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Abstract

cd T cells with distinct properties develop in the embryonic and
adult thymus and have been identified as critical players in a
broad range of infections, antitumor surveillance, autoimmune
diseases, and tissue homeostasis. Despite their potential value for
immunotherapy, differentiation of cd T cells in the thymus is
incompletely understood. Here, we establish a high-resolution map
of cd T-cell differentiation from the fetal and adult thymus using
single-cell RNA sequencing. We reveal novel sub-types of immature
and mature cd T cells and identify an unpolarized thymic popula-
tion which is expanded in the blood and lymph nodes. Our detailed
comparative analysis reveals remarkable similarities between the
gene networks active during fetal and adult cd T-cell differentia-
tion. By performing a combined single-cell analysis of Sox13, Maf,
and Rorc knockout mice, we demonstrate sequential activation of
these factors during IL-17-producing cd T-cell (cdT17) differentia-
tion. These findings substantially expand our understanding of cd
T-cell ontogeny in fetal and adult life. Our experimental
and computational strategy provides a blueprint for comparing
immune cell differentiation across developmental stages.
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Introduction

Advances in single-cell technologies have enabled an unbiased clas-

sification of immune cell types and the inference of their

differentiation trajectories on a genome-wide scale. However, efforts

to reconstruct high-resolution differentiation trajectories have

mainly focused on the hematopoietic compartment in the bone

marrow (Paul et al, 2015; Nestorowa et al, 2016; Olsson et al, 2016;

Velten et al, 2017; Tusi et al, 2018). In particular, comparisons of

immune cell developmental processes across distinct periods of life

—such as fetal and adult stages—are still lacking. A number of

immune cell types first develops in embryonic tissues and continues

their development in the adult counterparts. For example, T cells

first arise in the fetal thymus and continue developing in the adult

thymus. The thymus supports the development of two T-cell

lineages—ab and cd T cells. While a significant amount of research

has focused on understanding the development of ab T cells, the cd
lineage remains understudied. This lineage represents a unique

developmental paradigm in immune cell ontogeny blurring the

demarcation of the innate and adaptive arms of immunity (Lanier,

2013). cd T cells exert innate-like rapid immune responses by recog-

nizing a broad spectrum of molecules including non-peptide antigens

through TCR-dependent and TCR-independent mechanisms (Hay-

day, 2009). They are the earliest T cells to develop in the embryonic

thymus, and their differentiation and effector functions are develop-

mentally pre-programmed: Rearrangement of defined T-cell receptor

(TCR) c chains occurs at discrete time points and is followed by

selective migration to individual epithelial tissues such as skin, lung,

intestine, and reproductive tract. cd T-cell development continues

after birth in the thymus albeit utilizing different TCR c chains (Card-
ing & Egan, 2002), and the naı̈ve cells are believed to mature in the

secondary lymphoid organs (Chien et al, 2013).

Although the role of cd T cells in infection, tumors, and autoim-

mune diseases is widely recognized, their intrathymic differentiation

is not well understood (Munoz-Ruiz et al, 2017). cd T-cell

differentiation is an attractive developmental model to explore

whether similar pathways are used to direct the differentiation of

distinct sub-types of the same lineage at different stages of life. Such

1 Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
2 Molecular Pathogenesis Program, The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY, USA
3 Faculty of Biology, University of Freiburg, Freiburg, Germany
4 International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Freiburg, Germany
5 Department of Pathology and Ronald O. Perelman Department of Dermatology, NYU School of Medicine, New York, NY, USA
6 Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen,Germany
7 Institute of Medical Microbiology and Hygiene, University Medical Center Freiburg, Freiburg, Germany
8 Department of Internal Medicine IV, University Medical Center Freiburg, Freiburg, Germany
9 The Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, USA

10 CIBSS-Centre for Integrative Biological Signaling Studies, University of Freiburg, Freiburg, Germany
*Corresponding auhtor. Tel: +49 7615 108490; E-mail: gruen@ie-freiburg.mpg.de

ª 2020 The Authors. Published under the terms of the CC BY 4.0 license The EMBO Journal 39: e104159 | 2020 1 of 20

https://orcid.org/0000-0002-4586-3294
https://orcid.org/0000-0002-4586-3294
https://orcid.org/0000-0002-4586-3294
https://orcid.org/0000-0002-3364-5898
https://orcid.org/0000-0002-3364-5898
https://orcid.org/0000-0002-3364-5898


studies may also serve as a blueprint for comparing the differentia-

tion of other immune cell lineages across developmental time points

and tissues. In order to decipher the transcriptional landscape of cd
T-cell differentiation in the fetal and adult murine thymus at single-

cell resolution, we utilized multi-color flow cytometry to enrich cell

populations encompassing all differentiation stages of the cd T-cell

lineage and profiled them using single-cell RNA sequencing (scRNA-

seq). We identified a number of novel sub-types, in particular, an

unpolarized Ccr9+ S1pr1+ thymic population which was expanded

in the peripheral blood and in lymph nodes and produces TNF-a,
IFN-c, and IL-2 upon stimulation. Further, we predicted continuous

differentiation trajectories and inferred gene regulatory networks

(GRNs) governing cd T-cell differentiation. We performed a multi-

layered comparative analysis of fetal and adult differentiation and

observed remarkable similarities between fetal and adult gene

modules activated during the process of T-cell commitment and cd
T-cell differentiation. A focused analysis revealed that Sox13, Maf,

and Rorc act in a sequential manner to drive cdT17 differentiation in

the fetal and adult thymus.

Results

scRNA-seq of T-cell progenitors and cd T cells from the fetal and
adult mouse thymus

To investigate and compare the transcriptional landscape of cd
T-cell differentiation during fetal and adult life, we isolated thymo-

cyte subsets from fetal (embryonic day 17.5–18.5) and adult (6–

7 weeks old) mice utilizing established cell surface markers

(Fig EV1A and E). These populations comprise bipotent ab/cd T-cell

precursors—c-KIT+ double negative (DN) 1, DN2, and DN3

(Fig EV1B and F), CD25+ cd T-cell precursors (Fig EV1C and G),

CD24+ (immature) and CD24� (mature) cd T-cell populations from

fetal thymus (Fig EV1D), pan cd T cells (mainly containing CD24+

immature cells) and CD24� (mature) cd T cells (Fig EV1H), and

IFN-c-producing CD122+ cd T cells from the adult thymus

(Fig EV1I) (Shibata et al, 2008; Narayan et al, 2012). Using this

strategy, we sampled the entire cd T-cell differentiation trajectory at

two developmental time points. Single cells were sorted into 384-

well plates by flow cytometry to perform scRNA-seq according to

our published mCEL-Seq2 protocol (Hashimshony et al, 2016;

Herman et al, 2018) and analyzed with RaceID3 (Fig 1A). After

removing low-quality cells based on low total transcript numbers,

4,146 and 3,235 cells were retained for analysis of fetal and adult

data, respectively. We did not observe batch-associated variability

and recovered all cell types across replicates. We identified 30 and

24 clusters in the fetal and adult dataset, respectively, demonstrat-

ing substantial heterogeneity within conventionally defined cd T-cell

populations (Fig 1B–G). This suggests the existence of previously

unknown sub-types or sub-states (see Table EV1 for differentially

expressed marker genes).

Characterizing heterogeneity in the early double negative
T-cell progenitors

We first characterized heterogeneity in the DN1-DN3 progenitors

capable of giving rise to both ab and cd T-cell lineages. RaceID3

classified fetal c-KIT+ DN1 cells, also known as early thymic

progenitors (ETPs), into two distinct clusters (14 and 15; Fig 1B–D);

cluster 15 comprises Flt3+ cells and thus may represent the most

naı̈ve ETPs (Fig EV1J). Cluster 14 expresses higher levels of Tcf7,

required for T-cell development, Il2ra (encoding CD25), a cell

surface marker of DN2 and DN3 progenitors as well as TCR b and c
constant chains—Trbc1, Trbc2, Tcrg-C1, and Tcrg-C2 (Fig EV2A)

(Godfrey et al, 1993; Schilham et al, 1998). These data suggest that

fetal ETPs can be divided into naı̈ve progenitors and cells starting to

express genes associated with T-cell commitment. Similarly,

RaceID3 classified adult ETPs into two clusters (2 and 4; Fig 1E–G);

cluster 4 exhibits higher expression of receptor tyrosine kinase Kit,

while cells in cluster 2 upregulate genes associated with DNA repli-

cation and cell cycle progression, e.g., Mcm2, Mcm5, Mcm6, Mki67,

and Pcna (Fig EV2D), suggesting that adult ETPs unlike their fetal

counterparts exhibit cell cycle-associated heterogeneity. Consis-

tently, gene set enrichment analysis (GSEA) of differentially

expressed genes between fetal and adult ETPs revealed preferential

expression of proliferation-associated genes at the fetal stage, while

genes associated with death receptor, G protein-coupled receptor

(GPCR), and Toll-like receptor (TLR) signaling pathways were

upregulated at the adult stage (Fig EV2I).

T-cell commitment occurs at the DN2 stage, which is subdivided

into the uncommitted DN2a and the committed DN2b state, a transi-

tion marked by downregulation of Kit and upregulation of the T-cell

commitment factor Bcl11b (Yui et al, 2010; Kueh et al, 2016). We

identified two major subsets of DN2 progenitors in the fetal and

adult thymus—clusters 8 and 13 (fetus) and clusters 3 and 6 (adult;

Fig 1B–G). Fetal DN2 cluster 8 shows an upregulation of Bcl11b

while expressing ETP genes such as Ifitm1 and Pim1 (Fig EV2B).

Cluster 13 shows higher expression of T-cell-related genes such as

Lck, Thy1, Cd3d, Cd3e, and Lat, indicating commitment (Fig EV2B).

We found similar results in the adult dataset: Cluster 3 exhibits an

ETP-like gene expression signature (e.g., Adgrg1, Adgrg3), whereas

cells in cluster 6 upregulate Bcl11b as well as Cd3g, Cd3e, Cd3d,

Lck, and Lat (Fig EV2E). Therefore, our unbiased single-cell analysis

recapitulates the sub-division of fetal and adult DN2 cells into

DN2a- and DN2b-like subsets. Differential gene expression analysis

revealed an upregulation of recombination-associated genes such as

Rag1, Rag2, and pre-T-cell antigen receptor alpha Ptcra in fetal DN2

cells, whereas adult DN2 cells still expressed ETP-related markers

such as Adgrg1, Adgrg3, and Cpa3, indicating that fetal T-cell

progenitors start to activate the recombination machinery earlier

than their adult counterparts (Fig EV2J).

