamide at room temperature for 45 min. The alkyla-

tion was then quenched by the addition of an additional 5 mM DTT.

After sixfold dilution with 25 mM Tris–HCl pH 8, the samples were

digested overnight at 37°C with 1:100 (w/w) trypsin. The next day,

the digest was stopped by the addition of 0.25% TFA (final v/v),

centrifuged at 3,500 × g for 15 min at room temperature to pellet

ª The Authors The EMBO Journal 39: e103695 | 2020 13 of 18

Thomas Kruse et al The EMBO Journal



precipitated lipids, and peptides were desalted. Peptides were

lyophilized and stored at �80°C until further use.

Phosphopeptide purification was performed as previously

described (Kettenbach & Gerber, 2011). Briefly, peptides were resus-

pended in 2 M lactic acid in 50% ACN (“binding solution”). Tita-

nium dioxide microspheres were added and vortexed by affixing to

the top of a vortex mixer on the highest speed setting at room

temperature for 1 h. Afterward, microspheres were washed twice

with binding solution and three times with 50% ACN/0.1% TFA.

Peptides were eluted twice with 50 mM KH2PO4 (adjusted to pH 10

with ammonium hydroxide). Peptide elutions were combined,

quenched with 50% ACN/5% formic acid, dried, and desalted.

Phosphopeptides were resuspended in 133 mM HEPES (SIGMA)

pH 8.5, and TMT reagent (Thermo Fisher Scientific) stored in dry

acetonitrile (ACN) (Burdick & Jackson) was added, vortexed to mix

reagent and peptides. After 1 h at room temperature, an aliquot

from each channel was withdrawn to check for labeling efficiency,

while the remaining reaction was stored at �80°C. Once labeling

efficiency was confirmed to be at least 95%, each reaction was

quenched with ammonium bicarbonate for 10 min, mixed, acidified

with 20% TFA, and desalted. The desalted multiplex was dried by

vacuum centrifugation and separated by offline pentafluorophenyl

(PFP)-based reversed-phase HPLC fractionation as published

(Grassetti et al, 2017). Briefly, TMT-labeled phosphopeptides were

separated over a gradient of 5–55% Buffer B from 0 to 61 min.

Forty-eight fractions were collected and concatenated into 24 by

mixing the nth and nth + 24th fraction. Buffer B: 95% ACN/0.1%

TFA; Buffer A: 3% ACN/0.1% TFA.

TMT-labeled samples were analyzed on an Orbitrap Fusion

(Senko et al, 2013) mass spectrometer (Thermo Scientific) equipped

with an Easy-nLC 1000 (Thermo Scientific). Peptides were resus-

pended in 8% methanol/1% formic acid and loaded onto a column

(45 cm length, 100 lm inner diameter, ReproSil, C18 AQ 1.8 lm
120 Å pore) pulled in-house across a 2-h gradient from 3% acetoni-

trile/0.0625% formic acid to 37% acetonitrile/0.0625% formic acid.

The Orbitrap Fusion was operated in data-dependent, SPS-MS3

quantification mode (Ting et al, 2011; McAlister et al, 2014)

wherein an Orbitrap MS1 scan was taken (scan range = 350–

1,200 m/z, R = 120K, AGC target = 3e5, max ion injection

time = 100 ms), followed by data-dependent Orbitrap MS2 scans of

the most abundant precursors for 3 s: ion selection; charge

state = 2: minimum intensity 2e5, precursor selection range 650–

1,200 m/z; charge state 3: minimum intensity 3e5, precursor selec-

tion range 525–1,200 m/z; charge states 4 and 5: minimum intensity

5e5; quadrupole isolation = 0.7 m/z, R = 30K, AGC target = 5e4,

max ion injection time = 80 ms, CID collision energy = 32%; and

Orbitrap MS3 scans for quantification (R = 50K, AGC target = 5e4,

max ion injection time = 100 ms, HCD collision energy = 65%, scan

range = 110–750 m/z, synchronous precursors selected = 5). The

raw data files were searched using COMET with a static mass of

229.162932 on peptide N-termini and lysines and 57.02146 Da on

cysteines, and a variable mass of 15.99491 Da on methionines and

79.96633 Da on serines, threonines, and tyrosines against the

target-decoy version of the human proteome sequence database

(UniProt; downloaded 2/2013, 40,482 entries of forward and reverse

protein sequences) and filtered to a < 1% FDR at the peptide level.

Quantification of LC-MS/MS spectra was performed using in-house

developed software. Phosphopeptide intensities were adjusted based

on total TMT reporter ion intensity in each channel to adjust for

mixing errors and log2-transformed. P-values were calculated using

a two-tailed Student’s t-test assuming unequal variance.

