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Abstract

Gliomas, the most common malignant primary brain tumours, remain universally lethal. Yet, 

seminal discoveries in the past 5 years have clarified the anatomy, genetics and function of the 

immune system within the central nervous system (CNS) and altered the paradigm for successful 

immunotherapy. The impact of standard therapies on the response to immunotherapy is now better 

understood, as well. This new knowledge has implications for a broad range of tumours that 

develop within the CNS. Nevertheless, the requirements for successful therapy remain effective 

delivery and target specificity, while the dramatic heterogeneity of malignant gliomas at the 

genetic and immunological levels remains a profound challenge.

Editor’s Summary

This Review discusses how advances in our understanding of the immune system within the brain 

have implications for the successful implementation of immunotherapy to treat brain tumours, 

despite challenges such as effective delivery, target specificity and intratumour heterogeneity.
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Introduction

Malignant primary brain tumours are a leading cause of cancer mortality in children and 

young adults, with few therapeutic options. In adults, glioblastomas, the most common 

primary brain tumours, remain uniformly lethal, with a median survival of <21 months, 

despite surgical resection, targeted radiation therapy, high-dose chemotherapy and novel 

approaches such as tumour-treating fields (TTFields)[1, 2, 3, 4, 5, 6, 7, 8]. Despite the early 

identification of genetic drivers of these tumours, they contain relatively few coding 

mutations, and their intratumour heterogeneity has been shown to be extraordinary[9, 10]. In 

addition, unique features of these tumours and of the host organ thwart immunotherapeutic 

approaches. The immune system in the brain follows different principles from the immune 

system elsewhere, whereby access to the tumours is limited by the blood–brain barrier 

(BBB), and the host is subjected to substantial endogenous and treatment-induced immune 

suppression. Thus, primary brain tumours are devastating diseases, and their unique features 

are a topic of considerable importance. In this Review, we discuss the immunological 

underpinnings of brain metastases only briefly (Box 1) but, rather, focus on the specifics of 

the immune privilege of the brain, the unique microenvironment of malignant glial tumours, 

and the limitations that the genetic underpinnings and standard therapies used place on the 

immunotherapeutic approaches and their success. We also summarize the existing 

immunotherapeutic approaches and biomarkers of response that are currently under 

evaluation.

Brain tumour immunology is different

Immune privilege

The accessibility of the brain to the afferent and efferent arms of the immune system, and 

thus to immunotherapy, has been a matter of some debate for decades[11]. Conceptually, the 

term ‘immune privilege’ refers to the failure of a site to reject heterotopic tissue 

transplantation. In the case of the brain, these experiments are habitually attributed to Peter 

Medawar in the 1940s (however, Medawar himself references the earlier work of Shirai, 

Murphy and Tansley in his landmark 1948 paper)[12]. What is less well remembered of 

Medawar’s studies is that while homologous skin grafting into brains failed to elicit 

immunity, skin homografts did indeed succumb to rejection if their implantation followed 

preliminary grafting of foreign tissue elsewhere in the body. Thus, pre-existing immune 

states could extend to the brain to promote rejection, but such states could not be evoked by 

central nervous system (CNS) transplantation de novo. Medawar attributed this observed 

disparity to the perceived absence of a system for lymphatic drainage, and therefore for 

afferent immunity within the brain, a perception that has only recently been disproven[13, 

14, 15, 16, 17, 18, 19].

In the many years since Medawar’s tissue-grafting experiments, newer techniques have 

increasingly revealed the CNS immune privilege paradigm to be overstated. Studies 

highlighting an existent afferent mechanism for CNS participation in regional lymphatics 

debunked the isolationist idea of the brain as immunologically silenced. For instance, routes 

of antigenic egress from the brain to the deep cervical lymph nodes (via the arachnoid sheath 

of the olfactory nerves, through the cribriform plate, and to the nasal mucosa) were 
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uncovered beginning in the 1980s[13, 14, 15, 16]. Identification of the glial–lymphatic 

(glymphatic) pathway offered a mechanism for fluid and solute clearance from the brain, 

linking the parenchyma and interstitium to the cerebrospinal fluid (CSF) spaces: CSF flows 

into the brain along arterial perivascular spaces and then translocates into the interstitium via 

aquaporin 4 (AQP4) water channels, before exiting along venous perivascular spaces[20, 

21]. Since 2015, the discovery of functional lymphatic vessels in the meninges has provided 

a direct drainage pathway for CSF containing solute and immune cells from the brain into 

the cervical lymph nodes[17, 18, 19].

Given these provisions for an operative afferent immune system, many have proposed that 

the brain is immunologically ‘distinct’ rather than ‘privileged’[22] (Fig. 1). Such notions are 

bolstered by newer paradigms of efferent CNS immunity, as well. Challenges for the efferent 

arm of CNS immunity have historically been ascribed to the BBB[23]. Formed by capillary 

tight junctions and the astrocytic glia limitans[24, 25], the BBB serves as a structural barrier 

to the passive transit of molecules between the brain and the systemic circulation, permitting 

immune cell passage only at the level of the post-capillary venules[26]. Ultimately, the CNS 

parenchyma was believed to encourage only limited immunity, as direct antigenic challenges 

instigated a modest immune infiltration when compared with systemic injections[27]. 

However, newer paradigms have documented T cell entry and immunosurveillance within 

the brain[26, 28, 29], disproving the notion that the BBB acts as a ‘hermetic seal’ to immune 

cell entry. Equally, damage incurred to the BBB in the context of gliomas and other tumours 

limits the restrictions normally proffered by the BBB[30, 31, 32].

Another unique yet dynamic aspect of the brain immune environment is its population of 

resident myeloid cells[33]. At baseline, this population is composed almost entirely of 

microglia, the brain’s equivalent of tissue-resident macrophages. Microglia arise from yolk 

sac myeloid progenitors that seed neural tissues during development and are maintained 

through replication[34]. In the absence of inflammation, microglia maintain their yolk sac 

origin throughout life, with no contribution from bone marrow-derived cells. After an 

inflammatory stimulus, microglia undergo substantial phenotypic changes, while additional 

macrophage populations are recruited from circulating monocytes[35]. Brain environmental 

cues influence the phenotype and activity of both microglia and recruited macrophages; 

however, the functions of these resident and recruited myeloid populations appear to differ in 

ways we do not yet fully understand[36].