In the T-cell committed DN3 compartment, fetal and adult cells

are composed of two clusters each—clusters 5 and 11 (fetus) and

clusters 11 and 12 (adult; Fig 1B–G). Fetal cluster 11 and adult clus-

ter 12 express Rag1, Rag2, Notch1, and Ptcra (Fig EV2C and F).

These clusters have minimal levels of cell cycle-related genes

(Fig EV2G and H) and, hence, represent cells undergoing recombina-

tion. Fetal cluster 5 and adult cluster 11 comprise proliferating cells

expressing Mki67, Top2a, Lig1, and Pcna and may represent post-

selected DN3 cells (Fig EV2C and F). GSEA revealed that fetal DN3

cells are more proliferative than adult DN3 cells (Fig EV2K). Accord-

ingly, adult DN3 subsets expressed gene sets associated with recom-

bination and chromatin modification (Fig EV2F and K). Collectively,

our analysis reveals different subsets of DNs in fetal and adult thymi

and demonstrates a continuous transcriptional shift in early T-cell
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progenitors undergoing commitment, recombination, and selection

tightly coupled with proliferation during T-cell development.

Temporal differences between fetal and adult early thymopoiesis

We next attempted to identify DN cells sharing a similar transcrip-

tional program at fetal and adult stages. This can be formulated as a

classification problem: Given a set of classifiers, i.e., cluster

medoids in one dataset (e.g., fetal dataset having 30 clusters), the

objective is to identify non-negative weights for each single cell in a

given query (e.g., a single cell in the adult data) under the constraint

that the weights sum up to one. We quantified these weights by

mapping this to a quadratic optimization problem, which can be

solved by quadratic programming. We plotted the weights assigned
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to all queries, i.e., all single cells in the adult dataset for each classi-

fier, i.e., fetal cluster medoid, on the t-distributed stochastic neigh-

bor embedding (t-SNE) representation and found that cells in adult

cluster 2 had high weights for fetal cluster 15, indicating that these

two clusters have the highest transcriptome similarity across the

datasets (Fig 1J). Of note, cells in both of these clusters expressed

higher levels of Flt3, suggesting that they represent the most naı̈ve

ETPs at the respective developmental time point. Similarly, the fetal

ETP cluster 14 resembled adult cluster 4 (Fig 1J). DN2 and DN3

clusters revealed a remarkable correspondence between fetal and

adult stages (Fig 1J). Interestingly, we found that cells in adult clus-

ter 12, mainly composed of DN3 cells undergoing recombination,

displayed higher weights for fetal cluster 13, which mainly

contained DN2 cells, indicating that the genes associated with

recombination are activated earlier during fetal T-cell development

(Fig 1D, G and J). As a complementary approach, we inferred dif-

ferentiation trajectories of fetal and adult thymopoiesis from the

DN1 to the DN3 stage with the StemID2 algorithm (Grün et al, 2016;

Herman et al, 2018) (Fig 1H and I). Pseudo-temporal gene expres-

sion profiles revealed that fetal DN progenitors overall express

higher levels of cell cycle-related genes (e.g., Mki67, Pcna, and

Top2a) and that recombination-related genes (e.g., Rag1 and Rag2)

are switched on already at the fetal DN2 stage (Fig 1K). Overall, we

demonstrate a shift in temporal dynamics of these pathways during

fetal and adult thymopoiesis.

Identifying transcriptionally heterogeneous immature and
mature cd T-cell subsets

In the fetal and adult thymus, the earliest CD25+ cd T-cell progeni-

tors are mainly proliferating (i.e., express Mki67 and Top2a) and

specifically express Cd5, a gene implicated in regulating TCR signal-

ing (Fig 2C and F) (Azzam et al, 1998, 2001). CD25+ progenitors

from the fetal and adult thymus were classified into two clusters—

clusters 2 and 7 (fetus) and clusters 8 and 9 (adult; Fig 2A and D).

All clusters expressed genes such as Cd5, Cd28, Hivep3, and Lef1 at

different levels (Fig 2C and F). Differential gene expression analysis

between fetal clusters 2 and 7 revealed higher expression of cdT17-
associated genes (e.g., Sox13 and Blk) in cluster 7, indicating that

these cells are already primed toward the cdT17 fate. In contrast,

cells in cluster 2 express higher levels of TCR signaling genes such as

Nfatc1 and Prkch, and thus may experience stronger TCR signals

(Fig 2C). Similarly, adult cluster 9 cells express elevated levels of

cdT17-associated genes such as Sox13 and Blk, while cluster 8 upreg-

ulate Nfatc1 and Prkch (Fig 2F). Consistently, quadratic program-

ming confirmed a correspondence between fetal cluster 2 and adult

cluster 8, which upregulate TCR signal strength-related genes, and

between cdT17-primed adult cluster 9 and fetal cluster 7 (Fig EV3A).

In conclusion, our results are in accordance with the TCR signal

strength-based effector differentiation model (Zarin et al, 2015).

We next characterized the immature CD24+ and the mature

CD24� compartments in the fetal thymus (Fig 2A). Most of the

CD24+ cd T cells were Sox13+, while the CD24� subset mainly

consisted of Il2rb+ cells (Figs 1C, 2C and EV3B). We identified four

different clusters (1, 3, 20, and 23) in the CD24+ Sox13+ compart-

ment. Cluster 1 expressed high levels of granzyme A (Gzma) repre-

senting a previously unknown sub-type (Figs 2C and EV3B). Gzma

induces a pro-inflammatory cytokine response (Metkar et al, 2008),

and Gzma produced by human Vc9Vd2 T cells inhibits growth of

intracellular mycobacteria (Spencer et al, 2013). Therefore, this

cluster may portray a novel cytotoxic sub-population of cd T cells.

Cluster 20 corresponds to another unknown sub-type best character-

ized by lower levels of Sox13 and the co-expression of Ccr9 and

S1pr1, which are crucial for egress from the thymus and migration

to peripheral sites (Figs 2C and EV3B) (Uehara et al, 2002;

Matloubian et al, 2004). Except for this sub-type, the expression

domains of Ccr9 and S1pr1 were more restricted to Sox13+ and

Il2rb+ cd T cells, respectively. It is thus likely that these cells may

exit the thymus in a potentially naı̈ve state and are polarized in the

periphery. Clusters 3 and 23 express cdT17-associated genes such as

Sox13, Blk, Rorc, Il17a, and Il17f (Figs 2C and EV3B). The CD24�

compartment (clusters 6 and 10) mainly consisted of Il2rb+ cells

(Figs 2C and EV3B) representing IFN-c-producing cd T cells. Other

genes exclusively expressed by clusters 6 and 10 included Gzmb,

Nt5e, and Klrb1a. Cluster 10 exhibited strong expression of inter-

feron-induced transmembrane protein family member Ifitm1 and

protein tyrosine kinase-binding protein Tyrobp (Figs 2C and EV3B).

In summary, we characterized five fetal cd sub-types—Gzmahi,

Rorc+ Il17a+ Il17f+, S1pr1+ Ccr9+, Il2rb+, and Ifitm1+ cd T cells

(Fig 2B).

◀ Figure 1. Single-cell RNA sequencing (scRNA-seq) of cd T-cell differentiation from the fetal and adult thymus.

A Schematic representation of the workflow used for single-cell sorting, library preparation, and data analysis.
B, C t-SNE representation based on transcriptome similarities showing 30 clusters identified by the RaceID3 algorithm (B) and the sorted cell populations (C) from fetal

thymi. Colors represent different cell types sorted using fluorescence-activated cell sorting (FACS; n = 2 minimum independent experiments for sorting each
population, 24 mouse fetal thymi, embryonic day (E) 17.5-E18.5).

D Bar plot showing the contribution of sorted cell types to the fetal clusters comprising more than 15 cells. The width of the bars is proportional to the cell numbers
in the clusters.

E, F t-SNE representation based on transcriptome similarities showing 24 clusters identified by the RaceID3 algorithm (E) and the sorted cell types (F) from the adult
thymi (n = 2 minimum independent experiments for sorting each cell type, 11 adult thymi, 6- to 7-week-old female mice).

G Bar plot showing the contribution of sorted cell types to the adult clusters comprising more than 15 cells. The width of the bars is proportional to the cell numbers
in the clusters.

H, I Inferred lineage tree of fetal (H) and adult (I) cd T-cell differentiation using the StemID2 algorithm. Only significant links are shown (P < 0.01). The color of the link
indicates the �log10P. The color of the vertices indicates the transcriptome entropy. The thickness indicates the link score, reflecting how densely a link is covered
with cells.

J t-SNE representation of the adult thymus dataset showing the weights for fetal DN clusters calculated using quadratic programming. Color scale represents
weights on the scale of 0–1.

K Pseudo-temporal expression profiles of Mki67, Pcna, and Top2a (top) as well as Rag1 and Rag2 (bottom) along the DN1 to DN3 differentiation trajectories. The lines
indicate the pseudo-temporal expression values derived by a local regression of expression values across the ordered cells. Blue and red lines indicate the fetal and
adult data, respectively.
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The adult immature CD24+ immature compartment comprises

clusters 5, 13, and 14 (Figs 1G and 2D). Akin to fetal cluster 1, adult

cluster 13 expresses high levels of Gzma, indicating that this subset

is maintained in adults (Figs 2F and EV3C). Cluster 14, expressing

Sox13, Maf, and Rorc, represents an immature cdT17 subset (Figs 2F

and EV3C). Unlike fetal Rorc+ cells, this cluster does not express

Il17a and Il17f, supporting the hypothesis that fetal cdT17 cells are

rapid “natural” IL-17 producers, while adult cdT17 cells are “indu-

cible” IL-17 producers requiring antigen exposure in secondary

lymphoid organs (Chien et al, 2013). Cluster 5 comprises CD122+

immature cells expressing Il2rb and represents the IFN-c-producing
lineage (Figs 2F and EV3C). Two transcriptionally distinct sub-types

within cluster 5 were not resolved by clustering—Eomes+ and

S1pr1+Ccr9+ cells (Figs 2F and EV3C). Of note, we found very few

Eomes+ cells in the fetal thymus. Similar to fetal cluster 20, we iden-

tified Ccr9 and S1pr1 double positive cells in adult cluster 5 (Figs 2F

and EV3C). Few cells from clusters 8 and 9 were also S1pr1+Ccr9+

(Fig 2D). Although these double positive cells seem to be transcrip-

tionally similar to Il2rb+ cells, they also expressed Sox13 and Scart2

associated with cdT17 differentiation, albeit at lower levels than in

the fetal thymus. Overall, we identified five transcriptionally unique

immature cd subsets in the adult thymus—Gzmahi, Rorc+, S1pr1+

Ccr9+, Il2rb+, and Eomes+ subsets (Fig 2E).

