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Abstract

Background: Prenatal exposure to persistent organic pollutants (POPs) may affect child 

neurobehavior; however, exposures to mixtures of POPs have rarely been examined.

Methods: We estimated associations of prenatal serum concentrations of 17 POPs, namely 5 

polybrominated diphenyl ethers (PBDEs), 6 polychlorinated biphenyls (PCBs), 
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dichlorodiphenyldichloroethylene, dichlorodiphenyltrichloroethane, and 4 per- and polyfluoroalkyl 

substances (PFAS), with Wide Range Achievement Test-4 reading composite scores at age 8 years 

in 161 children from a pregnancy/birth cohort (HOME Study, 2003-present) in Cincinnati, OH. We 

applied 6 statistical methods: least absolute shrinkage and selection operator (LASSO), elastic net 

(ENET), Sparse Principal Component Analysis (SPCA), Weighted Quantile Sum (WQS) 

regression, Bayesian Kernel Machine Regression (BKMR), and Bayesian Additive Regression 

Trees (BART), to estimate covariate-adjusted associations with individual and their mixtures in 

multi-pollutant models.

Results: Both LASSO and ENET models indicated inverse associations with reading scores for 

BDE-153 and BDE-28, and positive associations for CB-118, CB-180, perfluoroctanoate (PFOA), 

and perfluorononanoate (PFNA). The SPCA identified inverse associations for BDE-153 and 

BDE-100 and positive associations for perfluorooctane sulfonate (PFOS), PFOA, and PFNA, as 

parts of different principal component scores. The WQS regression showed the highest weights for 

BDE-100 (0.35) and BDE-28 (0.16) in the inverse association model and for PFNA (0.29) and 

CB-180 (0.21) in the positive association model. The BKMR model identified BDE-100 and 

BDE-153 for inverse associations and CB-118, CB-153, CB-180, PFOA, and PFNA for positive 

associations. The BART method found dose-response functions similar to the BKMR model. No 

interactions between POPs were identified.

Conclusions: Despite some inconsistency among biomarkers, these analyses revealed inverse 

associations between prenatal PBDE concentrations and children’s reading scores. Positive 

associations of PCB congeners and PFAS with reading skills were also found.
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1. Introduction

Mounting evidence from epidemiological studies suggests that early life exposure to certain 

environmental chemicals adversely affects neurodevelopment. Persistent organic pollutants 

(POPs), including polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyl ethers 

(PCBs), per- and polyfluoroalkyl substances (PFAS), dichlorodiphenyltrichloroethane 

(DDT) and its metabolite dichlorodiphenyldichloroethylene (DDE), are recognized for their 

potential role as neurotoxicants (Goodman et al., 2010; Lam et al., 2017; Liew et al., 2018; 

Polanska et al., 2013; Vuong et al., 2018). POPs are resistant to environmental degradation, 

accumulate in human tissue, have long biological half-lives, and can cross the placenta 

during gestation. Perturbations of programmed neuronal development and network 

connectivity by exogenous chemicals during this critical period of susceptibility can be 

detrimental and induce changes in neurodevelopment and behavior (Gore et al., 2014). 

Potential mechanisms of action include thyroid hormone disruption and affecting brain cells 

by inducing neuronal death, interfering with neurotransmitter synthesis, disturbing neuronal 

connectivity, and disrupting neural cell differentiation (Costa et al., 2014; Lee and Viberg, 

2013; Moser et al., 2001; Reistad et al., 2013; Seegal, 1996; Slotkin et al., 2008).
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Despite the critical need to examine mixtures of developmental neurotoxicants, a staggering 

majority of epidemiological studies investigating chemical exposures have utilized a single-

pollutant approach. These studies examine chemicals in isolation rather than taking into 

account the totality of chemical exposures, which upon acting together may have additive, 

synergistic, antagonistic, or potentiating effects (Lazarevic et al., 2019). The development of 

statistical methodologies for multipollutant models has gained considerable traction recently 

given the compelling need for novel approaches. However, very few studies investigating 

POPs as potential neurotoxicants have applied advanced statistical methods to examine 

chemical mixtures (Braun et al., 2014; Forns et al., 2016; Hamra et al., 2019; Lenters et al., 

2019; Zhang et al., 2017). Further, a majority of these studies utilized only one type of 

multi-pollutant statistical model to examine POP mixtures, with only one that employed 

three mixture statistical approaches (Forns et al., 2016). In addition, studies comparing 

results from various mixture approaches using data in real-world scenarios are insufficient. 

Environmental epidemiological studies stand at the precipice of great change in the 

examination of chemical mixtures, the enormity of which we have yet to even realize. The 

development of multi-pollutant statistical models currently exceeds its actual application in 

neurodevelopmental studies.