Despite the absence of the traditional manifestations and protections of immune privilege, 

brain tumours still possess the ability to prevent immunity and facilitate their own modes of 

immune evasion. For instance, a recent study has uncovered the capacity of intracranial 

tumours, specifically, to sequester T cells in the bone marrow in a sphingosine 1 phosphate 

receptor 1 (S1PR1)-dependent fashion, preventing their surveillance of the CNS and 

fostering antigenic ignorance[37]. Thus, while our historic concept of CNS immune 

privilege has perhaps become obsolete, the idiosyncrasies of the brain environment continue 

to offer unique and formidable challenges to immune-based platforms targeting those 

tumours harboured within[38].
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Tumour microenvironment

Relative to other tumour types, CNS tumours display low numbers of tumour-infiltrating 

lymphocytes (TILs) and other immune effector cell types[39]. This ‘cold tumour’ phenotype 

is associated with poor responses to immune stimulatory therapies such as immune 

checkpoint blockade[40]. Even when T cell responses to CNS tumours are induced through 

means such as vaccination, antigen-specific TIL numbers can remain relatively low, and 

those cells that are present frequently display an exhausted phenotype[41]. The reduced 

quantity and limited activity of T cells in CNS tumours is largely owing to the unique 

immune environment of the brain[42]. Due to its solid enclosure and the potential for 

damage from increased intracranial pressure, unrestrained inflammation in the brain poses a 

threat not seen in peripheral organs. For this reason, the CNS may have evolved to be an 

environment in which both inflammatory and adaptive immune responses are tightly 

regulated. This regulation involves a variety of immunosuppressive mechanisms at both the 

molecular and cellular levels[43].

In response to inflammatory stimuli, including those derived from tumours, brain stromal 

cells produce remarkably high levels of the classic immunosuppressive cytokines 

transforming growth factor β (TGFβ) and IL-10, which counteract inflammatory cytokines 

to maintain homeostasis[44, 45]. Glioma cells produce large amounts of indolamine 2,3-

dioxygenase (IDO), which both stimulates the accumulation of regulatory T (Treg) cells and 

suppresses T cell activity by depleting tryptophan from the microenvironment[46, 47]. Both 

microglia and tumour-infiltrating myeloid cells produce high levels of arginase, which 

inhibits T cell proliferation and function through the depletion of tissue arginine levels[48]. 

The brain appears to be particularly susceptible to amino acid deprivation, as CSF arginine 

and tryptophan levels depend on active transport across the BBB and are sustained at only 

~10% of the concentrations found in plasma[49] (Fig. 2).

The strategy of inhibiting specific immunosuppressive factors is now being tested in patients 

with primary brain tumours, typically in combination with other therapies. Targeting TGFβ 
with antisense oligonucleotides[50] or blocking antibodies[51], as well as the use of TGFβ 
receptor 1 (TGFβR1) kinase inhibitors[52], has failed to show survival benefits. Several 

ongoing studies are examining the use of IDO inhibitors in primary brain tumours 

(NCT02502708 (ref.[53]), NCT02052648 (ref.[54]), NCT02327078 (ref.[55])) (Table 1); 

however, enthusiasm for these agents has lessened since the phase III ECHO-301 trial 

(NCT02752074 (ref.[56])) showed no clinical benefit to adding IDO inhibition to immune 

checkpoint blockade in metastatic melanoma (all secondary sites)[57]. Several phase I and II 

clinical trials of arginase inhibitors for solid tumours are currently underway (NCT02903914 

(ref.[58])), but none are specific for brain tumours. In general, the strategy of inhibiting 

specific immunosuppressive mediators in patients with brain tumours has not shown promise 

to date, despite its success in animal models, which may be related to the penetration of 

some of these agents into the brain parenchyma or the diversity of immunosuppressive 

mechanisms available to the tumour that can compensate for the loss of one.

An alternative to targeting specific immunosuppressive factors is to target the 

immunosuppressive cells within the tumour microenvironment that produce such factors. 
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The major cellular component of this microenvironment is tumour-associated macrophages 

(TAMs), which can comprise up to 30% of the tumour mass[59]. In both mouse models and 

humans, the vast majority of brain tumour TAMs appear to arise from circulating 

monocytes, with a minor proportion (~15%) being microglia-derived[60, 61, 62]. TAMs are 

believed to promote tumour growth, and TAM numbers correlate with tumour grade[63]. 

TAM growth-promoting activity has been associated with the anti-inflammatory M2 

macrophage phenotype[64]; however, this likely represents an oversimplification, as a much 

broader range of macrophage activation states occurs in vivo[65].

A variety of approaches have been explored as means to either reduce TAM numbers or 

reprogram them to be more inflammatory and immunogenic[66]. The cytokine macrophage 

colony-stimulating factor 1 (CSF1) promotes myeloid cell differentiation and survival[67]. 

In mice, CSF1 receptor (CSF1R) inhibition with a small molecule markedly increased 

survival in a genetically engineered platelet-derived growth factor β (PDGFβ)-driven model 

of glioma[68]; however, no objective response was observed in a phase II study 

(NCT01349036 (ref.[69])) of a CSF1R inhibitor in patients with recurrent glioblastoma[70]. 

The chemotherapy agent trabectedin has been shown to function, at least in part, by 

depleting the monocytes that serve as TAM precursors[71]. Other strategies, including the 

inhibition of CC-chemokine ligand 2 (CCL2)–CC-chemokine receptor 2 (CCR2)-mediated 

TAM accumulation with receptor antagonists[72], the reprogramming of TAMs with CD40 

agonists or PI3Kγ inhibitors[73, 74], and enhancing TAM phagocytic activity with CD47 

blockade[75], have the potential to be applied to patients with brain tumours, but each of 

these approaches presents considerable developmental hurdles[66]. For example, although 

CD47 antibodies increase the phagocytosis of tumour cells in mouse xenograft models, 

CD47 ligand affinity in humans differs substantially from that in mice, raising questions 

about its translational potential[76]. Thus, while targeting the brain tumour 

microenvironment represents an attractive therapeutic approach, its implementation may 

require the identification of more promising therapeutic targets.

Genomic factors

The most common malignant glioma, glioblastoma, presents as a genetically heterogeneous 

disease, despite a relatively low mutational burden[77, 78]. Clonal selection of driver 

mutations occurs as an early event, and it is the later acquisition of numerous passenger 

mutations that results in the intratumoural heterogeneity. Before treatment, glioblastoma has 

a neutral evolutionary pattern, whereby mutational variants expand at similar rates and 

accumulate[79]. Unfortunately, this situation is lost once patients commence therapy, when 

expansion of subclones is influenced by strong selection pressures and adaptation in 

response to treatment modalities occurs. In the setting of low-grade glioma, hypermutation 

induced by treatment with the alkylating chemotherapeutic agent temozolomide (TMZ) is 

observed in up to 60% of tumours at recurrence[80]. Hypermutations also occur in primary 

glioblastoma at recurrence, but at a substantially lower frequency of around 10% of patients 

after exposure to TMZ[81]. The culmination of these events is the rapid emergence of 

resistance to therapies, particularly those with a single target[82, 83].
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In the context of immune-based therapies, these fundamental observations have a number of 

major implications. High tumour mutation burden (TMB) has emerged as a biomarker for 

immune checkpoint inhibitor (ICI) response, and TMB is believed to correlate with the level 

of pre-existing antitumour adaptive immunity[84, 85, 86, 87, 88]. This paradigm applies 

well to tumours for which the TMB is greater than 10 mutations/megabase, such as 

melanoma or some colorectal cancers; however, the median TMB in newly diagnosed 

glioma is around 1.5 mutations/megabase. Fewer than 2% of glioblastomas from patients in 

the newly diagnosed setting carry >10 mutations/megabase, and these usually occur in the 

context of germ-line mutations of mismatch repair genes, such as that observed in Lynch 

syndrome[89]. Thus, a relatively low TMB offers up few somatic mutations for T cell targets 

and could reduce the array of responding T cell clones. These observations may in part 

explain the poor performance of ICIs in the majority of patients with either newly diagnosed 

or recurrent glioblastoma.