Next, we characterized the transcriptional heterogeneity among

the mature CD24� cells—a rare population in the adult thymus.

Broadly, mature cd T cells expressed one of four transcription

factors—Tbx21 (cluster 7), Eomes (a subset of cluster 7), Rorc (clus-

ter 10), and Zbtb16 (cluster 15 and a subset of cluster 10; Figs 2F

and, EV3C and D). Tbx21 is required for the differentiation of IFN-c-
producing cells (Barros-Martins et al, 2016) and, accordingly, was

detected in cluster 7, which mainly comprises mature Il2rb+ cells

(Fig 2F). Cluster 10 comprised two subpopulations of Rorc+ cells

demarcated by the expression of two scavenger receptors—Scart1

and Scart2 (Fig EV3D). Scart1+ cells expressed Zbtb16 (encoding

PLZF), required for the differentiation of Vc6+ cdT17 cells devel-

oped in the fetus (Lu et al, 2015). Recently, Scart1 has been shown

to be expressed by tissue-resident Vc6+ cd T cells, strengthening the

assumption that these cells are Vc6+ cd T cells (Tan et al, 2019).

Zbtb16 was also expressed by cluster 15 together with Il4, indicating

that these cells are IFN-c/IL-4-producing NKT-like cells (Figs 2F and

EV3C) (O’Brien & Born, 2010). Taken together, scRNA-seq revealed

substantial heterogeneity of mature cd T cells in the adult thymus

and identified Tbx21+, Eomes+, and Zbtb16+Il4+ sub-types in the

Il2rb+ compartment, and two sub-types in the Rorc+ compartment,

one of which was Zbtb16+ (Fig 2E). Next, we utilized quadratic

programming to identify the corresponding cell types in fetal and

adult datasets. Fetal Gzmahi cluster 1, Rorc+ clusters 3 and 23, and

Il2rb+ cluster 6 showed transcriptional similarities to adult Gzmahi

cluster 3, immature Rorc+ cluster 14, and Il2rb+ cluster 7, respec-

tively (Fig EV3E). We did not identify adult clusters corresponding

to fetal cluster 10 (Ifitm1+) or fetal clusters equivalent to adult

mature Rorc+ cluster 10, indicating that these populations are devel-

opmental stage-specific.

To further investigate the correspondences among the developing

cd sub-types in the fetal and adult thymus, we integrated the fetal

and adult cd thymocyte datasets using a strategy described previ-

ously (Stuart et al, 2019) and inferred nine clusters in the integrated

dataset (Fig 2G). Clusters 1 (immature cdT17), 2 (Il2rb+), and 4

(Gzmahi) were comprised of cells from both fetal and adult cd
thymocytes (Figs 2G and H, and EV3F). Clusters 6, 7, and 8 were

characterized by the expression of cell cycle-related genes and

mainly contained fetal cd thymocytes indicating—akin to fetal DN

cells—fetal cd thymocytes are more proliferative (Figs 2G and H,

and EV3F). As observed in the separate analysis, Ccr9+ S1pr1+

(cluster 3) and mature cdT17 (cluster 5) sub-types were more abun-

dant in the adult thymus (Figs 2G and H, and EV3F). Eomes+ cells

(cluster 9) were exclusively present in the adult thymus (Figs 2G

and H, and EV3F). In conclusion, the integrated analysis of the fetal

and adult cd thymocytes reveals shifts in relative abundances of dif-

ferent sub-types at these two developmental time points.

Ccr9+ S1pr1+ cd T cells represent a major subset of blood and
lymph node cd T cells and produce IFN-c, TNF-a, and IL-2
upon stimulation

After development, cd T cells exit the thymus and enter the periph-

ery. Therefore, we characterized the transcriptional signature of

circulating cd T cells in the peripheral blood of the adult mouse. We

sorted pan cd T cells from the peripheral blood for scRNA-seq and

classified circulating cd T cells into seven clusters (Fig 3A). Cluster

6 expressed cdT17-associated genes such as Blk, Maf, and Rorc

(Fig 3B). Circulating Il2rb+ cd T cells were more heterogeneous and

segregated into clusters 1, 3, and 7 (Fig 3A and B). Cluster 3 exhibits

exclusive expression of Gzma and Gzmb, while cluster 7 exclusively

expresses Ly6c2 and upregulates S1pr1 (Fig 3B). Both clusters

express Ccl5. Cluster 1 exhibits higher level of Id2 and Ccr2 (Fig 3B).

◀ Figure 2. Fetal and adult cd T cells exhibit substantial transcriptional heterogeneity.

A t-SNE representation highlighting the fetal clusters enriched in immature and mature cd T cells. Other cells are shown in gray. Selected marker genes
characterizing these clusters are also depicted.

B Pie charts showing the contribution of the five identified sub-types to the immature (CD24+) and mature (CD24�) cd T-cell compartment in the fetal thymus.
C Dot plot showing key marker genes differentially expressed among various cd T cell sub-types. Color represents the z-score of the mean expression of the gene in

the respective cluster and dot size represents the fraction of cells in the cluster expressing the gene. z-scores above 1 and below -1 are replaced by 1 and -1,
respectively.

D t-SNE representation highlighting the adult clusters enriched in immature and mature cd T cells. Other cells are shown in gray. We identified six different
sub-types. Selected marker genes characterizing these clusters are also depicted.

E Pie charts showing the contribution of six identified sub-types to the immature (CD24+) and mature (CD24�) cd T-cell compartment in the adult thymus.
F Dot plot showing key marker genes differentially expressed among various cd T cell sub-types. Color represents the z-score of the mean expression of the gene in

the respective cluster and dot size represents the fraction of cells in the cluster expressing the gene. z-scores above 1 and below �1 are replaced by 1 and �1,
respectively.

G, H Uniform Manifold Approximation and Projection (UMAP) representation (G) showing 9 clusters identified in the integrated fetal and adult dataset. Few marker
genes characterizing these clusters are also shown and (H) highlights the fetal and adult cells in blue and red color, respectively.
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Importantly, cluster 8 represented by ~ 35% of circulating cd T cells

is characterized by the co-expression of Ccr9 and S1pr1, similar to

the novel naı̈ve cd subset in the embryonic and adult thymus

(Fig 3A–D). Since Ccr9+ S1pr1+ cd T cells did not exhibit either

cdT17-associated or IFN-c-producing cd T-cell-associated gene

expression signatures and rarely express Cd44 (Fig 3C), we hypoth-

esized that these cells are potentially naı̈ve and CD44�. Therefore,
we stratified blood cd T cells into three different sub-types based on

the expression of CD44 and CD122, i.e., CD44�, CD44+ CD122�,
and CD44+ CD122+ and sorted them using FACS to perform

scRNA-seq (Fig 3E). Combined analysis of pan cd T cells and the

sorted subsets revealed that the CD44� gate mainly contained Ccr9+

S1pr1+ cd T cells (Fig 3F). scRNA-seq analysis of Ccr9+ S1pr1+ cd
T cells (sorted as CD44�) after phorbol 12-myristate 13-acetate

(PMA) and ionomycin stimulation revealed that these cells highly

express several cytokines such as Ifng, Tnf, and Il2 compared to

unstimulated cells (Fig 3G–I). Our results suggest that Ccr9+ S1pr1+

cd T cells are a subset of IFN-c-producing cd T cells but exit the

thymus in an immature state and are polarized in the periphery in

an adaptive-like fashion. Since the accumulation of Ccr9+ S1pr1+ cd
T cells in the circulation may reflect their incapability to migrate to

the peripheral organs, we investigated the presence of this

sub-population in the lymph nodes of adult mice. A combined anal-

ysis of blood and lymph node cd T cells revealed that indeed ~ 55%

of lymph node cd T cells are Ccr9+ S1pr1+ (Fig 3J–L, Appendix

Fig S1A and B).

In order to further compare the peripheral blood and lymph node

cd subsets with their thymic counterparts, we integrated scRNA-seq

datasets of cd T cells from the adult thymus, peripheral blood, and

lymph nodes (Fig 3M and N). cdT17 and Il2rb+ cd T cells from the

blood and lymph nodes co-clustered with mature cdT17 (cluster 3)

and Il2rb+ cd thymocytes (clusters 4, 5, and 8), respectively (Fig 3M

and N and Appendix Fig S1C). Cluster 2 mainly consisted of Gzmahi

and immature cdT17 thymocytes. These cells are absent in the

blood and lymph nodes (Fig 3M, N and Appendix Fig S1C). Impor-

tantly, Ccr9+ S1pr1+ cd T cells from the blood and lymph nodes

also co-clustered with their thymic counterparts (cluster 1; Fig 3M,

N, and Appendix Fig S1C). Overall, our analysis revealed common

and unique cd sub-types in the thymus, blood, and lymph nodes.

We identified an unpolarized Ccr9+ S1pr1+ sub-population of cd T

cells in the thymus which lack the expression of known marker

genes of cdT17 and IFN-c-producing cd T-cell lineages and produce

several cytokines upon stimulation. In comparison with the adult

thymus, this sub-population is expanded in the peripheral blood

and lymph nodes, indicating that these cells are preferentially

recruited from the thymus to these tissues.

Characterizing cd T cells expressing different variable chains

We next profiled cd T cells expressing distinct TCR variable chains,

which correspond to discrete tissue migration patterns of these cells.

We profiled Vc1+, Vc4+, and Vc5+ cells from the fetal and Vc1+,

Vc4+, and Vc1+ Vd6.3+ cells from the adult thymus (Heilig & Tone-

gawa, 1986), isolated from the immature and mature compartments

using scRNA-seq (Fig EV4A and B). Fetal Vc4+ cells were sorted

without using CD24 as most of them were CD24+. We classified our

original fetal dataset sorted without variable chain information into

three most abundant sub-types, i.e., Gzma+, Rorc+, and Il2rb+ cells

and assigned fetal Vc1+, Vc4+, and Vc5+ cells to these subsets.