Inhibition of PP2A in lysates

Recombinant GST-Arpp19 wt or S62A mutant (235 lg) was incu-

bated with ~ 6 lg purified MASTL/Greatwall and thio-ATP (Tocris)

in kinase buffer (50 mM Tris–HCl pH 7.5, 10 mM MgCl2, 0.1 mM

EDTA, 2 mM DTT, 0.01% Brij 35) for 2 h at 30°C. The GST Arpp19

proteins were concentrated, size-exclusion chromatography was

performed on a Superdex 200 10/300 column, and the buffer was

exchanged to 300 mM NaCl, 50 mM Tris pH 8, 8.7% glycerol. Peak

fractions were collected, pooled, and concentrated. Aliquots were

snap-frozen in liquid nitrogen.

Following double thymidine synchronization, cells were released

into nocodazole 200 ng/ml for 16 h. Mitotic cells were collected by

shake-off and counted. Lysates from 5 × 106 cells were analyzed per

condition. Cells were lysed in lysis buffer (150 mM NaCl, 50 mM

Tris pH 7.4, 0.1% NP40, 1 mM DTT, supplemented with EDTA-free

protease inhibitors (Roche)) plus 50 lg of the corresponding PP2A

inhibitors. Full-length thiophosphorylated Arpp19 WT or S62A was

used for the inhibition of PP2A-B55. A high-affinity LxxIxE peptide

(WLPRSSTLPTIHEEEELSLC) or control peptide (WLPRSSTLPTA-

HADSVLSLC) was used to inhibit PP2A-B56 specifically. Cells were

lysed for 5 or 15 min at 30°C while shaking and the reactions were

stopped by the addition of lysis buffer supplemented with 2xPhosS-

top tablets (Roche). Lysates were cleared for 15 min, 20,000 rcf at

4°C, and snap-frozen in liquid nitrogen.

ARPP19 and B56 peptide lysate phosphoproteomics analysis

Lysates were precipitated by adding 4× volume of ice-cold acetone

(Burdick & Jackson) and frozen for 1 h at �20°C. Afterward,

samples were centrifuged at 14,800 × g for 15 min at 4°C to pellet

precipitated proteins. Pellets were washed twice with ice-cold

acetone and dried. Proteins were resuspended in urea lysis buffer as

described above. Phosphopeptide enrichment was carried out using

the Fe-NTA phosphopeptide enrichment kit (Thermo Fisher) accord-

ing to the manufacturer’s instructions. Phosphopeptides were

labeled with TMT reagents as described above and offline separated.

TMT-labeled samples were analyzed on an Orbitrap Fusion Lumos

mass spectrometer (Thermo Scientific) equipped with an Easy-nLC

1200 (Thermo Scientific). Peptides were resuspended in 8%

methanol/1% formic acid and loaded onto a column (45 cm length,

100 lm inner diameter, ReproSil, C18 AQ 1.8 lm 120 Å pore) pulled

in-house across a 2-h gradient from 3% acetonitrile/0.0625% formic

acid to 37% acetonitrile/0.0625% formic acid. The Orbitrap Lumos

was operated in data-dependent, SPS-MS3 quantification mode

(Ting et al, 2011; McAlister et al, 2014) wherein an Orbitrap MS1

scan was taken (scan range = 350–1,250 m/z, R = 120K, AGC

target = 2.5e5, max ion injection time = 50 ms), followed by data-

dependent Orbitrap MS2 scans of the most abundant precursors for

2 s: ion selection; charge state = 2: minimum intensity 2e5, precur-

sor selection range 650–1,250 m/z; charge state 3: minimum inten-

sity 3e5, precursor selection range 525–1,250 m/z; charge states 4

and 5: minimum intensity 5e5; quadrupole isolation = 1 m/z,

R = 30K, AGC target = 5e4, max ion injection time = 55 ms, CID
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collision energy = 35%; and Orbitrap MS3 scans for quantification

(R = 50K, AGC target = 5e4, max ion injection time = 100 ms, HCD

collision energy = 65%, scan range = 100–500 m/z, synchronous

precursors selected = 5). The raw data files were searched, and data

were processed as described above.

In vitro phosphatase motif assay

293T Freestyle cells were transiently transfected with pEXPR-B56a,
pCBS-KS+�2AAA, and pCBS-KS+PP2ACA. Forty-eight hours after

transfection, cells were lysed in lysis buffer (50 mM Tris pH 7.5,

150 mM NaCl, and 1 mM MnCl2) and sonicated three times for 15 s

each with intermittent cooling on ice. Lysates were centrifuged at

15,000 × g for 30 min at 4°C. Strep-Tactin Sepharose was added to

the lysates and incubated while rotating for 2 h at 4°C. Beads were

collected by centrifugation, washed three times with lysis buffer,

and eluted with 1× Buffer E (Strep-Tactin elution buffer with

desthiobiotin). Libraries of naturally occurring phosphopeptides

were generated from 293T Freestyle cells. Cells were lysed in urea

lysis buffer as described above with the modification that after

reduction and alkylation, the lysate was diluted 2.5-fold, and the

protease Lys-C was added to a final concentration of 1:100 w/w.