To address this research gap we used data from the Health Outcomes and Measures of the 

Environment (HOME) Study to investigate the associations between a mixture of 17 POPs 

and school age children’s reading skills utilizing six developed statistical methods. While 

several neurodevelopmental domains are important for everyday functioning, including full 

scale IQ, executive function, and externalizing behaviors, fewer epidemiological studies 

have examined reading ability as a potential endpoint of neurotoxicity. Thus, we focused our 

analysis on reading abilities assessed at age 8 years, a time period when patterns of reading 

development are more distinctive with inter-individual variations (Verhoeven et al., 2011). 

No mixture statistical method is considered the gold standard. Thus, we compared six 

mixture statistical methods, including: 1) Least Absolute Shrinkage and Selection Operator 

(LASSO) (Tibshirani, 1996); 2) Elastic Net (ENET) (Zou and Hastie, 2005); 3) Sparse 

Principal Component Analysis (SPCA) (Zou et al., 2006); 4) Weighted Quantile Sum 

(WQS) regression (Carrico, 2013; Gennings et al., 2013); 5) Bayesian Kernel Machine 

Regression (BKMR) (Bobb et al., 2015); and 6) Bayesian Additive Regression Trees 

(BART) (Chipman et al., 2010). These statistical methods were selected based on their 

ability for chemical variable selection (LASSO, ENET, SPCA, WQS regression, BKMR, 

BART), analysis of the impact of a single chemical (LASSO, ENET, SPCA, WQS 

regression, BKMR, BART), assessment of interactions between chemicals (LASSO, ENET, 

BKMR, BART), assessment of joint effects (SPCA, WQS regression, BKMR, BART), and 

estimation of the cumulative impact of multiple chemicals on reading ability (SPCA, WQS 

regression, BKMR, BART) (Lazarevic et al., 2019). All selected methods can also handle 

highly correlated measurements of POPs to estimate associations with reading skills at age 8 

years. We will compare the findings generated from the six selected mixture statistical 

methods in order to enhance our ability to identify the impact of a mixture of chemicals on 

child neurodevelopment while assessing the differences in the findings of the analyses.
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2. Methods

2.1 Study population

We used data from an ongoing prospective pregnancy and birth cohort, the HOME Study 

(Cincinnati, Ohio, USA). Detailed recruitment, conducted from March 2003 to February 

2006, and sample collection procedures were described previously by Braun et al. (2017). Of 

468 pregnant women at 16±3 weeks of gestation enrolled in the study, 390 remained to 

deliver live singletons. We restricted our study dataset to 161 mother-child dyads who had 

complete information on 17 POPs: 5 major PBDE congeners, 6 major PCB congeners, 2 

major organochlorine pesticides (OCPs: DDT and DDE), and 4 PFAS, potential 

confounding factors, as well as an assessment of reading ability at age 8 years. The study 

protocol was approved by the Institutional Review Board (IRB) at the Cincinnati Children’s 

Hospital Medical Center (CCHMC). The Centers for Disease Control and Prevention (CDC) 

deferred to CCHMC IRB as the IRB of record.

2.2 Assessment of POP biomarkers

Women provided blood samples at 16±3 weeks of gestation via venipuncture. Serum was 

separated and samples were stored at −80°C until analysis. Details regarding quantification 

procedures and lipid standardization have been previously described elsewhere (Phillips et 

al., 1989). Maternal serum was used to measure PBDEs, PCBs, and OCPs by using gas 

chromatography/isotope dilution high-resolution mass spectrometry (Jones et al., 2012; 

Sjodin et al., 2004). Maternal serum was also used to measure PFAS by using high-

performance liquid chromatography-isotope dilution-tandem mass spectrometry (Kato et al., 

2011). Concentrations less than the limit of detection (LOD) were replaced with LOD/V2 

(Hornung and Reed, 1990). Concentrations of PBDEs, PCBs, and OCPs were lipid-

normalized and given in ng/g lipid. PFAS concentrations were expressed as ng/mL. PBDEs, 

PCBs, and OCPs were quantified using serum collected at 16 weeks gestation. For a small 

number of women without serum at 16 weeks, PFAS were measured using serum at 26 

weeks (n=11) or at delivery (n=3). If more than one PFAS measurement was available 

during pregnancy (n=35), an average was used. For the current analyses, we focused on the 

following chemicals: 1) PBDE congeners: BDE-28, BDE-47, BDE-99, BDE-100, BDE-153; 

2) PCB congeners: CB-74, CB-99, CB-118, CB-138/158, CB-153, CB-180; 3) OCPs: DDT 

and DDE; and 4) PFAS: perfluorooctane sulfonate (PFOS), perfluorooctanoate (PFOA), 

perfluorohexane sulfonate (PFHxS), and perfluorononanoate (PFNA). POP biomarkers were 

log10-transformed to reduce the influence of outliers and treated as continuous variables in 

statistical analyses.