Immunoediting is a process whereby the immune system eliminates tumour cells carrying 

immunogenic antigens, resulting in the selection of resistant subclones[90]. Evidence of this 

process has been shown in several cancer types, including glioma[91, 92, 93, 94, 95]. By 

comparing newly diagnosed specimens with those at recurrence from the same patients, the 

Glioma Longitudinal Analysis (GLASS) Consortium has found evidence in support of 

immunoediting in gliomas, suggesting that active immunosurveillance is ongoing in some 

adult patients[81]. In addition, supporting the possibility of immunoediting in some patients 

is a recent study that examined the whole exome and transcriptome after anti-programmed 

cell death protein 1 (PD1) therapy in recurrent malignant glioma samples. Those tumours 

defined as responsive were associated with a more diverse pattern of evolution, possibly due 

to elimination of neoantigens[96].

Several strategies seek to overcome these inherent mechanisms of resistance. For example, 

attempts to identify patients with hypermutated tumours at diagnosis are underway, in an 

attempt to enrich for patients who may respond to immune checkpoint inhibition 

(NCT03718767)[97]. However, the utility of such an approach remains unresolved, is 

perhaps over-simplistic, and may be adversely affected by numerous competing factors.

Glioblastoma often express a mutated form of the epidermal growth factor receptor (EGFR), 

which is constitutively active and enhances tumorigenicity by activating the RAS–SHC–

GRB2 pathway.40 The most common mutant form of EGFR in glioblastoma is the EGFR 

class III variant (EGFRvIII), which has a truncated extracellular domain due to an 801-base-

pair in-frame deletion of the wild-type receptor[98]. This deletion results in the fusion of the 

two ends of the peptide and the creation of an antigenic site that contains a novel glycine 

residue not included in the wild-type peptide[99]. Therefore, EGFRvIII serves as an ideal 

tumour-specific antigen for glioblastoma. EGFRvIII is expressed in approximately 30% of 

glioblastomas and is found to be expressed on 37–86% of tumour cells in a given tissue 

sample[100].

The loss of antigenic targets in response to therapy has severely limited immune-based 

therapies that target single antigens. Some of the best examples of this phenomenon are the 

targeting of EGFRvIII by vaccines or chimeric antigen receptor (CAR) T cell therapies, in 
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response to which tumours re-emerge rapidly, having lost expression of the target, despite 

documented evidence of CAR T cell infiltration in several patients and preliminary evidence 

of reduced EGFRvIII transcript expression[101, 102, 103]. To overcome this induction of 

resistance to single-target immune-based therapies, emerging strategies include those that 

simultaneously target multiple antigens, such as the recently reported neoantigen 

vaccines[41, 104]; those that target ubiquitous viral antigens, such as those from 

cytomegalovirus (CMV); and those that aim to induce broad-based immune responses, such 

as innate immune targeting through oncolytic viruses[105, 106, 107, 108, 109].

Epigenetic impacts

There is emerging evidence that epigenetic events play a key role in modulating immune 

responses to tumours, and many brain tumours carry mutations of epigenetic drivers[110, 

111, 112, 113, 114]. Key examples include isocitrate dehydrogenase (IDH) mutated gliomas; 

those carrying histone mutations such as in histones H3.1 and H3.3; a subset of primary 

glioblastomas, discovered more recently, that carry SWI/SNF-related matrix-associated 

actin-dependent regulator of chromatin subfamily A-like protein 1 (SMARCAL1) 

mutations; and many paediatric tumours, such as atypical teratoid rhabdoid tumour (ATRT) 

driven by mutations in SMARCB1 (refs[110, 111, 112, 113, 114]). SWI/SNF complexes are 

important regulators of chromatin structure and transcription in several cancers, including 

brain tumours[115]. It is now clear in non-CNS tumours that mutations of components 

within these important protein complexes, such as AT-rich interactive domain 1A (ARID1A) 

or polybromo 1 (PBRM1; also known as BAF180), can drive both resistance and sensitivity 

to immune-based therapies through alterations in the transcription of downstream targets, 

such as chemokines that attract inflammatory cells[116, 117, 118, 119].

Similar epigenetic events also seem to be at play in IDH1 mutated glioma. Several groups 

have shown that IDH1 mutations can cause down-regulation of leukocyte chemotaxis, 

resulting in repression of the tumour-associated immune system[120]. This is related to 

reduced expression of cytotoxic T lymphocyte-associated genes and interferon-γ (IFNγ)-

inducible chemokines, including CXC-chemokine ligand 10 (CXCL10), in IDH-mutated 

tumours compared with IDH-wild-type tumours[121]. In syngeneic mouse glioma models, 

the expression of mutant IDH1 also suppressed the accumulation of T cells in tumour sites 

via reduced secretion of CXCL10 (ref.[121]). In a separate study, IDH mutant glioma cells 

acquired resistance to natural killer (NK) cells through epigenetic silencing of the activating 

receptor NKG2D ligands UL16-binding protein 1 (ULBP1) and ULBP3. As well, 

hypomethylation mediated by the DNA methyltransferase inhibitor decitabine restores 

ULBP1 and ULBP3 expression in IDH-mutant glioma cells[122]. These data demonstrate a 

mechanism of immune evasion in IDH-mutated gliomas and suggest that specific inhibitors 

of mutant IDH may improve the efficacy of immunotherapy in patients with IDH-mutated 

gliomas[120, 121, 122] (Fig. 3).

Future studies examining the role of epigenetic modulation of immune evasion in malignant 

gliomas and other brain tumours will be required. It is hypothesized that a number of 

epigenetic drugs, such as demethylating agents, bromodomain inhibitors and histone 

deacetylase inhibitors, may act to reverse the adverse immunological transcriptional profile 
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seen in epigenetically driven tumours prior to the initiation of immune-based therapies. 

These are under investigation preclinically, but as yet they remain unpublished.

Impact of standard of care

Many patients benefit from multimodal therapy, including surgery, radiation therapy and 

chemotherapy such as TMZ. Although the limitations of immune-based therapy may be 

related to tumour-associated factors such as poor immunogenicity and tumour-induced 

immune tolerance, treatment-induced immune regulatory effects may also play major roles, 

both adverse and beneficial.