Immature and mature Vc1+ cells were mainly Gzma+ and Rorc+

with a minor increase in the fraction of Il2rb+ cells in the mature

Vc1+ compartment (Fig EV4A, C and I). Immature Vc5+ cells

contributed equally to Gzma+, Rorc+, and Il2rb+ subsets but were

overwhelmingly Il2rb+ in the mature state (Fig EV4A, D and I).

Vc4+ cells were mainly Gzma+ and Rorc+ (Fig EV4A, E and I). In

the adult thymus, we classified cd T cells sorted without variable

chain information into five sub-types, i.e., Gzma+, Rorc+, Il2rb+,

Eomes+, and Zbtb16+ Il4+ cells, and assigned adult Vc1+, Vc4+,

and Vc1+ Vd6.3+ to these sub-types. Approximately half of the

immature Vc1+ cells were Il2rb+, and few were Zbtb16+Il4+

(Fig EV4B, F and J). We also found a fraction of Gzma+ and Rorc+

cells in the immature Vc1+ compartment but most mature Vc1+

cells were Il2rb+, Eomes+, and Zbtb16+ Il4+ (Fig EV4B, F and J).

Immature Vc4+ cells were Gzma+ and Rorc+, and after maturation,

they upregulated Rorc (Fig EV4B, G and J). Vc1+ Vd6.3+ cells are

NKT-like cells associated with IFN-c and IL-4 production

(Kreslavsky et al, 2009; O’Brien & Born, 2010). Immature Vc1+

Vd6.3+ cells comprise Il2rb+ and Zbtb16+Il4+ cells, while their

mature counterpart is mainly Zbtb16+ Il4+ (Fig EV4B, H and J).

This analysis indicates that subsets expressing distinct TCR variable

chains are more heterogeneous in the immature state and become

more focused toward a particular sub-type upon maturation.

Inferring differentiation trajectories and GRNs of fetal and adult
cd T-cell development

In order to understand the regulatory control of cd T-cell differentia-

tion, we inferred differentiation trajectories with StemID2 (Grün

et al, 2016; Herman et al, 2018) for two major cd sub-types—cdT17
(Rorc+) and IFN-c-producing (Il2rb+) subsets. Self-

organizing maps (SOMs) of pseudo-temporal gene expression

profiles along the predicted fetal cdT17 and IFN-c-producing
differentiation trajectories yielded 17 and 20 gene modules, respec-

tively (Fig EV5A and C). Similarly, gene expression profiles along

adult cdT17 and IFN-c-producing differentiation trajectories were

grouped into 22 and 31 gene modules, respectively (Fig EV5G and

H). These modules were activated at distinct time points during

differentiation. We focused on the late modules activated during

effector differentiation into cdT17 and IFN-c-producing lineages and

identified many genes including transcription factors with known

and unknown functions and with distinct dynamics (Fig EV5B, D–F,

I and J). GSEA revealed that chromatin modifiers are specifically

upregulated during cdT17 differentiation, whereas the IFN-c
lineage is more proliferative in the fetal and adult thymus

(Fig EV5K and L). In particular, pseudo-temporal modules acti-

vated during effector differentiation of fetal and adult cells into

the cdT17 lineage contained many histone-modifying factors such

as histone-lysine N-methyltransferases Kmt2a and Kmt2c, lysine-

specific demethylases Kdm5a and Kdm5b, and the histone

deacetylase Hdac7 (Fig EV5M).

In order to investigate how these differentially expressed genes

are integrated in fetal or adult GRNs, we applied the random forests-

based GENIE3 algorithm (Huynh-Thu et al, 2010). We recovered

distinct GRN modules specifically activated at particular stages of cd
T-cell development (Fig 4A–D, Appendix Fig S2A and B). The earli-

est network comprises genes associated with ETPs (Bcl11a, Cd44,
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Adgrg1, Kit etc.) and T-cell commitment such as Bcl11b, Cd3e,

Cd3d, and Cd3e and was thus termed core T-cell network. The

subsequently activated network consists of genes involved in

recombination, e.g., Rag1, Rag2, Ptcra, Hdac4, Pld4, and Notch3,

and is, hence, addressed as recombination network. A third network

was cell cycle-associated, comprising, e.g., Mki67, Pcna, and Ran.

Finally, we observed a cdT17-associated network, involving Sox13,

Maf, Blk, and Rorc, and an IFN-c lineage network containing Il2rb,

S1pr1, and killer cell lectin-like receptors such as Klra10 and Klrd1.

These five networks were recovered from the fetal and the adult

thymus. Of note, the adult dataset gave rise to another network

comprising Cd44, Icos, Il7r, Il18r1, Ccr2, and Ccr6 activated

at mature cdT17 stages, i.e., cluster 10 (Fig 4C and D and

Appendix Fig S2B). Taken together, we successfully inferred GRNs

and recovered differentially expressed gene networks characterizing

distinct stages of cd T-cell differentiation.

Sequential activation of SOX13, c-MAF and RORct is essential for
cdT17 differentiation

We next attempted to decipher the underlying molecular mecha-

nisms of cdT17 differentiation. The pseudo-temporal gene expres-

sion changes along the predicted cdT17 differentiation trajectory in

the fetal and adult thymus implicated an early role of Sox13, a

subsequent activation of Maf (encoding c-MAF) and a late upregula-

tion of Rorc during cdT17 differentiation (Fig 4G) and were

supported by edges connecting these genes in the cdT17-specific
network module (Fig 4E and F). Although the role of SOX13,

c-MAF, and RORct has been explored in cdT17 differentiation

(Ivanov et al, 2006; Melichar et al, 2007; Gray et al, 2013; Malhotra

et al, 2013; Barros-Martins et al, 2016; Zuberbuehler et al, 2019),

their temporal dynamics and the mutual interplay in regulating

cdT17 differentiation have not been studied in detail. To validate

the predicted expression kinetics (i.e., Sox13-Maf-Rorc) and to inves-

tigate the function of these factors during cdT17 differentiation, we

profiled the corresponding cd T-cell subsets in Sox13, Maf, and Rorc

knockout (KO) mice. We first sequenced immature and mature cd
T-cell subsets from the fetal and adult thymus of Sox13 KO mice

(Fig 5A and Appendix Fig S3A). In the fetal thymus, Sox13 KO mice

lacked Maf+ Rorc+ Il17a+ Il17f+ cd T cells, indicating that Sox13

acts upstream of Maf and Rorc to activate the cdT17-differentiation
program (Fig 5B and C). Furthermore, we identified Maf+ Gzma+

cells in the wild-type (WT) mice, which were absent in the Sox13

KO mice (Fig 5B and C). In conclusion, Maf+ cells were completely

absent in the fetal Sox13 KO thymus, suggesting that Sox13 acts

upstream of Maf to activate its expression. Accordingly, differential

gene expression analysis between WT and KO cells revealed a sharp

downregulation of Maf in Sox13-deleted cells, in addition to Blk,

Zbtb16, and Gzma (Fig 5D). Genes related to TCR signaling such as

Cd28 and Lck were upregulated in the Sox13-deleted cells (Fig 5D),

and GSEA between control and Sox13-deleted cd T cells revealed

that, irrespective of the cd lineage, Sox13-deleted cells expressed

higher levels of TCR signaling components and cell cycle-related

genes (Fig 5E). These results demonstrate that Sox13 activates Maf

and directly or indirectly regulates TCR signaling during fetal cd
T-cell differentiation.

Next, we analyzed the effects of Sox13 deletion on cd T cells in

the adult thymus, which were found to be less drastic but more

diverse. In the immature compartment, Sox13-deleted cells clustered

separately from WT cells (Fig 5F). Differential gene expression anal-

ysis revealed downregulation of genes required for cdT17 differenti-

ation—Maf, Blk, and Rorc—in KO cells (Fig 5H), which were still

expressed at lower levels in KO cells (Fig 5G). Adult Sox13-deficient

immature cd T cells expressed higher levels of Cd28 and Btla, a

receptor for the B7 homolog B7x (Fig 5H) (Watanabe et al, 2003).

Sox13-deleted cells from fetal and adult thymus exhibited higher

expression of Itm2a, which has been shown to be upregulated

through TCR signaling and to follow similar kinetics as Cd69

(Fig 5D and H) (Kirchner & Bevan, 1999). These observations

suggest that Sox13 may play a role in downregulating TCR signaling

components at both developmental time points. Furthermore,

Sox13-deleted cells exhibited reduced expression of Gzma, and in

the mature compartment, we observed downregulation of cdT17-
associated genes, such as Maf, Blk, and Rorc, and of markers of

other sub-types, i.e., Zbtb16, Nt5e, Ly6a, and Il4 (Fig 5H). Of note,

Zbtb16 was expressed in two mature subsets in the adult thymus—

Il4+ cells, closely resembling NKT-like Vc1+ Vd6.3+ cd T cells, and

Scart1+ Rorc+ cells (Fig EV3C), most likely a fetal-derived Vc6+

◀ Figure 3. Ccr9+ S1pr1+ cd T cells represent a major subset of blood and lymph node cd T cells.

A t-SNE representation based on transcriptome similarities identified 8 clusters of circulating cd T cells in peripheral blood (n = 2 independent experiments, twelve
6- to 7-week-old female mice).