2.3 Assessment of reading ability

We assessed children’s reading ability using the Wide Range Achievement Test 4 (WRAT-4) 

at age 8 years (Wilkinson and Robertson, 2006), an assessment of fundamental academic 

skills that has high validity and reliability (Jastak and Jastak, 1965). HOME Study staff 

members were trained and certified by a developmental psychologist and administered the 

WRAT-4, which had a duration of 15-25 minutes. For our study, we examined the Reading 

Composite score, which is comprised of the two subtests Word Reading (letter and word 
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decoding) and Sentence Comprehension (ability of an individual to obtain meaning from 

words and to understand ideas and information in sentences).

2.4 Covariates

From a review of the literature, all models were adjusted for maternal age, race/ethnicity, 

education, household income at enrollment, marital status, serum cotinine, blood lead levels, 

fish consumption, maternal IQ, maternal depression (Beck et al., 1996), child sex, and the 

quality and quantity of the caregiving environment using Home Observation for 

Measurement of the Environment (HOME) scores at age 12 months (Caldwell and Bradley, 

1984).

2.5 Statistical Analyses

First, we approached our research question using the traditional single-pollutant approach, 

modeling each POP separately using multiple linear regression to estimate the association 

between individual POP concentrations and reading ability in school age children, with 

adjustment for covariates. We additionally implemented generalized additive models to 

assess whether relationships between the individual POPs and Reading Composite score 

were monotonic. We subsequently implemented six different statistical methods that 

accounted for the complete set of complex mixtures of POPs (Table 1). These methods 

included LASSO, ENET, SPCA, WQS regression, BKMR, and BART. LASSO and ENET 

are penalized regression methods that identify ‘drivers’ versus ‘passengers’ in the POP 

mixture by entering all chemicals into the same regression model. These methods minimize 

the sum of the squared residuals plus either the product of a constant λ1 and the sum of the 

absolute value of regression parameter (LASSO) or the product of a constant λ2 and the sum 

of squared regression parameter (ridge regression) or both (ENET). In addition, LASSO and 

ENET can shrink regression estimates to zero and they are robust to extreme correlations 

between predictors. LASSO and ENET analyses were performed by R package “glmnet,” 

and the tuning parameter for ENET α= λ1/ (λ1+ λ2) was chosen by a cross-validation using 

R package “caret.” We ran the model 100 times and chose the best λ value that gave the 

lowest mean squared error, and used this λ value to rerun the model. For the subset of 

chemical identified by LASSO or ENET, we also constructed a multiple linear regression 

model with mutual adjustment of the chemicals to obtain estimates and 95% confidence 

intervals (Lenters et al., 2016).

For SPCA, the LASSO was incorporated into principal component (PC) analysis to impose a 

constraint on the chemicals to obtain sparse loadings. This method extracts a small number 

of PC scores from the higher dimensional set of POPs that explain most of the variability of 

the data by setting PCA loadings to zero. Identified PC scores were used as independent 

variables in the regression model with the reading scores. R package “elasticnet” was used 

for SPCA. In WQS regression, individual POPs were categorized into quartiles to obtain a 

weighted average of quartile scores in the regression. Weights were estimated to maximize 

the associations with WRAT-2’s Reading Composite score and the weighted sum. Separate 

models for positive and negative associations were constructed to ensure non-negative 

weights. WQS regression estimates were calculated from 1000 bootstraps using the R 
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package “gWQS.” Due to small sample size, we did not split the dataset to obtain training 

and validation datasets.

In BKMR, a nonparametric high-dimensional exposure-response function is constructed 

with kernel machine regression using component-wise or hierarchical variable selection with 

10,000 iterations. Each component in the high-dimensional function is assigned a posterior 

inclusion probability (PIP). The BKMR can examine potential interactions between two 

chemicals when all other chemicals are held at the median levels. R package “bkmr” was 

used to construct BKMR models. Lastly, BART uses a sum of trees approach, with each 

POP contributing to the outcome a small and distinct amount of information as a simple 

weak learner. We imposed a prior regularizing the fit by keeping the individual POP effects 

small. To fit the model, we used a tailored version of Bayesian backfitting Markov Chain 

Monte Carlo (MCMC) method that interactively constructed and fit successive residuals. R 

package “bartMachine” was used for the BART analysis. We used R version 3.6.1 (R Core 

Team, Vienna, Austria) for the analyses and graphing.

3. Results

3.1 Study participants

Approximately 60% of the included HOME Study mothers identified as non-Hispanic white 

with an average age at delivery of 29 years. Educational attainment among study participants 

mainly consisted of mothers with at least some college or higher degree (>70%). Median 

concentrations of BDE-47, BDE-153, CB-118, CB-153, DDT, and DDE were 20.1, 4.6, 4.8, 

10.7, 2.6, and 70.8 ng/g lipid, respectively (Supplemental Figure S1). HOME Study 

children’s Reading Composite score had a mean ± standard deviation (SD) of 108±15. 