Many patients with brain tumours receive adjuvant TMZ. Although TMZ provides a survival 

benefit in patients with newly diagnosed glioblastoma[1], its major dose-limiting toxicity is 

myelosuppression[123]. Furthermore, patients treated with TMZ, especially in dose-

intensified (DI) regimens, have an increased incidence of opportunistic infections and are 

immunosuppressed[124]. Indeed, treatment with the combination of radiation and TMZ is 

associated with changes in regulatory and effector mononuclear cells in the peripheral blood 

that tilt the balance towards an immune suppressive state. This shift could certainly affect the 

outcome of immune-based therapy following radiation and TMZ treatment and should be 

considered when designing any combination therapy regimens[125, 126]. However, 

preclinical and clinical data have also suggested that a state of lymphopenia upon recovery 

can induce reactive homeostatic proliferation and enhanced antitumour immune responses. 

As an example, in a clinical trial of glioblastoma comparing two different radiation and 

TMZ combination regimens, one using standard doses of TMZ at 5 days per month versus a 

more intensive regimen of 21 days of TMZ per month, whereas antigen-specific immune 

responses developed in all patients treated with either regimen, the more intensive regimen 

induced an increase in the proportion of immunosuppressive Treg cells, but the more 

intensive TMZ regimen also produced humoral and delayed-type hypersensitivity responses 

of greater magnitude[124, 127, 128]. Several published studies of vaccine approaches for 

brain tumours now support the hypothesis that lymphodepletion associated with the dose-

dense 21-of-28-day TMZ regimen may enhance the immune response, and particularly the 

humoral immune response to tumour vaccines, which may ultimately translate into improved 

clinical benefit[100, 102]. Furthermore, data from extra-cranial solid tumours[129] such as 

melanoma have explored such strategies for adoptive immunotherapies. These studies 

suggest that well-timed lymphodepletion may be used to generate positive 

immunomodulatory effects, in part owing to the production of an immunostimulatory 

cytokine and chemokine environment[130, 131, 132, 133].

Current therapeutic approaches

Current approaches, unique observations

Immune checkpoint inhibitors—Immune checkpoint blockade targeting the PD1–PD1 

ligand 1 (PDL1) axis and/or cytotoxic T lymphocyte-associated antigen 4 (CTLA4) has 

proffered dramatic successes against a variety of solid tumours[134, 135, 136, 137, 138] and 

has garnered US Food and Drug Administration (FDA) approval for a still increasing 

number of malignancies[139]; however, glioblastoma remains conspicuously absent from 
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the list of approvals. Although numerous groups have reported preclinical successes for 

more than a decade[140, 141, 142, 143, 144, 145], a 2017 phase III trial (CheckMate-143) 

comparing the anti-PD1 therapy nivolumab with bevacizumab (anti-VEGFA) in the 

treatment of recurrent glioblastoma found no overall survival (OS) benefit to 

nivolumab[146]. More recently, the phase III CheckMate-498 study (NCT02617589 (ref.

[147])) showed similarly disappointing results in newly diagnosed patients with O6-

methylguanine-DNA-methytransferase (MGMT) promoter-unmethylated glioblastoma. In 

this study, nivolumab plus radiation was compared with the standard combination of 

radiation and TMZ. Failure to meet the primary end point of OS was announced by Bristol-

Myers Squibb in May of 2019, although these results await publication. The outcome of 

CheckMate-548 (NCT02667587 (ref.[148])), which is evaluating nivolumab plus TMZ in 

patients with MGMT-methylated glioblastoma, is still pending. As a consequence, the focus 

has now shifted towards uncovering aetiological contributors to treatment failures, with the 

goal of removing barriers to successful immune checkpoint blockade[146, 149, 150].

One question that endures is whether the restrictive intracranial environs or simply 

glioblastoma itself presents the greatest challenge to therapeutic efficacy. A recent clue may 

be the modest but significant success demonstrated for immune checkpoint strategies 

targeting other intracranially situated tumours, such as melanoma brain metastases[151]. 

Glioblastoma, in turn, does involve its own set of obstacles. The hindrances to immune 

checkpoint blockade ascribable to glioblastoma include a low TMB and extensive 

intratumoural heterogeneity. Even individual cells within glioblastoma tumours prove varied 

in their expression of oncogenic transcriptional programs, reflecting a degree of 

intratumoural heterogeneity that proffers a unique challenge to immunological targeting[9]. 

Additional constraints include the restricted access of drugs and immune cells to the CNS, as 

we discussed above. (However, we should reiterate here that antigen-specific T cells suffer 

few constraints to their trafficking[26, 28, 29] and that the BBB is frequently disrupted by 

CNS tumours like glioblastoma[30, 31, 32].) Nevertheless, what remains less resolved is 

whether the CNS constraints for drug access or for immune cell access will prove to be more 

of a hindrance to effective immune checkpoint blockade. For instance, an unresolved 

question is whether PD1- and CTLA4-blocking antibodies must situate within tumours for 

their activity, versus simply acting on peripheral T cells prior to their CNS entry.

Perhaps the most salient restriction to effective immune checkpoint blockade in glioblastoma 

is rampant T cell dysfunction, with little baseline T cell activation to propagate during 

therapy[37, 150, 152, 153, 154, 155, 156]. A viable T cell compartment is a prerequisite for 

workable immune checkpoint blockade, which acts primarily to unbridle and perpetuate T 

cell activity. However, T cell dysfunction has long been identified as a hallmark of 

glioblastoma[38, 155, 156, 157, 158, 159], which imposes potent suppression of systemic 

immunity, despite its intracranial confines. As is seen in other solid tumours, resistance to 

immune checkpoint blockade at the T cell level is marked by the upregulation of multiple 

alternative immune checkpoints[160]. These can include T cell immunoglobulin and mucin 

domain-containing protein 3 (TIM3), lymphocyte activation gene 3 (LAG3), B and T 

lymphocyte attenuator (BTLA), 2B4 (also known as CD244), CD160, CD39 and T cell 

immunoreceptor with immunoglobulin and ITIM domains (TIGIT)[161, 162, 163]. 

Mounting expression of these less canonical immune checkpoints on T cells provides further 
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mechanisms for T cell restraint, but it also serves to signal T cell transition into a 

dysfunctional, exhausted state[163, 164]. Although exhaustion may be reversible in early 

stages, it can rapidly progress beyond recovery[165, 166]. For example, Woroniecka et al. 

recently demonstrated comparatively severe T cell exhaustion amongst tumour-infiltrating 

lymphocytes (TILs) isolated from patients and mice with glioblastoma, and the 

corresponding inability of mice with gliomas to respond to PD1 blockade[150]. The 

increasing expression of alternative immune checkpoints may indicate a state of terminal 

exhaustion that cannot be reversed by traditional immune checkpoint blockade alone. 

However, preclinical work has highlighted a possible synergy between PD1, TIM3 and 

LAG3 blockade in mice with gliomas[167]. Clinical trials targeting TIM3 and LAG3, either 

alone or in combination with anti-PD1, are underway in glioblastoma (NCT02658981 (ref.