B Dot plot showing key marker genes differentially expressed among circulating cd T-cell sub-types.
C t-SNE representation showing the expression of Ccr9, S1pr1, and Cd44.
D Pie chart showing the fraction of three major cd sub-types in the blood. Approximately 35% of circulating cd T cells are Ccr9+ S1pr1+.
E FACS plots showing the gates used for sorting circulating cd T cells based on the expression of CD44 and CD122.
F t-SNE representations of the combined analysis of CD44�, CD44+ CD122�, and CD44+ CD122+ cd T cells (n = 1 independent experiment, six 6- to 7-week-old

female mice) with pan cd T cells from the peripheral blood (depicted in gray). Note that CD44� cd T cells are Ccr9+ S1pr1+.
G Schematic showing the workflow used for profiling the stimulated Ccr9+ S1pr1+ cd T cells.
H t-SNE representation showing the control and PMA/ionomycin-stimulated Ccr9+ S1pr1+ cd T cells (n = 2 independent experiments, twelve 6- to 7-week-old female

mice).
I Dot plot showing key genes differentially expressed between the control and PMA/ionomycin-stimulated Ccr9+ S1pr1+ cd T cells.
J t-SNE representation of the combined analysis of blood (purple) and lymph node (green) cd T cells (n = 1 independent experiment, lymph nodes from three 6- to

7-week-old female mice).
K Pie chart showing the fraction of three major cd sub-types in lymph nodes. Approximately 55% of lymph node cd T cells are Ccr9+ S1pr1+.
L t-SNE representation of the combined analysis of blood and lymph node gd T cells showing the expression of Ccr9 and S1pr1.
M, N UMAP representation of the integrated dataset from the thymus, blood and lymph nodes (M) showing cells from different tissues in different colors and (N)

showing 10 clusters identified in the integrated dataset. Few marker genes characterizing the clusters are also shown.
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cdT17 sub-type (Kreslavsky et al, 2009). Accordingly, we also

observed reduced numbers of two Zbtb16+ sub-types—Il4+ and

Rorc+ cells (Fig 5F and G). In conclusion, we show that SOX13 acts

upstream of c-MAF and PLZF and regulates the differentiation of

cdT17 as well as NKT-like IFN-c/IL-4-producing cd T cells.

Our computational analysis predicted Maf as the link between

Sox13 and Rorc in specifying the cdT17 cell fate. In order to pinpoint

the role of c-MAF in this regulatory hierarchy, we deleted Maf in

lymphoid progenitors using Il7racre. We then performed scRNA-seq

of immature and mature cd T cells from the fetal and adult Maffl/fl;

Il7racre and Maffl/fl thymi (Fig 5A and Appendix Fig S3B). We found

a complete absence of Rorc+ Il17a+ Il17f+ cd T cells in the fetal KO

thymi (Fig 5I and J). Accordingly, differential gene expression

analysis within the immature fetal compartment revealed that KO

cells downregulated Gata3, Sox13, Blk, Icos, Rorc, and Il17f

(Appendix Fig S3C). In the adult thymus, immature cells from the

KO mice clustered separately from WT controls (Fig 5K), with

downregulation of Sox13 and failure to express Rorc (Fig 5K and L,

and Appendix Fig S3D). Differential gene expression analysis

revealed that Maf-deleted cells from the immature compartment

downregulated Gata3, Blk, and Scart2 (Appendix Fig S3E). Impor-

tantly, Maf-deleted cells were found to upregulate the expression of

TCR signaling strength-related genes such as Nr4a1 and Cd69

(Appendix Fig S3E) (Ashouri & Weiss, 2017). Accordingly, GSEA

identified upregulation of AKT, MAP Kinase, and Toll-like receptor

4 (TLR) signaling pathways in the Maf-deleted immature compart-

ment, suggesting a role of c-MAF in downregulating TCR signaling

during cdT17 differentiation (Appendix Fig S3F). Furthermore, all

mature Rorc+ sub-types (Zbtb16+ and Ztbtb16� populations) were

missing in the KO thymi (Fig 5K and L). In conclusion, c-MAF acts

downstream of Sox13 and is required for the activation of the IL-17

program during cdT17 differentiation.

Since cdT17 cells have been shown to play an essential role in

psoriasis-like skin inflammation and Sox13-mutant mice are

protected from psoriasis-like dermatitis (Cai et al, 2011; Gray et al,

2013), we investigated whether the absence of cdT17 cells in the

skin and skin draining lymph nodes of Maf KO mice (Appendix Fig

S3G) makes them resistant to psoriasis-inducing stimuli. Indeed, we

found that the application of imiquimod (IMQ) on the dorsal skin,

an established psoriasis model (van der Fits et al, 2009; Flutter &

Nestle, 2013), resulted in reduced skin inflammation in the Maf KO

mice compared to WT mice (Fig 5M). Moreover, histological analy-

sis of the dorsal skin of Maf-deficient mice did not show epidermal

thickening pathology, a characteristic feature of psoriasis (Fig 5N

and O). Reverse transcription–polymerase chain reaction (RT–PCR)

analysis of the IMQ-treated dorsal skin of Maf KO at day 7 revealed

an absence of IL-17a mRNA compared to the treated WT

(Appendix Fig S3H). Accordingly, the dorsal skin harbored signifi-

cantly reduced numbers of RORct+ cd T cells in the Maf KO mice

after 6 days of consecutive IMQ application (Appendix Fig S3I).

Taken together, Maf-deficient mice exhibit a drastic reduction in

RORct+ cdT17 cells in the skin and skin draining lymph nodes and

are protected from IMQ-induced psoriasis-like skin inflammation.

Finally, we analyzed the effect of Rorc deficiency on cd T-cell dif-

ferentiation, which we predicted to act downstream of Sox13 and

Maf based on our pseudo-temporal analysis (Fig 4G). We profiled

immature and mature cd T cells from the fetal and adult thymus of

Rorc KO mice (Appendix Fig S4A and B). Like Sox13 and Maf-

deleted fetal thymi, Rorc deletion led to an absence of Sox13+ Maf+

Il17a+ Il17f+ cd T cells in the fetal thymus (Appendix Fig S4C–E).

Rorc-deleted cells did not exhibit reduced Sox13 or Maf expression

(Appendix Fig S4D), suggesting that Rorc acts downstream of these

two transcription factors and is the end-point of cdT17 differentia-

tion in the fetal thymus. In the adult thymus, immature cells from

Rorc KO mice clustered separately, did not activate the cdT17-differ-
entiation program and lacked Il17re expression (Appendix Fig S47F

and G). Differential gene expression analysis revealed that Rorc-

deleted cells downregulate Maf and Scart2 expression (Appendix Fig

S4I). Akin to the fetal thymus, the expression of Sox13 remains

unaffected in adult Rorc-deleted immature cd T cells (Appendix Fig

S4G). The mature cd T-cell compartment completely lacked cdT17
cells in the Rorc KO mice (Appendix Fig S4F and H), suggesting a

block in cdT17 maturation. In summary, during cdT17 development

in the fetal and adult thymus, SOX13 acts as an upstream regulator

of cdT17 lineage specification and is essential for c-MAF-driven acti-

vation of RORct, a transcription factor essential for the induction of

the IL-17 program.

Discussion

The cd T-cell lineage has sparked a significant interest because of its

unique developmental paradigm and functional properties, which

can be exploited for immunotherapy. Two recent studies have also

profiled cd T cells from the murine thymus using scRNA-seq.

However, the aims of these studies were not to understand

intrathymic cd T-cell differentiation. Ravens and colleagues

explored the adaptation of Vc6+ cd T cells to the skin and therefore

◀ Figure 4. Gene regulatory network (GRN) inference of fetal and adult cd T-cell differentiation using scRNA-seq data.

A GRN as inferred from the fetal scRNA-seq data using the GENIE3 algorithm. The data of the top 1,000 interactions were used to construct the GRN. Recovered
network modules are labeled and highlighted in different colors. Gene names in different networks are listed in Appendix Fig S2A.

B t-SNE representation showing the aggregated expression of genes present in the different modules.
C GRN as inferred from the adult scRNA-seq data using the GENIE3 algorithm. The data of the top 1,500 interactions were used to construct the GRN. Recovered

network modules are labeled and highlighted in different colors. Gene names in different networks are listed in Appendix Fig S2B.
D t-SNE representation showing the aggregated expression of genes present in the different modules.
E Fetal cdT17 network. Note the presence of Sox13, Maf and Rorc (highlighted using rectangles with red, blue, and green colors, respectively). Il17a and Il17f are also

part of this module.
F Adult cdT17 network. Many genes were shared between the fetal and adult cdT17 network. Sox13, Maf, and Rorc are highlighted using rectangles with red, blue, and

green colors, respectively.
G Pseudo-temporal expression profiles of Sox13, Maf and Rorc along the fetal and adult cdT17 trajectory, respectively. Note the sequential order of expression along the

pseudo-temporal order in both datasets.
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specifically profiled Vc6+ cd T cells from different tissues including

thymus (Tan et al, 2019). In the second study, Maehr and collea-

gues investigated thymus organogenesis and profiled all fetal and

newborn thymic cell types including blood cells without focusing on

cd T cells (Kernfeld et al, 2018). Their dataset contained only 769

non-conventional lymphocytes including innate lymphocytes-like

cells and cd T cells. The latter were resolved in only three sub-types

—Gzmahi, cdT17, and proliferating cdT cells.

Here, we present the first focused and comprehensive map of cd
T-cell differentiation in the thymus. Since fetal and adult cd T-cell

population exhibit functional differences, we chose to infer high-

resolution differentiation trajectories at these two stages of life

(Prinz et al, 2013). Unexpectedly, our analysis revealed that gene

regulatory programs of cd T-cell differentiation and the emerging

sub-types were surprisingly similar in fetal and adult thymi. In

particular, we identified previously unknown sub-types including an

unpolarized Ccr9+ S1pr1+ population, which is expanded in the

peripheral blood and the lymph nodes of adult mice (Fig 6). Upon

stimulation, they upregulate the expression of various cytokines

such as Tnf, Il2, and Ifng. Therefore, although these cells leave the

thymus in a functionally immature state, they are already primed to

produce IFN-c and are likely to acquire their effector phenotype in

the periphery through an adaptive-like mechanism.

Current studies favor a TCR-dependent two-step model of cd T-

cell commitment and subsequent effector differentiation. TCR signal

strength has been shown to play an essential role—weak signals

promote ab commitment and strong signals induce the cd T-cell fate.

The subsequent effector differentiation into IL-17-, IFN-c-, and IL-4-

producing cd lineages also requires varying levels of TCR signals.