Median concentrations of PFOS and PFOA were 12.7 and 5.2 ng/mL, respectively. In 

bivariate analyses, we identified 3 clusters within the 17 POPs, specifically among the 

PBDE congeners (rp=0.45-0.93), PFAS (rp=0.40-0.65), and between PCBs and OCPs 

(rp=0.38-0.95) (Supplemental Figure S2). We also observed low to moderate correlation 

between chemical classes besides PCBs and OCPs. For example, between BDE-100 and 

CB-99 (rp=0.20) and between BDE-28 and DDT (rp=0.29).

3.2 Identification of POPs in single-pollutant analyses

We observed inverse associations between prenatal BDE-47 (β=−6.1, 95% CI −12.0, −0.2), 

BDE-100 (β=−6.1, 95% CI −11.4, −0.7), and BDE-153 (β=−5.3, 95% CI −10.3, −0.3) and 

Reading Composite scores at age 8 years (Table 2). In contrast, PFOA (β=12.6, 95% CI 3.0, 

22.2) and PFNA (β=16.7, 95% CI 4.8, 28.6) were positively associated with Reading 

Composite scores. While we did not observe statistically significant associations with PCBs, 

there was consistent directionality, suggesting positive associations between reading ability 

with PCBs. For instance, prenatal CB-153 (β=9.8, 95% CI −0.6, 20.2) and CB-180 (β=8.8, 

95% CI −0.8, 18.5) were associated with higher Reading Composite scores. Generalized 

additive models of individual POPs and Reading Composite scores with covariate 

adjustment mainly suggested linear relationships, with some indication of some non-

monotonic associations (Supplemental Figure S3).
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3.3 Identification of POPs in multi-pollutant analyses

We applied LASSO to obtain a more parsimonious model that started with 17 POP 

biomarkers predictors of Reading Composite scores with covariate adjustment (Table 2). 

BDE-28 and BDE-153 showed inverse associations with reading ability. In contrast, 

CB-118, CB-180, PFOA, and PFNA had positive associations with the outcome. Results 

from ENET were similar to LASSO, with BDE-28 and BDE-153 selected as important 

predictors of lower reading ability, while PCBs and PFAS were associated with better 

reading abilities. The unpenalized regression estimates in the multiple linear models were 

slightly larger than LASSO or ENET estimates.

SPCA identified 6 PC scores that explained 79% of the variation in serum POP 

concentrations. Of the identified PCs, PC5 had a statistically significant inverse association 

with the Reading Composite scores (β=−2.8, 95% CI −5.3, −0.2). BDE-153 and BDE-100 

loaded strongly (loading>0.22) onto PC5, indicating that these two PBDE congeners were 

associated with lower reading scores (Table 3). However, a significant positive association 

with Reading Composite score was noted for PC3 (β=2.5, 95% CI 1.0, 4.0). This PC score 

explained the most variation in PFAS (loading>0.41), which suggests higher reading scores 

with increased prenatal PFAS concentrations.

We identified high weights for BDE-100 (35%) and BDE-28 (16%) with an estimate of - 2.6 

(95% CI −5.4, 0.2) per WQS unit in the inverse association (Table 4). WQS analysis for the 

positive association identified high weights for PFNA (29%) and CB-180 (21%), with an 

estimate of 5.4 (95% CI 2.0, 8.9) per WQS unit.

In BKMR analysis with component-wise variable selection, the PIPs were high for all PBDE 

congeners, CB-118, CB-153, CB-180, PFOS, PFOA, and PFNA (>0.3, Table 5), with dose-

response patterns shown in Supplemental Figure S4. The conditional PIP for BDE-28, 

BDE-47, and BDE-99 was lower than other two congeners within the PBDE group in the 

hierarchical variable selection, so we retained BDE-153 and BDE-100 in a reduced BKMR 

model. Similarly, we retained PFOA and PFNA for the PFAS group. Hence, the reduced 

BKMR model involved seven POPs. In this reduced model, the component-wise variable 

selection PIPs were highest for BDE-153 (0.80), PFNA (0.79), and PFOA (0.82) 

(Supplemental Table S1). The hierarchical variable selection for the reduced BKMR model 

had an estimated group PIP of 0.91, 0.80, and 0.94 for PBDEs, PCBs, and PFAS, 

respectively. BKMR model examined 42 different bivariate exposure-response functions 

between the seven identified chemicals, estimating a single chemical’s association while 

holding a second chemical fixed at the 10th, 50th, or 90th percentile (Figure 1). Inverse 

associations with two PBDE congeners and positive associations with PCB congeners and 

PFAS (PFNA and PFOA) were mainly parallel despite the increase in the concentration of 

the second chemical, suggesting that there is no synergistic or multiplicative interaction 

between the seven POPs in relation to the reading scores. Results for a change in the 

estimate of a single POP concentration from the 25th to the 75th percentile while holding all 

other POP concentrations at either the 25th, 50th or 75th percentile had similar conclusions 

(Supplemental Figure S5). With regard to the cumulative effect of simultaneous exposure to 

the seven identified POPs in the BKMR model, Figure 2 displays the overall risk summary 

of all seven predictors at a particular percentile compared with a reference while all 
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predictors are at the 50th percentile. Most of the seven POPs are contributing to better 

Reading Composite scores in this dataset. Therefore, the estimate increases with increasing 

percentiles of overall exposure.