[168]) and NCT02817633 (ref.[169])).

Nevertheless, a very recent clinical trial suggests that the situation may not be as dire as 

might perhaps be presumed. A simple modification to treatment regimens to include a single 

neoadjuvant administration of the anti-PD1 agent pembrolizumab extended median survival 

in patients with operable recurrent glioblastoma to 417 days, compared with 228.5 days in 

patients receiving more typical adjuvant dosing of pembrolizumab[170]. The modification 

appeared to capitalize on an improved capacity to generate antecedent T cell activation. 

Likewise, an additional group demonstrated that neoadjuvant nivolumab precipitated pro-

inflammatory changes in the glioblastoma microenvironment, although the same clear 

survival benefits were not obtained[171].

It is clear that glioblastoma poses challenges to immune checkpoint blockade more 

paramount than those faced with somewhat more immunogenic tumours, such as melanoma. 

While these challenges have likely delayed the advent of truly viable immunotherapeutic 

approaches for glioblastoma, a newer focus on mechanistic considerations for treatment 

resistance and improving the functionality of the T cell compartment holds promise for 

providing important incremental advances to efficacy.

CARs and adoptive T cells—Adoptive T cell therapy holds considerable promise for the 

treatment of brain tumours. Earlier approaches involving nonspecific effector cells, such as 

NK cells or lymphokine-activated killer (LAK) cells, have now fallen out of favour, owing to 

their lack of efficacy[172]. The administration of autologous TILs has induced regressions in 

some tumour types[173] but is less feasible in glioblastoma, owing to the difficulty of 

isolating and expanding TILs from the CNS. A more feasible approach has been the 

administration of autologous cytomegalovirus (CMV)-specific T cells, whereby peripheral 

blood mononuclear cells can be isolated from the blood and expanded in vitro with synthetic 

CMV peptides to generate CMV-specific T cells, which can then be reinfused into the 

patient[174]. This strategy is based on the finding that the majority of glioblastomas, but not 

the surrounding normal brain tissues, express CMV antigens[175]. One study examining the 

administration of CMV-specific T cells for the treatment of glioblastoma is currently 

underway (NCT02661282 (ref.[176])).

The major advance in adoptive cell therapy in recent years has been the development of 

CAR T cells, which, in the case of CAR T cells targeting CD19, are approved for the 
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treatment of B cell leukaemia and lymphoma[177]. For the treatment of glioblastoma, 

clinical trial results are available for CAR T cells targeting three antigens: EGFRvIII, human 

epidermal growth factor receptor 2 (HER2; also known as ERBB2) and IL-13 receptor α2 

(IL-13Rα2)[103, 178, 179, 180] (Fig. 4). These trials have demonstrated that the use of 

CAR T cells for brain tumours is feasible, safe and potentially efficacious. As with other 

solid tumours, the use of CAR T cells for brain tumours still faces several substantial 

obstacles[181]. One major problem is heterogeneous expression of target antigens in tumour 

cells. Even in the case of uniformly expressed antigens, selective pressure can result in 

antigen loss and tumour recurrence. In the first clinical trial of EGFRvIII-directed CAR T 

cells for glioblastoma, a significant decrease in EGFRvIII expression, but not in wild-type 

EGFR, was seen in almost all patients in which tumour-infiltrating CAR T cells were 

observed[103]. In one patient with recurrent multifocal glioblastoma, intracranial 

administration of IL-13Rα2-targeted CAR T cells resulted in the regression of all 

intracranial and spinal lesions, but subsequent relapse was due to IL-13Rα2-negative 

tumours[180]. This suggests that successful CAR T cell therapy will require either targeting 

multiple antigens or the development of CAR T cell designs that induce significant epitope 

spreading. Either approach would lead to a broader immune response, which might also 

carry the risk of unintended reactivity against normal tissue. In mouse leukaemia and 

lymphoma models, CAR T cells engineered to express CD40L have been shown to 

circumvent tumour immune escape via antigen loss by stimulating CD40–CD40L-mediated 

cytotoxicity and the induction of robust endogenous immune responses[182]. In an 

intriguing study using intracranial mouse models of antigen-heterogeneous gliomas, Choi et 

al. examined tumour responses to EGFRvIII-directed CAR T cells that were engineered to 

also express bispecific T cell engagers (BiTEs) targeted to wild-type EGFR. These BiTE-

expressing CAR T cells were able to recruit bystander T cells, eliminate heterogeneous 

tumours, and, despite the targeting of wild-type EGFR, displayed no toxicity towards EGFR-

expressing normal tissues[183].

Another substantial issue, associated in particular with this type of therapy in brain tumours, 

is maximizing and maintaining the activity of the administered CAR T cells. CAR T cell 

administration appears to induce a compensatory immunosuppressive response in the brain, 

characterized by increased expression of immunosuppressive factors and an influx of Treg 

cells[103]. For this reason, successful therapies will likely require the development or 

engineering of CAR T cells resistant to such immunosuppression. Two recent studies of 

CD19 CAR T cells may be applicable to this problem. Fraietta et al. identified factors that 

were associated with clinical success in patients with chronic lymphocytic leukaemia (CLL)

[184]. Clinical responses were not associated with any characteristics of the patients or 

tumours, but rather with the intrinsic properties of the administered cells. Markers of 

response included the expression of memory-related genes, IL-6–signal transducer and 

activator of transcription 3 (STAT3) signatures, robust ex vivo proliferation, and an increased 

frequency of CD27+ PD1– CD8+ CAR T cells expressing high levels of the IL-6 receptor 

(IL-6R). Poor responses were associated with the expression of genes involved in effector 

differentiation, glycolysis, exhaustion and apoptosis. This study strongly suggests that 

specific features of the CAR T cell product can predict clinical efficacy. This same group 

also described an extraordinary case in which complete remission of CLL was attributed to 
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the massive in vivo expansion of a single CAR T cell clone[185]. Lentiviral integration of 

the CAR construct into the TET2 gene, encoding a methylcytosine dioxygenase, led to a null 

mutation of TET2 (ref.[185]), which normally regulates the expression of multiple 

genes[186]. TET2-mutated cells have a proliferative advantage and display increased 

inflammatory responses and memory T cell differentiation[187, 188]. These findings raise 

the possibility that inhibiting TET2 or similar enzymes in the administered CAR T cells 

could significantly increase their efficacy. Moreover, pharmacological inhibition of such 

enzymes would also have the potential to increase the antitumour activity of TAMs, as 

TET2-deficient macrophages have been shown to display increased inflammatory 

responses[189, 190].

While CAR T cell strategies remain a popular mainstay of engineered T cell therapies for 

brain tumours, alternative strategies exist and are being actively investigated. For instance, 

rather than equipping T cells with CAR constructs, cloned T cell receptors (TCRs) 

possessing a desired antigen specificity can likewise be transduced into T cells, which are 

then expanded and adoptively transferred. Such TCR-transduced T cells remain MHC-

restricted and - dependent (unlike CARs), but the CAR requirement for surface antigen 

expression is obviated. Such strategies, then, are useful when targeting intracellular antigens. 