After overnight digest, peptides were desalted, and phosphopeptides

were enriched and labeled with TMT reagents as described above.

Individual pools of TMT-labeled phosphopeptides were dephospho-

rylated with PP2A-2AAA-B56a in the presence or absence of 10 nM

calyculin A for 0.5, 1, 2, 3, or 4 h. Reactions were quenched with

0.1% TFA, mixed, desalted, dephosphorylated peptides were

removed using TiO2 as described above, and analyzed on an Orbi-

trap Fusion Lumos mass spectrometer as described above.

In vitro phosphatase assays

In vitro phosphatase assays were performed with PP2A-B56a or

PP2A-B55a, which were purified from HeLa cell extracts as

described (Hein et al, 2017; Kruse et al, 2018). 15 lg of GST-fusion

protein (GST-CDC20 49-78, engineered with different spacing or

affinity of the LxxIxE motif) was incubated with CDK1-CyclinB1

(Sigma #SRP5009) in 50 ll reactions in kinase buffer (50 mM Tris–

HCl pH 7.5, 10 mM MgCl2, 0.1 mM EDTA, 2 mM DTT, 0.01% Brij

35) with 500 lM ATP and 1 lCi (c-32P)-ATP (PerkinElmer) at 30°C

for 60 min. Reactions were stopped by the addition of 10 lM
RO-3306 (Calbiochem). GST-ADAM17 (V724-C827) was phosphory-

lated with recombinant protein kinase A (New England Biolabs

#P6000S). PD Spin Trap G25 columns (GE Healthcare) were used to

exchange the buffer to phosphatase buffer (50 mM Tris pH 7.4,

1 mM MnCl2, 1 mM DTT, 0.1% IGEPAL, 150 mM NaCl).

Non-stick tubes were pre-treated with blocking buffer (50 mM Tris

pH 7.4, 0.1 mM MnCl2, 1 mM MgCl2, 1 mM DTT, 0.1% NP40,

300 mM NaCl, 2 mg/ml BSA) on ice for the dephosphorylation reac-

tions. 70 ng of PP2A-B56 holoenzyme was added to 84 ll of phospho-
rylated substrate (~ 7 lg). Samples of ~ 1.75 lg were taken out at the

indicated time-points, added to 4× SDS loading buffer and boiled for

5 mintes. Samples were separated by SDS–PAGE. Gels were dried,

exposed for 3 days, and imaged on Typhoon FL 950 (GE Healthcare).

Analyses and quantifications were carried out in ImageJ.

Michaelis–Menten kinetic parameters of the purified PP2A-B56a
and PP2A-B55a holoenzymes were determined against the indicated

phosphopeptides. Peptides were purchased from Peptide 2.0 Inc

(Chantilly, VA, USA). The purity obtained in the synthesis was 98%

as determined by high-performance liquid chromatography (HPLC)

and subsequent analysis by mass spectrometry. Initial velocity (V0)

was determined at varying concentrations of substrate (7.5–

240 lM) incubated with ~ 3 ng of the indicated PP2A holoenzyme

in phosphatase buffer [50 mM Tris pH 7.4, 1 mM MnCl2, 1 mM

DTT, 0.1% (vol/vol) IGEPAL, 150 mM NaCl] for 4 min at 30°C.

Release of inorganic phosphate was measured using the PiColorLock

Phosphate Detection System (Expedon). Data from three indepen-

dent experiments were fitted to the Michaelis–Menten model and

kinetic parameters extracted using GraphPad Prism version 6.0e for

Mac OS X.

Data analysis

Phosphorylation site analysis was performed on phosphopeptides

with the phosphorylation site localization score of 0.75 or higher.

IceLogos were generated using singly phosphorylated sites with a

phosphorylation localization score of 0.75 or higher (Colaert et al,

2009). For the network analysis, protein–protein interactions

between previously identified B56 SLiM-containing proteins (Hertz

et al, 2016; Wu et al, 2017) and proteins with significantly increased

phosphorylation sites (log2 ratio > 0.8 (1.75-fold), P-value < 0.05,

phosphorylation site localization probability > 75%) were deter-

mined using the STRING database (Szklarczyk et al, 2017) and visu-

alized in Cytoscape (Shannon et al, 2003).