In the BART analysis, the Partial Dependence Plots indicating dose-response pattern of POP 

exposures showed similar results to BKMR mixture analysis: inverse associations with 

PBDE congeners, and positive associations with PCB congeners and PFAS (Supplemental 

Figure S6). The variable selection “Local” procedure identified maternal IQ, maternal 

education, PFOS, CB-180, and PFOA above the individual thresholds of inclusion 

proportion (Supplemental Figure S7). BDE-153, CB-118, PFNA, and BDE-100 did not meet 

the thresholds but were among the top 10 variables with high inclusion proportion. The 

variable selection “Global Max” or “Global SE” procedures were more stringent, with 

maternal IQ meeting both thresholds and additionally maternal education and CB-180 

meeting the threshold of “Global SE” procedure.

The results of the six mixture statistical methods are summarized in Table 6. Despite some 

inconsistency in individual chemicals, the methods identified inverse associations for 

BDE-28, BDE-100, and BDE-153, and positive associations for CB-118, CB-153, and 

CB-180. The findings of DDE and DDT were not remarkable. PFOA, PFNA, and to some 

extent, PFOS were positively associated with reading skills.

4. Discussion

We used 6 statistical approaches, namely LASSO, ENET, SPCA, WQS regression, BKMR, 

and BART, to examine chemical mixtures of 17 POPs during pregnancy in relation to 

reading skills at age 8 years in a sample of 161 mother-child dyads from the HOME Study. 

Findings across these multi-pollutant models were relatively consistent but not 

interchangeable. All mixture analyses revealed inverse associations between prenatal PBDEs 

and childhood reading skills at school age. We also noted better Reading Composite scores 

on the WRAT-4 with higher concentrations of PCBs and PFAS. The six statistical 

approaches have their own strengths and limitations, and multiple approaches may reveal 

different aspects of the associations between mixture exposure and the outcome.

Previously, the HOME Study and the Norwegian Human Milk Study (HUMIS) utilized 

frequentist shrinkage methods to examine chemical mixtures of POPs as neurotoxicants. In 

the HOME Study, a mixture of PBDEs and PCBs were investigated to determine the 

relationship with reading skills, Full Scale IQ, and externalizing problems in children at 8 

years (Zhang et al., 2017). Findings from the LASSO method were similar to the present 

study’s overall conclusions, with decrements in reading composite scores noted with 

increased prenatal PBDEs. Zhang et al. (2017) reported that higher PBDE serum 

concentrations were associated with lower FSIQ and more externalizing behavior problems 

in children. They additionally observed higher scores for WRAT-II and FSIQ with prenatal 

CB-118, CB-153, and CB-180. The elastic net regression models produced mixed results 

between studies. Lenters et al. (2019) examined a mixture of 27 POPs, including PCBs, 

OCPs, brominated flame retardants, and PFAS, measured in breastmilk and attention-deficit/

hyperactivity disorder (ADHD) in children ages 7-14 years using elastic net penalized 
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logistic regression models. They identified increased odds of ADHD in children with higher 

β-hexachlorocyclohexane (β-HCH) and PFOS and lower odds of an ADHD diagnosis with 

increased p,p’-DDT (Lenters et al., 2019).

In a mixture analysis of 51 endocrine-disrupting chemicals in the HOME Study, Braun et al. 

(2014) utilized a two-stage semi-Bayesian model to estimate associations with autistic 

behaviors in children ages 4 and 5 years. Findings were mixed, with more autistic behaviors 

reported with higher concentrations of prenatal BDE-28 and trans-nonachlor and lower 

autistic behaviors observed with detectable levels of CB-178, β-HCH, and BDE-85 and 

increasing concentrations of PFOA. A Bayesian approach was also applied in the 

examination of 25 endocrine disrupting chemicals measured in maternal serum at 15-20 

weeks gestation with autism spectrum disorder (ASD) and intellectual disability in the Early 

Markers for Autism study (Hamra et al., 2019). However, results did not support an 

association between any individual chemical and ASD or intellectual disability in the 

mixture analysis.

One study used ENET, PCA, and Bayesian model averaging (BMA) models to examine 

POPs as potential neurotoxicants (Forns et al., 2016). They reported that only p,p’-DDT was 

consistently identified across all three methods, where p,p’-DDT was associated with more 

behavioral problems at age 12 months in HUMIS infants in a mixture analysis of 24 POPs. 