One recent example has been the engineering of a TCR targeting a mutated form of the H3 

variant H3.3K27M, a common mutation in paediatric diffuse intrinsic pontine gliomas 

(DIPGs). T cells transduced with the relevant TCR demonstrated efficacy when transferred 

into mice bearing DIPG xenografts[191]. Interestingly, H3.3K27M DIPGs have been found 

to uniformly express the disialoganglioside GD2 at high levels and, in orthotopic H3K27M+-

diffuse midline glioma xenograft models, GD2-targeted CAR T cells cleared the vast 

majority of tumours[192].

Vaccines—Therapeutic vaccination for brain tumours could be a promising potential 

therapeutic modality but is unproven as of yet. Although supportive data from phase III trials 

are still lacking, several vaccine strategies have shown good safety and immunogenicity in 

phase I and II clinical trials, with some vaccines having demonstrated improved survival 

relative to historical controls. Peptide vaccines targeting a single tumour antigen include 

those for EGFRvIII, IDH R132H, Wilms tumour 1 (WT1) and survivin. A vaccine against 

EGFRvIII in glioblastoma led to substantial increases in survival in uncontrolled phase II 

trials but to no such benefit in a randomized phase III trial[193, 194]. In a study of WT1 

peptide vaccination, the development of anti-WT1 IgG responses was associated with 

increased survival in patients with glioblastoma in a nonrandomized trial[195]. A substantial 

problem with single-peptide vaccinations is the potential for tumour immune escape. In the 

EGFRvIII vaccine studies, the majority of patients who experienced recurrence had lost 

EGFRvIII expression[193]. For this reason, clinical trials have begun to investigate multi-

peptide vaccines to target multiple glioma antigens, but none to date has given a clear 

indication as to efficacy[196, 197]. Two recent trials that have examined the use of 

personalized peptide vaccines in glioma, which are designed according to the mutations and 

gene expression patterns in an individual patient’s tumour, have provided several novel 

observations[41, 104]. First, administration of the corticosteroid dexamethasone, which is 

used to reduce cerebral oedema during vaccine priming, appeared to inhibit systemic 
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antigen-specific T cell responses. Second, neoantigen vaccination could induce antigen-

specific TILs, but these cells displayed an exhausted phenotype. Third, neoantigen-specific 

T cell responses occurred frequently, but primarily among CD4+ T cells, despite the 

selection of peptides based on MHC class I binding predictions[41, 104]. These findings 

suggest that corticosteroids should be avoided during the use of tumour vaccines, that 

vaccine efficacy may require additional measures to combat T cell exhaustion and that 

vaccine neoantigens should not be selected solely on the basis of MHC class I binding 

predictions.

Studies of dendritic cell (DC) vaccines for brain tumours have examined multiple types of 

loaded antigens. Antigen preparations loaded into DCs in clinical trials have included 

mixtures of autologous tumour peptides eluted from tumour-derived cell lines[198], 

autologous tumour lysates[199], peptides from known glioma antigens[200] and tumour-

associated viral antigens such as CMV[127]. An initial trial of DCs loaded with six 

glioblastoma antigen peptides, termed ICT-107, suggested there was a survival benefit, but a 

randomized phase II trial showed no significant improvement in OS[201, 202]. One 

autologous tumour lysate-pulsed DC vaccine, DCVax-L, has advanced to a phase III trial, 

and preliminary results indicate that, on the basis of intent to treat, DCVax-L may improve 

OS[203]. However, concerns have been raised about this report, in that it presents only 

interim data, and the primary end point, the number of progression-free survival (PFS) 

events, was not reported.

Methods to improve the antigen-presenting cell (APC) function, cytokine production and 

migration to lymph nodes of DC vaccines have also been examined. Initial work focused on 

the optimization of conditions for in vitro DC generation in order to maximize DC 

immunogenicity[204]. The addition of agents such as type I interferon and the synthetic 

Toll-like receptor 3 (TLR3) ligand polyinosinic:polycytidylic acid (poly(I:C)) improves DC 

function in vitro[205]. In phase I and II trials in patients with gliomas, DC vaccines prepared 

in this manner increased post-vaccine cytokine production and were suggested to provide a 

survival benefit[200]. An alternative strategy has been to improve DC vaccine activity by 

additional treatments to patients. For example, inducing memory T cell activation with 

tetanus toxoid prior to vaccination with CMV antigen-loaded DCs increases migration of the 

administered DCs to lymph nodes and appears to improve patient survival[206]. Other 

strategies tested in humans to increase inflammation at the vaccine site have included the 

administration of granulocyte–macrophage colony-stimulating factor (GM-CSF)[127], 

poly(I:C)[200] and other TLR agonists[199]. In reality, the next major advance in DC 

vaccines is likely to come from their combination with other immunotherapies. As has been 

proposed by some[207], DC vaccination may be the best solution to the lack of efficacy seen 

with immune checkpoint blockade in tumours, such as glioblastoma, with low mutational 

burdens.

Biomarkers of response

In the context of immune-based therapies for all cancers, the prediction and monitoring of 

responses has been a major barrier to progress. Tumour biopsy-based techniques for 

measuring response, such as immunohistochemistry, flow cytometry-based techniques or 
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sophisticated multi-omic approaches, remain unvalidated and are often limited in their use 

for brain tumours, owing to the clinical and ethical barriers related to longitudinal sample 

acquisition. Magnetic resonance imaging (MRI) has been the main modality used in the 

follow-up and monitoring of treatment response, but difficulties arise related to the 

differentiation between pseudoprogression, radiation-mediated necrosis and actual tumour 

progression[208, 209].

Three recent studies have focused efforts on in-depth analysis of glioblastoma tissue from 

patients treated with ICI therapy in a neoadjuvant setting[96, 170, 171]. These data revealed 

enhanced expression of chemokine transcripts, higher immune cell infiltration and 

augmented TCR clonal diversity among TILs, supporting a local immunomodulatory effect 

of treatment. Additionally, in a separate study, neoadjuvant PD1 blockade was associated 

with the upregulation of T cell- and IFNγ-related gene expression in immune cells and the 

downregulation of cell-cycle-related gene expression within the tumour[96, 170, 171]. Other 

observations have included focal induction of PDL1 in the tumour microenvironment, 

enhanced clonal expansion of T cells, decreased PD1 expression on peripheral blood T cells 

and a decreasing monocytic population[96, 170, 171]. These anti-PD1 therapies appear to 

lead to different responses in tumours with specific molecular alterations. Specifically, non-

responders are associated with significant enrichment of PTEN mutations and 

immunosuppressive expression signatures, whereas responders are associated with an 

enrichment of MAPK pathway alterations (protein tyrosine phosphatase, non-receptor type 

11 (PTPN11) and BRAF), suggesting a genotype–phenotype link[41, 170, 210]. Taken 

together, such data point to the need for continued development of predictive biomarkers for 

immune-based therapies in glioma.