Weak signals promote the cdT17 lineage, whereas progressively

stronger signals promote IFN-c- and IL-4-producing cd lineages,

respectively (Fahl et al, 2014; Zarin et al, 2015). However, several

studies have reported conflicting results owing to the different exper-

imental systems used to decipher the role of TCR signals in driving

the differentiation of various cd T-cell effector sub-types (Wencker

et al, 2014; Munoz-Ruiz et al, 2016; Sumaria et al, 2017). Therefore,

whether TCR signals play an instructive or a permissive role in cd
effector differentiation is still debated. For example, a study by Kang

and colleagues has identified a TCR-independent Sox13-ECFP+ c-

KIT� CD24+ DN1d sub-type which gives rise to the cdT17 lineage

(Spidale et al, 2018). The study found that c-KIT+ DN1 cells (ETPs)

did not generate CCR6+ cdT17 cells, while a fraction of cdT17 cells

generated from DN1d progenitors was CCR6+. In this study, we

focused our analysis on c-KIT+ DN1 cells, i.e., ETPs, and did not

profile c-KITlo/� DN1 thymocytes. However, in the adult thymus we

found a considerable difference in the expression profile of mature

and immature cdT17 cells as reflected by their clear separation in the

t-SNE map (Fig 1F). Moreover, trajectory analysis did not link these

two cell populations together (Fig 1I). Consequently, we did not

include mature cdT17 cells while reconstructing the cdT17 differenti-

ation trajectory in the adult thymus. Moreover, immature cdT17 cells

were Ccr6�, while mature cdT17 cells were Ccr6+ (Fig EV3C). Thus,

it is likely that mature cdT17 cells in the adult thymus are derived

from Sox13-ECFP+ DN1d progenitors described by Kang and collea-

gues, while the immature cdT17 cells observed in this study are ETP-

derived, and likely undergo maturation in the periphery without

recirculating to the thymus. scRNA-seq profiling of DN1a-e thymo-

cytes and the progeny they generate in differentiation assays such as

fetal thymus organ culture (FTOC) may uncover the heterogeneity

and the developmental potential of these progenitor compartments.

We focused our attention on the regulatory mechanisms govern-

ing cdT17 differentiation. We validated the role of three

◀ Figure 5. Sequential activation of Sox13 and Maf is required for the development of Rorc+ cd T cells.

A Scheme showing the experimental design and scRNA-seq pipeline for the analysis of Sox13 and Maf KO mice.
B t-SNE representation of fetal cell types. Colors represent sorted cell types. Gray color represents DN and CD25+ cd T cells from the fetal WT data shown in Fig 1C.

cdT17 cells expressing Maf, Rorc, Il17a, and Il17f (orange box) as well as Maf+ (black box) cd T cells were absent in the Sox13 KO fetal thymus (n = 2 independent
experiments, twelve embryos from two female mice per genotype).

C t-SNE representation highlighting the expression of Maf, Rorc, Gzma, and Blk.
D Bar plot depicting the differentially expressed genes in immature cd T cells between the Sox13 KO and WT fetal thymi (purple: upregulated genes, green:

downregulated genes, adjusted P < 0.05).
E Gene set enrichment analysis (GSEA) of differentially expressed genes between immature cd T cells from the Sox13 KO and WT fetal thymi. KO cells were more

proliferating and upregulated TCR signaling-related genes.
F t-SNE representation of adult cell types. Colors represent sorted cell types. Gray represents DN and CD25+ cd T cells from the adult WT data shown in Fig 1F.

Immature KO cells (cyan) clustered separately from WT cells (red). cdT17 cells expressing Maf and Rorc, (black box) were missing in the KO. Note that few KO cells
expressed Maf and Rorc but at lower levels. Mature Maf+/Rorc+ as well as Zbtb16+ (orange box) cd T cells were reduced in the Sox13 KO fetal thymi (n = 3
independent experiments from three male mice, each genotype).

G t-SNE representation highlighting the expression of Maf, Rorc, Blk, and Zbtb16.
H Bar plot depicting the differentially expressed genes in immature and mature cd T cells between the Sox13 KO and WT adult thymi. (purple: upregulated genes,

green: downregulated genes, adjusted P < 0.05).
I t-SNE representation showing the sorted cell types from WT and Maf KO fetal thymi (n = 2 independent experiments, eight embryos from two female mice per

genotype). Gray color represents DN and CD25+ cd T cells from the fetal WT data shown in Fig 1C. Note that cells expressing Rorc, Il17a, and Il17f are absent in the
KO mice (orange box).

J t-SNE representation highlighting the expression of Sox13 and Rorc.
K t-SNE representation showing the sorted cell types from WT and Maf KO adult thymi (n = 3 independent experiments from three female mice per genotype). Gray

color represents cells from the adult WT data shown in Fig 1F. Note that immature KO cells clustered separately from WT cells (black box) and that the mature Rorc+

cd T-cell compartment lacks KO cells (orange).
L t-SNE representation highlighting the expression of Sox13 and Rorc.
M Representative pictures of the dorsal skin of the 8-week-old female Maf KO and WT mice after 4 days of consecutive IMQ application.
N Hematoxylin and eosin staining of the dorsal skin of untreated (WT) and treated (Maf KO and WT) mice.
O Graph showing the quantification of epidermal thickness of untreated (WT) and treated (Maf KO and WT) mice (n = 1 independent experiment, three adult mice

each genotype). Bars represent the mean values and error bars indicate standard error of mean (SEM).
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transcription factors—Sox13, Maf, and Rorc—in sequentially driving

the differentiation of cd T-cell progenitors toward this lineage.

However, the precise mechanistic details of the regulatory interac-

tions among these three transcription factors remain to be investi-

gated in future studies. Previously, it has been shown that Sox5

interacts with the DNA-binding domain of c-MAF via its HMG

domain and cooperatively activates the promoter of RORct in CD4+

T cells during T helper 17 cell differentiation (Tanaka et al, 2014).

We therefore suspect a similar regulatory landscape where SOX13/

SOX4 physically interacts with c-MAF to activate the RORct
promoter, leading to the activation of the cdT17-specific differentia-

tion program. Chromatin accessibility and immunoprecipitation

assays will be essential to dissect the intricacies of regulatory

cascades driving the cd T-cell differentiation program.

Interestingly, Sox13 and Maf-deleted cd T cells upregulated gene

sets associated with enhanced TCR signaling strength. As mentioned

above, several studies have shown that stronger TCR signals are

required for cd T-cell fate specification during ab/cd commitment.

However, it remains unclear how a high TCR signal-experiencing

cd-committed progenitor downregulates these signals to differentiate

into the cdT17 lineage. Our study hints toward a role of Sox13 and

Maf in this process. We noticed that Sox13 and Maf-deleted cells

upregulate gene sets associated with TCR signaling components,

indicating that these two transcription factors may play a role in

downregulating the TCR signals in cd-committed progenitors to drive

differentiation of the cdT17 lineage. A recent study by Ciofani and

colleagues has investigated the relationship between c-MAF and TCR

signaling in detail by transducing Rag1-deficient DN thymocytes with

transgenic cdTCR of varying signaling strength and observed an

inverse relationship between them (Zuberbuehler et al, 2019).

However, the effect of Maf deletion on TCR signaling was not specifi-

cally investigated. Consistent with our analysis, their study revealed

an upregulation of PI3K, protein kinase A, and TCR signaling in Maf-

deleted CD25� CD27� fetal cdT17 cells. Yet, it remains to be resolved

whether Sox13 andMaf directly or indirectly regulate TCR signaling.

Collectively, our results substantially expand the knowledge

about the development of cd T cells (Fig 6), an understudied branch

of T cells at the interface of the adaptive and the innate immune

system, which has lately received increasing attention as crucial

player in autoimmune diseases and cancer. More broadly, our study

provides the first detailed comparative analysis of cell states, gene

networks, and differentiation trajectories during fetal and adult cd
T-cell development at single-cell resolution. Similar comparative

studies to elucidate the differentiation of other immune cell types

Sox13lo 

Lef1 
Cd5 

Cd28 
Nfatc1 
Hivep3 
Prkch

Sox13hi 

Bcl11b 
Blk

Ccr9 

Gzma
Sox13 
Gata3 

Scart2 
Ly6a 

Scart1 
Zbtb16 

Ccr9 
S1pr1 

Eomes
Prdm16 
Id2 

Sox13 
Zbtb16 
Il4 
Icos

Ikzf2 
Il2rb 
S1pr1 

Ifitm1 
Gzma
Gzmb

Sox13 Rorc
Zbtb16 

IL-17  
Program 

TCR  
Signaling 

genes 

Maf
Gzma

Adult Fetal

Fetal and Adult

Sox13, Maf, Rorc, Bcl11b, Gata3, Blk, Icos

Il17a 
Il17f 

Cd24 
Il17re 

Cell cycle 

Recombination 

 progenitors

Immature and mature  T cells

Validated T17 Network

Ly6c2 
Ccl5 
S1pr1 

IFN-
TNF-

IL-2 

Blood 
Lymph nodes

DN progenitors

Figure 6. Transcriptional landscape of cd T-cell development as revealed by scRNA-seq.

scRNA-seq of early T-cell progenitors and cd T cells during fetal and adult life reveals cell cycle and recombination-related differences in early thymopoiesis, continuous
differentiation trajectories of cd T-cell development, and identifies various cd T-cell subsets at both developmental time points including an unpolarized Ccr9+ S1pr1+

population, which expands in the peripheral blood and lymph nodes and produces TNF-a, IFN-c, and IL-2 upon stimulation. A combined analysis of Sox13,Maf, and Rorc KO
mice reveals that sequential activation of these three transcription factors is essential for cdT17 commitment and differentiation.
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across tissues or distinct stages of life will be essential to understand

the differences in ontogeny and function over life and across tissues.

Materials and Methods

Mice

C57BL/6J mice were purchased from Charles River or obtained from

in-house breeding. Mice were kept in the animal facility of the Max

Planck Institute of Immunobiology and Epigenetics in specific-

pathogen-free (SPF) conditions. All animal experiments were

performed in accordance with the relevant guidelines and regula-

tions, approved by the review committee of the Max Planck Institute

of Immunobiology and Epigenetics and the Regierungspräsidium

Freiburg, Germany. Generation and genotyping of Sox13-deficient

(Sox13 KO) mice have been described previously (Baroti et al,

2016). Sox13 KO mice were on a C57BL/6J background. Experi-

ments were approved by the responsible local committees and

government bodies (University, Veterinäramt Stadt Erlangen &

Regierung von Unterfranken). Maf KO mice were bred and main-

tained in the animal facility of the Skirball Institute (New York

University School of Medicine) in SPF conditions. C57Bl/6 mice

were obtained from Jackson Laboratories or Taconic Farm. Maffl/fl

and Il7raCre mice were kindly provided by C. Birchmeier and H. R.