However, in the present study we did not observe a consistent relationship between p,p’-

DDT and reading abilities in school age children despite modest contribution to the inverse 

association WQS model.

Nevertheless, all six mixture methods applied in the present study revealed inverse 

associations between prenatal PBDEs and reading skills at age 8 years. While inverse 

associations for individual BDE congeners were not entirely consistent among approaches, 

taken together the results still support PBDEs’ adverse role in the development of reading 

skills. Our current findings add to the growing evidence from epidemiological studies that 

have examined prenatal PBDEs in isolation and reported adverse neurodevelopment and 

behavior in children, including decrements in FSIQ, more hyperactivity and attention 

problems, and impairments in executive function (Lam et al., 2017; Vuong et al., 2018). 

Previously only the HOME Study investigated associations between PBDEs and reading 

ability in children, with reports of poorer reading scores with higher prenatal and postnatal 

concentrations (Liang et al., 2019; Zhang et al., 2017). While exact mechanisms of action 

for PBDE neurotoxicity remain unclear, toxicological studies have shown PBDEs disrupt 

thyroid hormones through competitive binding to transthyretin or directly interacting with 

thyroid hormone receptors, induce neuronal cell death via oxidative stress, disrupt signal 

transduction, interfere with calcium signaling and homeostasis, and decrease neuron and 

oligodendrocyte differentiation (Costa et al., 2014; Ibhazehiebo et al., 2011; Meerts et al., 

2000; Richardson et al., 2008).

A small number of studies using conventional single pollutant models have examined PFAS 

and reading skills. While the C8 Health Project reported null associations between PFOA 

and reading skills at ages 6–12 years (Stein et al., 2013), we observed positive associations 

between prenatal and postnatal PFOA, PFOS, and PFNA concentrations and reading skills in 
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children at ages 5 and 8 years (Zhang et al., 2018). Our study showed that after considering 

joint exposures to several POPs, prenatal PFAS were consistently associated with improved 

reading abilities in children at age 8 years across all the applied statistical approaches. Our 

findings are biologically plausible given PFAS’ classification as peroxisome proliferator-

activated receptor-gamma (PPARγ) agonists (Vanden Heuvel et al., 2006). PFAS may have 

neuroprotective effects that might alleviate inflammatory responses incurred from chronic 

and acute neurological insults (Kapadia et al., 2008). Moreover, protective associations have 

been reported in other studies, including the C8 Health Project, the Danish National Birth 

Cohort, the Taiwan Birth Panel Study, and Taiwan Early-Life Cohort, with regard to prenatal 

exposures and various neurodevelopmental domains (Fei and Olsen, 2011; Lien et al., 2016; 

Stein et al., 2013).

We also identified PCBs to be associated with better reading abilities, with fairly consistent 

results among mixture methods. The HOME Study previously reported similar findings 

utilizing LASSO (Zhang et al., 2017). However, Stewart et al. (2003) observed a significant 

inverse relationship between prenatal PCBs and word knowledge scores in children at ages 

38 and 54 months. While PCB neurotoxicity has been reported in several studies in the 

Faroe Islands, Germany, Holland, Taiwan, and the United States (Schantz et al., 2003), 

studies from the Netherlands reported prenatal OH-PCBs were associated with optimal 

mental development and neurological functioning (Berghuis et al., 2014; Ruel et al., 2019). 

The positive associations observed in the present study may be due to residual confounding. 

The primary route of human exposure to PCBs is through ingestion of contaminated fish 

(Braun et al., 2014). Fish consumption can greatly benefit fetal neurodevelopment as it is the 

primary source of n-3 long-chain polyunsaturated fatty acid (PUFA) (Conway et al., 2018). 

Higher maternal n-3 PUFA status is associated with better language development in 

offspring (Strain et al., 2012; Strain et al., 2015). Further, PCB concentrations in the HOME 

Study are positively correlated with fish consumption. Although we adjusted for fish 

consumption during pregnancy, we do not have direct measurements of PUFA from HOME 

Study mothers.

The inconsistencies among studies examining POP mixtures on neurodevelopment may be 

attributed in part to the differences in applied statistical approaches. Our study is among the 

most comprehensive to date, utilizing six multipollutant models, including frequentist 

shrinkage, variable selection, dimension reduction, and Bayesian methodologies. These 

models do overlap with some approaches that were previously used, such as LASSO, ENET, 

and a variant of SPCA, but not all. Secondly, using multi-pollutant models does not assume 

that humans are exposed to chemicals in isolation. However, the selection of chemicals 

included in mixture analyses differed among studies. We examined 17 POPs from four 

chemical classes, whereas the range of POPs and chemical classes that were examined in 

other mixture studies were between 8-52 POPs and 2-6 chemical classes. Concentrations of 

chemicals also varied between studies. For example, in the HOME Study, BDE-47 had a 

median of 20.1 ng/g lipid in serum compared to 1.0 ng/g lipid in breastmilk in HUMIS 

(Lenters et al., 2019). Third, while all POP mixture studies investigated the impact on 

neurodevelopment, the domain itself differed. Aside from Zhang et al. (2017), the 

neurodevelopmental outcomes studied included autistic behaviors, behavioral problems, and 

ADHD. Further, age of neurodevelopmental assessment between studies differed. Last, 
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covariate adjustment varied between studies, which depended on availability of covariate 

measurements as well as the population characteristics.