Conclusions and perspective

Malignant brain tumours, particularly primary gliomas, remain universally lethal — 

immunotherapy has done little to improve this. What accounts for these failures? There are 

likely a complex set of interactions between the tumour, its host and the standard therapy 

used for these challenging lesions. These tumours tend to have few mutations that could be 

targeted immunotherapeutically, and rarely have even one mutation that is expressed 

homogeneously. Moreover, the genetic evolution of these tumours leads to tumour 

populations that are extremely heterogeneous, and therefore difficult to target with a therapy 

focused on a single antigen. Unfortunately, therapies targeted at tumour-associated antigens 

or multiple antigens risk unintended consequences to the brain and systemic tissues alike. 

The host also provides particular challenges. While the concept of CNS immune privilege 

has eroded over time, there are ways in which the brain treats a foreign body that are simply 

different from those in other organs in the host, and the opportunities we have to provide 

therapies that access the brain are limited. In addition, tumours in the brain seem able to 

promote bone marrow sequestration of the immune cells that could attack the tumour[37]. 

Finally, the standard therapies for this disease, principally radiation and chemotherapy, are 

both profoundly immunosuppressive and thwart many immunotherapeutic attempts. In the 

end, immunotherapy will only be successful if it is specific, can be successfully delivered to 

the brain and effectively deals with cellular heterogeneity.
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Glossary

Tumour-treating fields (TTFields)
External application of alternating electrical fields to disrupt the multiplication of tumour 

cells

Glial–lymphatic (glymphatic) pathway
A recently characterized functional waste clearance pathway in the central nervous system 

that connects the brain interstitium to the cerebrospinal fluid spaces via aquaporin channels

Glia limitans
A thin barrier of astrocyte foot processes associated with the parenchymal basal lamina 

surrounding the brain and spinal cord. The glia limitans plays a crucial role in regulating the 

movement of small molecules and cells into the brain parenchyma

Microglia
The resident self-renewing population of macrophages in the central nervous system

Lynch syndrome 
Also known as hereditary non-polyposis colorectal cancer. A type of inherited cancer 

syndrome associated with a genetic predisposition to different cancer types, including 

glioblastoma

Myelosuppression
A condition in which bone marrow activity is decreased, resulting in fewer red blood cells, 

white blood cells and platelets

Lymphopenia
The condition of having an abnormally low level of lymphocytes in the blood

Lymphokine-activated killer (LAK) cells
Lymphocytes cultured in the presence of IL-2 to stimulate their cytotoxic activity

Pseudoprogression
A new or enlarging area of contrast agent enhancement occurring early after the end of 

radiotherapy or immunotherapy (for example, within 3–4 months), in the absence of true 

tumour growth, that subsides or stabilizes without a change in therapy
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Box 1

Brain metastasis and immune checkpoint blockade

Subversion of endogenous and manipulated immune responses, long a hallmark of 

glioblastoma, is increasingly recognized among brain metastases, as well (reviewed in 

Farber et al.[230]). The brain has evolved a variety of mechanisms aimed at curbing 

inflammatory responses that might otherwise be harmful, limiting both the access and 

scope of T cell responses. Tumours of the intracranial compartment, in turn, are often 

able to usurp such mechanisms to restrict the antitumour immune response. Similar to 

glioblastoma, brain metastases frequently contain fewer T cell infiltrates than their 

peripherally located counterparts, and T cells that do successfully infiltrate are subject to 

further suppressive influences geared at promoting such dysfunction as tolerance and 

exhaustion[150, 231]. Tumour infiltrates within the brain are uniquely heavy in microglia 

and monocytes, which may function ultimately to dampen the cell-mediated immune 

response, a function employed by brain metastases[232, 233, 234].

While the systemic and local immunological consequences of CNS metastasis are not 

characterized as well as in primary brain tumours, current data suggest contributions by 

many of the same microenvironmental immunosuppressive factors, including regulatory 

T (Treg) cells[154, 235], and noteworthy expression of programmed cell death protein 1 

ligand 1 (PDL1)[236]. Numerous studies have documented T cell ineffectiveness that 

correlates with the expression of immune checkpoints[150, 160]; however, unlike in the 

case of glioblastoma, the available evidence suggests that immune checkpoint blockade 

may proffer significant efficacy against intracranial metastases, particularly those from 

melanoma[151]. Nevertheless, future immunotherapeutic successes will depend on 

deepening our understanding of the interactions between metastatic tumours and immune 

populations within the brain specifically.
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Fig. 1. Immune privilege in the brain.
Historically, the central nervous system (CNS) was considered to be isolated 

immunologically. Features that contributed to this understanding were the presence of tight 

junctions in the blood–brain barrier, the absence of a classic lymphatic drainage system, and 

empirical data showing the ability of the CNS to target foreign tissues with minimal 

inflammatory responses. However, today the concept of immune privilege has been partially 

redefined. It is now clear that there are functional lymphatic vessels in the CNS, and that 

antigen-presenting cells (APCs) of varied types exist within the CNS, including microglia, 

macrophages, astrocytes and classic APCs such as dendritic cells (DCs). It is now known 

that the CNS is not isolated from activated T cells, which can patrol these compartments in 

an unrestricted manner, and that CNS antigens can be presented locally or in the draining 

cervical lymph nodes. While the immune system in the CNS remains different, it is not 

incapable. CSF, cerebrospinal fluid.
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Fig. 2. Immunosuppressive mediators and therapeutic targets in the brain tumour 
microenvironment.
Tumour-associated macrophages (TAMs) play a central role in the brain tumour 

microenvironment. TAMs arise from circulating monocytes and, to a lesser extent, 

microglia. The recruitment of monocytes and their differentiation into TAMs is supported by 

the chemokine CC-chemokine ligand 2 (CCL2) and the cytokine colony-stimulating factor 1 

(CSF1). TAMs can be activated towards either an inflammatory or an anti-inflammatory 

phenotype. Inflammatory TAMs inhibit tumour growth and support T cell-mediated tumour 

killing through the production of inflammatory cytokines such as IL-12 and tumour necrosis 

factor (TNF). Anti-inflammatory TAMs and astrocytes produce IL-10 and transforming 

growth factor β (TGFβ), both of which inhibit T cell effector functions and inflammatory 

TAM activities[45]. Anti-inflammatory TAMs and microglia produce arginase, which 

inhibits T cells through arginine depletion from the tumour microenvironment. Gliomas 

produce indolamine 2,3-dioxygenase (IDO), which acts to recruit regulatory T (Treg) cells 

Sampson et al. Page 29

Nat Rev Cancer. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and inhibit effector T cells through tryptophan depletion. Potential therapeutic strategies to 

target these immunosuppressive pathways are shown in purple.
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Fig. 3. Epigenetic events play a key role in modulating immune responses to brain tumours.
a | Isocitrate dehydrogenase 1 (IDH1) mutations in glioma can cause down-regulation of 

leukocyte chemotaxis, resulting in repression of the tumour-associated immune system. An 

IDH mutation results in the generation of the oncometabolite 2-hydroxyglutarate (2HG; via 

conversion from α-ketoglutarate), which in turn represses signal transducer and activator of 

transcription 1 (STAT1) expression, leading to reduced expression of interferon-γ (IFNγ)-

inducible chemokines, including CXC chemokine ligand 9 (CXCL9) and CXCL10. As a 

consequence, IDH-mutated tumours suppress the infiltration and accumulation of T cells at 

tumour sites. b | In mice bearing IDH-mutated glioma, these effects can be reversed through 

pharmacological inhibition with IDH-C35, a specific inhibitor of mutant IDH. Adapted from 

ref.[228], Springer Nature Limited.