Amphiregulin shedding assay

Amphiregulin shedding experiments were performed according to

the manufacturer’s protocol (R&D systems). To evaluate the effect

of the ADAM17-B56 binding, we induced ADAM17 expression in the

DLD-1 A17wt, I762A, and LEE cell lines by changing to full medium

containing 10 ng/ml doxycycline (Sigma) and collected the super-

natant after 24 h (constitutive shedding). For induced shedding, the

cells were treated with 600 lM H2O2 for 30 min (Merck), X-ray radi-

ated with 10 Gy with a dose rate of 1 Gy/min using the X-ray gener-

ator CP160 (Faxitron X-Ray Corp.), or H2O vehicle control for

30 min, and incubated for 3 h in full growth medium. Subsequently,

the medium was changed and the supernatant collected after 1 h.

The shedding results were normalized to the protein concentration

to correct for possible differences in cell numbers.

Proliferation assay

DLD-1 A17wt, I762A, and LEE cell lines were seeded at 1.5 × 104

cells per well in a 96-well plate in 200 ll full medium supplemented

with 10 ng/ml doxycycline. The cells were subsequently incubated

at 37°C and 5% CO2 in an IncuCyte S3 (Sartorius) for 90 h, and con-

fluency was recorded every 2 h. The timepoint 50% confluence was

calculated from growing curves, which were created using the Incu-

cyte ZOOM software (Sartorius).

Invasion assay

Matrigel invasion assays were performed according to the manufac-

ture’s protocol. In short, ADAM17 expression was induced and
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upon re-hydration of the pre-coated Matrigel invasion chambers

(Corning), 2 × 105 cells were seeded in 500 ll FBS free DMEM

(Gibco) in the upper chamber of the inserts. Next, the inserts were

transferred into a 24-well plate containing 1 ml full DMEM and

incubated for 24 h at 37°C. After incubation, invaded cells were

fixed in 4% para-formaldehyde (Sigma), stained with 4% crystal

violate (Sigma), and visualized under a light microscope (Axioplan

2, Zeiss). Invasion was determined by counting 10 randomly taken

pictures (AxioCam, Zeiss) at a 10× magnification.

Cell surface biotinylation assay

ADAM17 expression in the DLD-1 A17wt, I762A, and LEE cell lines

was induced and 24 h later, cells were washed twice in cold PBS

and incubated for 30 min with 0.5 mg/ml non-cleavable EZ-Link

Sulfo-NHS-LC-Biotin (Thermo Scientific) in PBS. The biotinylation

was quenched by washing three times with 100 mM glycine (Appli-

Chem) in PBS and additionally three PBS washes. Cells were lysed

for 30 min in RIPA buffer supplemented with protease inhibitors.

Cell lysates were cleared by centrifugation, protein concentration

equalized by BCA assay, and supernatants incubated with strepta-

vidin-agarose beads (Sigma-Aldrich) for 2 h at 4°C. Beads were

washed three times in RIPA and bound proteins released by heating

5 min at 95°C in 2× SDS–PAGE sample buffer. Samples were

analyzed by Western blot.

In vivo mouse model

Mice were randomly allocated into cages and mice within the same

cage received the same treatment. On the day of injection, 4T1

A17wt, I762A, and LEE cells were harvested and 1 × 104 cells in

50 ll PBS containing 10 ng/ml doxycycline injected into the fourth

mammary fat pat of 7-week-old female BALB/c mice (Janvier Labs).

Sample size calculations performed with an alpha level of 0.05, 80–

90% power, and an estimated difference between wt and LEE

groups from previous experiments gave 8–11 mice/group. All mice

were housed in ventilated cages in groups of 5 and maintained in a

climate-controlled room at a temperature of 22 � 2°C and a relative

humidity of 50 � 5% under a 12-h light/dark cycle and fed a stan-

dard diet and water ad libitum. Measurements of the primary tumor

size using calipers and the mouse weight were monitored in a

blinded fashion 2–3 times a week. The drinking water was supple-

mented with 1 mg/ml doxycycline (Sigma) and 5% sucrose (Sigma)

and changed every 2–3 days. All experiments were performed in

accordance with authorization and guidance from the Danish

Inspectorate for Animal Experimentation. The cell lines were tested

negative for murine pathogens by IMPACT testing (IDEXX Laborato-

ries).

Quantification and statistical analysis

All statistical analyses were performed using GraphPad Prism

version 6.0e for Mac OS X. Statistical details and definition of

parameters can be found in figure legends. The statistical signifi-

cance level was chosen as 0.05, but P-values for individual tests are

indicated in the respective figure legends. Statistical methods were

not employed to determine sample size or to determine whether the

data met the assumptions of the statistical approach.

Data availability

Mass spectrometry data have been deposited to ProteomeXchange

PXD015205, http://proteomecentral.proteomexchange.org/cgi/Get

Dataset?ID=PXD015205, MassIVE MSV000084245.

Expanded View for this article is available online.
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