Rodewald (Schlenner et al, 2010; Wende et al, 2012). Maf condi-

tional KO mice were generated by crossing Maffl/fl to Il7raCre

animals. All animal procedures were performed in accordance with

protocols approved by the Institutional Animal Care and Usage

Committee of New York University School of Medicine. Generation

of Rorc KO (Rorctm2Litt) mice has been described previously (Eberl

et al, 2004). Rorctm2Litt mice were bred and maintained in the animal

facility of Institute of Medical Microbiology and Hygiene at Univer-

sity Medical Center Freiburg and experiments were approved and

are in accordance with the local animal care committees (Regierung-

spräsidium Freiburg).

Thymocyte isolation

All animals were sacrificed using carbon dioxide and cervical dislo-

cation. To isolate thymocytes, thymus was dissected and placed on

a 40-lm cell strainer (Falcon, Corning) kept on a 50-ml tube (Fal-

con, Corning). Each adult thymus was mashed on the cell strainer

using the back of the 1-ml syringe plunger. Fetal thymi from each

pregnant mouse were pooled together and mashed on the cell

strainer using the front of the 1-ml syringe plunger. Ten milliliter

phosphate-buffered saline (PBS) was continuously added while

mashing to collect the single-cell suspension of thymocytes in the

50-ml tube. Collected thymocytes were centrifuged at 400 g for

5 min at 4°C. The pellet was dissolved in 10 ml PBS and passed

through the 30-lm nylon filter (CellTrics, Sysmex) kept on a 15-ml

tube (Falcon, Corning). Cells were again centrifuged at 400 g for

5 min at 4°C. Afterward the pellet was dissolved in 200 ll of PBS.

Lymph node cd T-cell isolation

Isolation of the cells from the lymph nodes was performed as

described above. Inguinal lymph nodes were used for the isolation.

Lymph nodes from three mice were pooled together prior to isola-

tion. The pellet was dissolved in 200 ll of PBS.

Circulating cd T-cell isolation

After sacrificing the animals using carbon dioxide and cervical dislo-

cation, blood was quickly collected using cardiac puncture and

placed in a 15-ml falcon tube containing 10 ml PBS. Blood from 3 to

6 mice was pooled together. Red blood cell lysis was performed

using red blood cell lysis buffer (RBC lysis buffer, 10×, BioLegend)

according to manufacturer’s protocol. At the last step, the pellet was

dissolved in 200 ll of PBS.

Magnetic enrichment of adult double negative thymocytes

After thymocyte isolation as describe above, the pellet was

dissolved in 3 ml of PBS. Three ml of the following biotin-labeled

antibody cocktail solution (1:50 dilution each, clones are mentioned

in the brackets) was prepared: CD8a (53–6.7), CD4 (GK1.5), NK-1.1

(PK136), TER-119 (TER-119), Ly-6G/Ly-6C (RB6-8C5), and CD11c

(N418). All antibodies were purchased from BioLegend. The anti-

body solution was incubated with the thymocytes for 15 min on ice.

The cells were centrifuged at 400 g for 5 min at 4°C and washed

with 5 ml of PBS. The resulting pellet was resuspended in 600 ll of
PBS, and 100 ll streptavidin-conjugated beads (MojoSort Strepta-

vidin Nanobeads, BioLegend) were added to the solution and incu-

bated for 15 min on ice. Afterward, the tube was placed on the

magnet for 5 min to let the beads firmly attached to the wall of the

tube in contact with the magnet. The remaining liquid containing

the cells without the beads was transferred into a 1.5-ml tube

(Eppendorf) and centrifuged at 400 g for 5 min at 4°C. The pellet

was dissolved in 50 ll of PBS.

Cryopreservation and thawing of thymocytes

Thymocytes from Maf KO and Sox13 KO mice as well as the corre-

sponding littermate controls were cryopreserved prior to shipment

on dry ice to the Max Planck Institute of Immunobiology and Epige-

netics, Freiburg. Thymocytes were isolated as described before and

resuspended in 4 ml of freezing medium containing 90% fetal

bovine serum (FBS) and 10% dimethyl sulfoxide (DMSO) and kept

at �80°C overnight before shipment. After receiving the frozen

thymocytes, they were kept at �80°C for few days. Prior to antibody

staining, frozen cells (in 90% FBS and 10% DMSO) were de-frozen

in the water bath at 37°C until almost thawed. The cells were trans-

ferred to a 15-ml tube (Falcon, Corning), and 14 ml of pre-warmed

RPMI medium 1640 (Gibco) was added drop-wise while gently swir-

ling and inverting the tube. The cells were then centrifuged at 400 g

for 5 min at 4°C. The supernatant was discarded, and cells were

washed again with 10 ml RPMI medium 1640. After centrifugation,

the cell pellet was resuspended in 200 ll of RPMI medium 1640.

Antibody staining, flow cytometry, and single-cell sorting

A 200 ll of antibody staining solution was prepared in PBS (for

freshly isolated thymocytes and cells from the peripheral blood and

lymph nodes) or RPMI medium 1640 (for frozen lymphocytes) and

added to the 200 ll of resuspended pellet. For enriched DN
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thymocytes, 50 ll of antibody solution was added to the pellet,

which was dissolved in 50 ll of PBS. Afterward, thymocytes in the

antibody solution were incubated for 20 min on ice. Cells were then

washed twice with 1 ml of PBS or RPMI medium 1640 and resus-

pended in 3 ml after the last wash. Just prior to single-cell sorting

using a flow cytometer, 5 ll of 20 lg ml�1 40,6-diamidino-2-pheny-

lindole (DAPI, Sigma) solution was added to the tube to stain for

dead cells. Flow cytometry data were analyzed using the FlowJo

program. The following antibodies were used (clones and used dilu-

tions are mentioned in the brackets): CD117-BV510 (ACK2, 1:500),

CD44-PerCP/Cy5.5 (IM7, 1:500), CD25-BV421 (PC61, 1:500),

CD122-PE (TM-b1, 1:500), CD8a-BV421 (53-6.7, 1:1,000),

CD8a-FITC (53-6.7, 1:500) CD4-PE (RM4-5, 1:1,000), CD4-APC/Cy7

(RM4-5, 1:500), CD4-APC (RM4-5, 1:500), TCRcd-APC (GL3, 1:500),

CD24-PE (M1/69, 1:1,000), CD24-PerCP/Cy5.5 (M1/69, 1:500),

Vc1.1 (2.11, 1:500), Vc2-FITC (UC3-10A6, 1:500), Vc3-PE (536,

1:500), and Vd6.3/2-PE (8F4H7B7, 1:500). All the antibodies were

purchased from BioLegend except CD8a-FITC, CD44-PerCP/Cy5.5,

and Vd6.3/2-PE (BD Pharmingen). Single cells were sorted in 384-

well plates (Bio-Rad Laboratories) containing lysis buffer and

mineral oil (see the next section) using BD FACSAria FUSION. The

sorter was run on single-cell sort mode. Using pulse geometry gates

(FSC-W × FSC-H and SSC-W × SSC-H), doublets were excluded.

After the completion of sorting, the plates were centrifuged for

10 min at 2,200 g at 4°C, snap-frozen in liquid nitrogen, and stored

at �80°C until processed.

Stimulation and single-cell sorting of CD44� circulating cd T cells

6000 CD44� circulating cd T cells were sorted in 96-well plate in

complete RPMI medium containing 10% FCS and stimulated for 3 h

with Cell Activation Cocktail (with Brefeldin A; BioLegend). Non-

stimulated 6000 CD44� circulating cd T cells cultured for 3 h in

complete RPMI medium with 10% FCS served as control. Afterward,

single cells were sorted in 384-well plates without antibody staining

and processed for scRNA-seq as described below.

Single-cell RNA amplification and library preparation

Single-cell RNA sequencing was performed using the mCEL-Seq2

protocol, an automated and miniaturized version of CEL-Seq2 on a

mosquito nanoliter-scale liquid-handling robot (TTP LabTech)

(Hashimshony et al, 2016; Herman et al, 2018). Twelve libraries

with 96 cells each were sequenced per lane on Illumina HiSeq 2500

or 3000 sequencing system (pair-end multiplexing run) at a depth of

~ 130,000–200,000 reads per cell.

Quantification of transcript abundance

Paired end reads were aligned to the transcriptome using bwa (ver-

sion 0.6.2-r126) with default parameters (Li & Durbin, 2010). The

transcriptome contained all gene models based on the mouse

ENCODE VM9 release downloaded from the UCSC genome browser

comprising 57,207 isoforms, with 57,114 isoforms mapping to fully

annotated chromosomes (1–19, X, Y, M). All isoforms of the same

gene were merged to a single gene locus. Furthermore, gene loci

overlapping by > 75% were merged to larger gene groups. This

procedure resulted in 34,111 gene groups. The right mate of each

read pair was mapped to the ensemble of all gene loci and to the set

of 92 ERCC spike-ins in sense direction (Baker et al, 2005). Reads

mapping to multiple loci were discarded. The left read contains the

barcode information: The first six bases corresponded to the unique

molecular identifier (UMI) followed by six bases representing the

cell specific barcode. The remainder of the left read contains a polyT

stretch. For each cell barcode, the number of UMIs per transcript was

counted and aggregated across all transcripts derived from the same

gene locus. Based on binomial statistics, the number of observed

UMIs was converted into transcript counts (Grün et al, 2014).

Clustering and visualization of thymocyte datasets

Clustering analysis and visualization were performed using the

RaceID3 algorithm (Herman et al, 2018). The number of quantified

genes ranged from 25,718 to 26,970 in different datasets. Cells with

a total number of transcripts < 2,500 were discarded, and count data

of the remaining cells were normalized by downscaling except fetal

Maf KO and adult Sox13 KO datasets where this cut-off was reduced

to 1,500. Cells expressing > 2% of Kcnq1ot1, a potential marker for

low-quality cells (Grün et al, 2016), were not considered for analy-

sis. Additionally, transcripts correlating to Kcnq1ot1 with a Pearson

correlation coefficient > 0.65 were removed. The default parameters

were used for RaceID3 analysis except probthr which was set to

10�4. For the fetal data, ribosomal genes (small and large subunits)

as well as predicted genes with Gm-identifier were excluded from

the analysis. CGenes was initialized with the following set of genes

to remove cell cycle-associated and batch-associated variability for

the fetal data: Malat1, Xist, Pcna, Mki67, Mir703, Ptma, Actb,

Hsp90aa1, Hsp90ab1, Ppia and H19 and for the adult data: Pcna,

Mki67, Mir703, Gm44044, Gm22757, Gm4775, Gm17541, Gm8225,

Gm8730, Ptma, Actb, Hsp90aa1, Hsp90ab1, and Ppia. The analysis

of cd T cells expressing different variable chains was also performed

with the same parameters as described above except for the adult

dataset where cells with a total number of transcripts < 2,000 were

discarded. Dimensionality reduction using t-SNE was performed

using different values of the perplexity parameter. Overall, the struc-

ture of the data remained fairly stable across different values and

the default value (set to 30) of the RaceID3 algorithm was used to

represent both the datasets (Appendix Fig S5).