Sampson et al. Page 31

Nat Rev Cancer. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. Chimeric antigen receptor T cell immunotherapy in brain tumours.
Chimeric antigen receptor (CAR) T cells have been used to target tumour-specific and 

tumour-associated antigens in malignant gliomas. There appears to be no impediment to 

these cells reaching and killing target antigen-expressing tumour cells in the central nervous 

system (CNS). The challenge remains for these highly specific and potent agents to target 

antigen-negative tumour cells directly within these highly heterogeneous tumours. APC, 

antigen-presenting cell; DAMP, damage-associated molecular pattern; DC, dendritic cell; 

EGFRvIII, epidermal growth factor receptor variant III; IFNγ, interferon-γ; LN, lymph 

node; MHC-I, major histocompatibility complex class I; Tc, cytotoxic T cell; TCR, T cell 

receptor; TH, T helper cell; TNF, tumour necrosis factor. Adapted from ref.[229] (Johnson, 

L. A., Sanchez-Perez, L., Suryadevara, C. M. & Sampson, J. H. Chimeric antigen receptor 

engineered T cells can eliminate brain tumors and initiate long-term protection against 

recurrence. Oncoimmunology 3, e944059 (2014)), with permission of the publisher (Taylor 

& Francis Ltd, http://www.tandfonline.com).
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Table 1

Ongoing clinical trials in brain tumours

Therapy Cancer type Phase NCT identifier

Personalized neoepitope-based vaccine Recurrent paediatric brain tumours I NCT03068832 (ref.[211])

Personalized neoantigen DNA vaccine in combination with 
immune checkpoint blockade therapy

Newly diagnosed, unmethylated 
glioblastoma I NCT04015700 (ref.[212])

IDO inhibitor (indoximod) in combination with the 
chemotherapy temozolomide

Progressive primary malignant 
paediatric brain tumours I NCT02502708 (ref.[53])

Anti-LAG3 +/− anti-PD1 therapy nivolumab Recurrent glioblastoma I NCT02658981 (ref.[168])

Anti-TIM-3 monoclonal (TSR-022) +/− nivolumab Advanced solid tumours I NCT02817633 (ref.[169])

Personalized neoantigen-based vaccine + nivolumab, Newly diagnosed, unmethylated 
glioblastoma I NCT03422094 (ref.[213])

EGFRvIII-specific CAR T cells + anti-PD1 therapy 
pembrollizumab

Newly diagnosed, unmethylated 
glioblastoma I NCT03726515 (ref.[214])

EGFR806-specific CAR T cells in combination with 
locoregional immunotherapy (EGFR 806 is a monoclonal 
antibody recognizing EGFRvIII and a subset of 
overexpressed wild type EGFRs)

EGFR-positive recurrent or refractory 
paediatric CNS tumours I NCT03638167 (ref.[215])

HER2-specific CAR T cells in combination with 
locoregional immunotherapy

HER2-positive recurrent or refractory 
paediatric CNS tumours I NCT03500991 (ref.[216])

HER2-specific CAR T cells HER2-positive CNS tumours I NCT02442297 (ref.[217])

IL-13Rα2-specific CAR T cells Recurrent or refractory malignant 
glioma I NCT02208362 (ref.[218])

CMV pp65 peptide DC vaccine Recurrent medulloblastoma or 
malignant glioma I NCT03299309 (ref.[219])

CMV pp65 peptide DC vaccine in combination with 
nivolumab Recurrent brain tumours I NCT02529072 (ref.[220])

IDH1 peptide vaccine Recurrent grade II glioma I NCT02193347 (ref.[221])

Personalized peptide vaccine in combination with TTFields Glioblastoma I NCT03223103 (ref.[222])

Tumour antigen-loaded DC vaccine Brain tumours I NCT03914768 (ref.[223])

IDO inhibitor in combination with temozolomide Primary malignant brain tumours I and II NCT02052648 (ref.[54])

IDO inhibitor (Epacadostat) in combination with 
nivolumab

Select advanced cancers including brain 
tumours I and II NCT02327078 (ref.[55])

Arginase inhibitor (INCB001158) +/− immune checkpoint 
blockade therapy Advanced or metastatic solid tumours I and II NCT02903914 (ref.[58])

Autologous CMV-specific CTLs in combination with 
temozolomide Glioblastoma I and II NCT02661282 (ref.[176])

Nivolumab IDH-mutant gliomas with and without 
hypermutator phenotype II NCT03718767 (ref.[97])

WT1 peptide vaccine (DSP-7888) in combination with 
bevacizumab (Anti-VEGFA)

Recurrent or progressive glioblastoma 
following initial therapy II NCT03149003 (ref.[224])

Tumour lysate-pulsed DC vaccine Brain tumours II NCT01204684 (ref.[225])

CMV RNA-loaded DC vaccine Newly diagnosed WHO Grade IV 
unmethylated glioma II NCT03927222 (ref.[226])

CMV RNA-loaded DC vaccine +/− anti-CD27 therapy 
varlilumab (to deplete Treg cells but also enhances 
activation via other mechanisms)

Glioblastoma II NCT03688178 (ref.[227])

Temozolomide in combination with radiation +/− 
nivolumab

Newly diagnosed, unmethylated 
glioblastoma III NCT02667587 (ref.[148])
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Therapy Cancer type Phase NCT identifier

Nivolumab or temozolomide in combination with radiation Newly diagnosed, unmethylated 
glioblastoma III NCT02617589 (ref.[147])

CAR, chimeric antigen receptor; CMV, cytomegalovirus; CTLs, cytotoxic T lymphocytes; DC, dendritic cell; EGFRvIII, epidermal growth factor 
receptor variant III; HER2, human epidermal growth factor receptor 2; IDH, isocitrate dehydrogenase; IDO, indolamine 2,3 -dioxygenase; 
IL-13Rα2, interleukin 13 receptor α2; LAG3, lymphocyte activation gene 3; PD1, programmed cell death protein 1; TIM3, T cell immunoglobulin 
and mucin domain-containing protein 3; TTFields, tumour treating fields; WHO, World Health Organization; WT1, Wilms tumour 1.
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