Our study had several strengths, including the prospective design and availability of many 

important confounders. We were able to adjust for maternal IQ, maternal blood lead level, 

serum cotinine, maternal depression, and sociodemographic factors, such as education, 

income, and marital status. We used of six statistical methods to examine POP mixtures. 

Currently there is no quintessential statistical method to examine chemical mixtures, 

because each methodology has its unique set of advantages and disadvantages. As such, we 

decided to examine POP mixtures on neurodevelopment employing approaches that allowed 

for chemical variable selection, interactions, and cumulative effect. The LASSO and ENET 

had the strength of dimension reduction to selected chemicals and the SPCA reduced the 

dimension to a few components that can be integrated in multiple linear models. The BKMR 

and BART models provided non-linear exposure-response pattern visualization, and the 

BKMR seemed more capable for bivariate interaction analysis. Both WQS and BKMR 

provided an assessment of cumulative effect in a comprehensible way for interpretation. 

With the understanding that no model itself is deemed superior, we would rather examine 

whether consistency in the identification of chemicals is present in our research question. 

Our overall conclusions are based on findings that were consistent across all our applied 

statistical approaches.

Our study had several limitations. Residual confounding cannot be excluded as with any 

epidemiological study. We do not have information on other factors that may have affected 

our exposures and outcome, such as measured maternal PUFA levels and school settings. 

Second, study attrition may have resulted in selection bias. Although, for the most part we 

did not observe significant differences in demographics and POP serum concentrations 

between children followed at age 8 years and those who were not (Table 7). Significantly 

higher concentrations of prenatal PFHxS was noted among mother-child dyads who were 

excluded (2.3±3.4 ng/mL) from the analysis due to missing information compared to those 

included (1.7±1.4 ng/mL). Mothers excluded also had higher educational attainment and IQ 

compared to those included. Third, our modest sample size precluded us from examining 

potential interactions by sex using LASSO and ENET. Fourth, there was high correlation 

within PBDE congeners and within PCB congeners. Therefore, it is difficult to tease out 

associations of one congener from others in the same chemical group despite utilizing a 

mixture analysis. Fourth, when applying for these statistical methods, we were limited by 

the model assumptions and method constraints. LASSO and ENET might select chemicals 

without sufficient biological underpinnings, and SPCA was not a supervised approach and 

the relevance with the outcome might be compromised. These methods might be used as 

initial screening of chemicals in linear models, but the biological relevance and cumulative 

effects need to be confirmed by other models. The WQS had to split positive and negative 

models to assure positive weights, reducing its ability to estimate overall effect. BKMR 

might perform better with reduced chemical variables as constructing high-dimensional 

dose-response space was more complicated with a large amount of exposures. BART 

seemed to be stringent in selecting chemical variables and the interpretation of results was 

not straightforward for cumulative effects. More detailed summary of these method strengths 

and limitations can be found in a comprehensive review article (Lazarevic et al., 2019).
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5. Conclusions

Analyses from six statistical methods examining chemical mixtures consistently identified 

inverse associations between maternal PBDE serum concentrations and children’s reading 

skills in the HOME Study. In contrast, we observed positive associations between PCBs and 

PFAS and reading skills. Future studies examining POP mixtures on neurodevelopment 

should incorporate analytical approaches that are able to assess nonlinear dose response and 

effect measure modification by sex if they are adequately powered. Studies examining 

repeated postnatal exposures to POP mixtures are warranted to determine whether there are 

sensitive windows of susceptibility during childhood using methods like lagged kernel 

machine regression (LKMR) (Liu et al., 2018). For statistical method comparisons, we 

believe these methods are complementary rather than equal in utilization. LASSO and 

ENET can be used for screening chemicals from a large chemical mixture, WQS and BKMR 

can be used for cumulative effect estimation, and SPCA can be supplemented by a 

supervised approach like sparse partial least square regression method (Chun and Keles, 

2010).
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Figure 1. 
Bivariate exposure-response function showing a single predictor (Exposure 1) while the 

second predictor was fixed at 10th, 50th, or 90th percentile
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Figure 2. 
Overall risk summary for Reading Composite score of all 7 predictors identified in BKMR 

analysis (BDE-100, BDE-153, CB-118, CB-153, CB-180, PFOA, and PFNA) at a particular 

percentile (from 25th to 75th at an interval of 5th) compared with a reference while all 

predictors are at 50th percentile
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Table 1.