Clustering and visualization of blood, lymph node, and
stimulated datasets

For the circulating cd T-cell analysis, cells with a total number of

transcripts < 800 were discarded and count data of the remaining

cells were normalized by downscaling. Cells expressing > 2% of

Kcnq1ot1, a potential marker for low-quality cells (Grün et al,

2016), were not considered for analysis. Additionally, transcripts

correlating to Kcnq1ot1 with a Pearson correlation coefficient > 0.65

were removed. The default parameters were used for RaceID3 analy-

sis except probthr which was set to 10�4. Ribosomal genes (small

and large subunits) as well as predicted genes with Gm-identifier

were excluded from the analysis. The FGenes parameter was initial-

ized with Malat1 and Xist, and CGenes was initialized with the

following set of genes: Pcna, Mki67, Mir703, Ptma, Actb, Hsp90aa1,

Hsp90ab1, and Ppia. The combined data analysis of blood and

lymph node cd T cells was performed with the similar parameters
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except that cells with a total number of transcripts < 500 were

discarded. CGenes was initialized with the following set of genes:

Pcna, Mki67, Mir703, Ptma, Actb, Hsp90aa1, Hsp90ab1, Ppia, Ebf1,

Slx1b, and Comt. The PMA/ionomycin-stimulated dataset was

analyzed with the similar parameters as the circulating cd T-cell

dataset but cells with a total number of transcripts < 500 were

discarded. Default perplexity value (30) was used for the dimension-

ality reduction of the datasets using t-SNE.

Combined analysis of cd T cells from fresh and frozen thymocytes

In order to assess the effect of freezing and thawing on specific cd
subsets, we performed a combined analysis of fresh cd T cells

isolated from the mice which were kept in the animal facility of

the Max Planck Institute of Immunobiology and Epigenetics with

frozen cd T cells from Maf and Sox13 WT littermate controls at

fetal and adult stages. For the combined fetal cd T-cell analysis,

cells with a total number of transcripts < 1,500 were discarded,

and for the adult data, this threshold was set to 1,000. For both

datasets, raw counts of the remaining cells were normalized using

downscaling. Cells expressing > 2% of Kcnq1ot1, a potential

marker for low-quality cells (Grün et al, 2016), were not consid-

ered for both analyses. Additionally, transcripts correlating to

Kcnq1ot1 with a Pearson correlation coefficient > 0.65 were

removed. The default parameters were used for RaceID3 analysis

except for probthr, which was set to 10�4. Ribosomal genes (small

and large subunits) as well as predicted genes with Gm-identifiers

were excluded from both analyses. The FGenes parameter was

initialized with Malat1, Xist, Ptma, Actb, Junb, Hsp90aa1,

Hsp90ab1, and Ppia. For the fetal data analysis, Lrrc58 was also

excluded from the clustering. We did not see any apparent effect

of freezing on the transcriptome and recovered all cd subsets from

fresh as well as frozen material (Appendix Fig S6).

Differential gene expression analysis

Differential gene expression analysis was performed using the diff-

expnb function of RaceID3 algorithm. Differentially expressed genes

between two subgroups of cells were identified similar to a previ-

ously published method (Anders & Huber, 2010). First, negative

binomial distributions reflecting the gene expression variability

within each subgroup were inferred based on the background model

for the expected transcript count variability computed by RaceID3.

Using these distributions, a P-value for the observed difference in

transcript counts between the two subgroups was calculated and

multiple testing corrected by the Benjamini–Hochberg method.

Quadratic programming to quantify cell similarities between
fetal and adult data

Using the quadratic programming approach, we calculated weights

for all cluster medoids in one dataset for each cell in the other

dataset using the solve.QP function of the quadprog R package. For

example, to calculate the weights for all cluster medoids of the fetal

data for each cell in the adult data, the adult normalized transcript

count matrix containing genes as rows and single cells as columns

and the fetal normalized transcript count matrix containing genes as

rows and cluster medoids as columns were provided as inputs to

the Dmat and dvec arguments of solve.QP function, respectively.

Cluster medoids were calculated by the compmedoids function of

the RaceID3 algorithm. The intersect of feature genes expressed in

both fetal and adult datasets was used for calculating the weights

using quadratic programming.

Lineage inference and pseudo-temporal ordering

To derive the differentiation trajectories of cd T-cell differentiation,

the StemID2 algorithm was used (Grün et al, 2016; Herman et al,

2018). StemID2 was run with the following parameters: cthr = 15,

nmode = T, pthr = 0.01, pethr = 0.05, scthr = 0.6. Based on the

adult cdT17 differentiation trajectory predicted by StemID2, cells of

clusters 4, 2, 3, 6, 12, 11, 8, 9, 13, and 14 were used to compute the

SOMs of pseudo-temporal expression profiles of the cdT17 lineage.

Similarly, clusters 4, 2, 3, 6, 12, 11, 8, 9, 5, and 7 were used to

compute the SOMs of pseudo-temporal expression profiles of the

adult IFN-c-producing lineage. Similarly, the following clusters were

used to compute SOMs for the fetal cdT17 differentiation trajectory:

15, 14, 8, 13, 11, 5, 7, 1, 3, and 23; and for the IFN-c differentiation

trajectory: 15, 14, 8, 13, 11, 5, 2, 4, and 6.The fetal early DN dif-

ferentiation trajectory was derived using the following clusters: 15,

14, 8, 13, 11, and 5; and for the adult dataset, the following clusters

were used: 4, 2, 3, 6, 12, and 11.

Gene regulatory network inference

Gene regulatory network inference was performed using the random

forests-based ensemble method of the GENIE3 algorithm (Huynh-

Thu et al, 2010). For the fetal GRN inference, only genes expressed

at > 4 transcripts in at least two of the cells were included in the

analysis. For the adult GRN inference, only genes expressed at > 5

transcripts in at least one of the cells were included in the analysis.

R/C implementation of GENIE3 was used for network inference.

The top 1,000 (fetal data) and 1,500 (adult data) regulatory links

with highest weights were shortlisted for visualization of the

network using Cytoscape with default settings (Shannon et al,

2003).

Gene set enrichment analysis

Gene set enrichment analysis was performed using gsePathway

function of ReactomePA, an R/Bioconductor package (Yu & He,

2016). The fold change for each gene was calculated between the

cells to be compared using the diffexpnb function of RaceID3 and

was given as an argument to gsePathway function to calculate

enriched gene sets in KO cells using the following parameters:

nPerm = 1,000, minGSSize = 120, pvalueCutoff = 0.05, pAdjust-

Method=“BH”, organism = “mouse”.

Integration of scRNA-seq data

Integration of scRNA-seq datasets was performed using Seurat

version 3 with default settings (Stuart et al, 2019). Integration analy-

sis was performed on only those cells which were present in the

separate analyses performed by the RaceID3 algorithm. Also, riboso-

mal genes (small and large subunits) as well as predicted genes with

Gm-identifier were excluded from the data prior to integration.
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Skin inflammation models

The dorsal skin of 8-week-old mice in the telogen (resting) phase of

the hair cycle was shaved with clippers and then subjected to topical

application or treatment of the skin as below. IMQ: Mice were

treated with either ~ 1 mg cm�2 skin of 5% IMQ cream (Perrigo) or

control Vanicream (Pharmaceutical Specialties Inc.) for six consecu-

tive days as previously described (van der Fits et al, 2009).

Cell isolation, tissue processing, and flow cytometry

Keratinocyte isolation was adapted from a previously described

protocol (Nowak & Fuchs, 2009). In brief, dorsal skin was shaved

and digested using either 0.25% trypsin/EDTA (Gibco) or collage-

nase (Sigma) to obtain a single-cell suspension. Immune cells from

1 cm2 pieces of skin were isolated after digestion with liberase

(Roche) based on an adapted protocol (Keyes et al, 2016). Female

mice were used for sorting experiments at all time points and condi-

tions to obtain maximal cell numbers. Single-cell suspensions were

stained with antibodies at predetermined concentrations in a 100 ll
staining buffer (PBS containing 5% FBS and 1% HEPES) per

106 cells. Stained cells were resuspended in DAPI in FACS buffer

(Sigma) before analysis. Data were acquired on LSRII Analyzers (BD

Biosciences) and then analyzed with FlowJo program. FACS was

conducted using Aria Cell Sorters (BD Biosciences) into either stain-

ing buffer or TRIzol LS (Invitrogen).

Histology

Skin tissue was fixed in PBS containing 10% formalin, paraffin

embedded, sectioned (0.8 mm), and stained with hematoxylin and

eosin by Histowiz Inc. Stained slides were scanned at 40× magnifi-

cation using Aperio AT2. Slides were visualized, and epidermal

thickness was analyzed manually based on morphological features

of the epidermis using the Aperio Image Scope software. Each skin

section was measured at 10 different locations at least 10 mm apart

and averaged to obtain presented thickness value.

RNA purification and quantitative PCR

Individual animals were used for qPCR experiments. Total RNA was

purified from either whole skin biopsies, flash frozen, and then

homogenized with a Bessman Tissue Pulverizer (SpectrumTM) or

FACS-purified keratinocyte populations using Direct-zol RNA Mini-

Prep Kit (Zymo Research) as per manufacturer’s instructions. Equal

amounts of RNA were reverse-transcribed using the superscript

VILO cDNA Synthesis Kit (Invitrogen). cDNAs for each sample were

normalized to equal amounts using primers against Actb. XpressRef

Universal Total RNA (Qiagen) was used as a negative control to

assess FACS population purity.

Data availability

The primary read files as well as expression count files for the

single-cell RNA sequencing datasets reported in this paper are avail-

able to download from GEO (accession number: GSE115765; http://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE115765.

Expanded View for this article is available online.
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