Statistical mixture methods addressing research questions

Research questions LASSO and ENET SPCA WQS BKMR BART

Chemical variable selection X X (PCs) X (Weight) X (PIP) X (threshold)

Interactions X X X

Cumulative impact X X X X

Nonlinear dose response X X X

Abbreviations: PCs, Principal Components; PIP, Posterior Inclusion Probability
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Table 4.

Weighted quantile Sum (WQS) regression analysis results for maternal POP serum concentrations and child 

reading skills at age 8 years

Chemical Inverse association with WQS Positive association with WQS

WQS unit −2.63 (−5.41, 0.15) 5.49 (2.04, 8.94)

Average weight Average weight

Log10 PBDEs

 BDE-28 0.157 0.000

 BDE-47 0.033 0.000

 BDE-99 0.078 0.001

 BDE-100 0.354 0.000

 BDE-153 0.102 0.003

Log10 PCBs

 CB-74 0.017 0.009

 CB-99 0.022 0.011

 CB-118 0.002 0.132

 CB-138_158 0.007 0.013

 CB-153 0.000 0.098

 CB-180 0.006 0.214

Log10 P,P’-DDE 0.039 0.006

Log10 P,P’-DDT 0.139 0.005

Log10 PFAS

 PFOS 0.000 0.121

 PFOA 0.007 0.035

 PFHxS 0.035 0.062

 PFNA 0.000 0.290

Adjusted for maternal age, race, education, household income, marital status, depression, serum cotinine, blood lead, fish consumption, IQ, and 
child sex and HOME score
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Table 5.

Bayesian Kernel Machine Regression (BKMR) variable selection results of maternal POP serum 

concentrations and child reading skills at age 8 years

Chemical
Posterior Inclusion Probabilities (PIP) 

Component-wise variable selection
a

Posterior Inclusion Probabilities Hierarchical variable selection

Group PIP Conditional PIP

Log10 PBDEs

 BDE-28 0.330 0.845 0.111

 BDE-47 0.368 0.845 0.125

 BDE-99 0.316 0.845 0.068

 BDE-100 0.360 0.845 0.212

 BDE-153 0.504 0.845 0.485

Log10 PCBs

 CB-74 0.253 0.668 0.194

 CB-99 0.253 0.668 0.092

 CB-118 0.422 0.668 0.272

 CB-138_158 0.221 0.668 0.065

 CB-153 0.375 0.668 0.207

 CB-180 0.331 0.668 0.170

Log10 P,P’-DDE 0.216 0.488 0.473

Log10 P,P’-DDT 0.255 0.488 0.527

Log10 PFAS

 PFOS 0.311 0.929 0.051

 PFOA 0.543 0.929 0.394

 PFHxS 0.172 0.929 0.023

 PFNA 0.679 0.929 0.532

Adjusted for maternal age, race, education, household income, marital status, depression, serum cotinine, blood lead, fish consumption, IQ, and 
child sex and HOME score

a
Shaded PIPs indicate chemicals included in the reduced BKMR model
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Table 6.

Summary of the associations identified from different methods

Chemical LASSO Elastic Net SPCA WQS BKMR BART

Log10 PBDEs

 BDE-28 ↓ ↓ ↓

 BDE-47

 BDE-99 ↓

 BDE-100 ↓ ↓ ↓ ↓

 BDE-153 ↓ ↓ ↓ ↓ ↓ ↓

Log10 PCBs

 CB-74

 CB-99

 CB-118 ↑ ↑ ↑ ↑ ↑ ↑

 CB-138_158

 CB-153 ↑ ↑ ↑

 CB-180 ↑ ↑ ↑ ↑ ↑

Log10 P,P’-DDE

Log10 P,P’-DDT 1

Log10PFAS

 PFOS ↑ ↑ ↑

 PFOA ↑ ↑ ↑ ↑ ↑

 PFHxS

 PFNA ↑ ↑ ↑ ↑ ↑ ↑
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Table 7.

Comparing maternal and child characteristics of participants included (n=161) and excluded (n=229) in the 

examination of prenatal POPs and reading ability at age 8 years, HOME Study
a

Included Excluded

n (%) n (%)

Maternal age, years

 <25 41 (25.5) 55 (24.1)

 25-34 97 (60.3) 134 (58.8)

 >35 23 (14.3) 39 (17.1)

Race/ethnicity

 Non-Hispanic White 96 (59.6) 141 (63.2)

 Non-Hispanic Black and Others 65 (40.4) 82 (36.8)

Education

 High school or less 41 (25.5) 59 (26.5)

 Some college or 2 year degree 46 (28.6) 47 (21.1)

 Bachelor’s 51 (31.7) 59 (26.5)

 Graduate or professional 23 (14.3) 58 (26.0)

Parity

 Nulliparous 69 (42.9) 102 (45.1)

 Primiparous 47 (29.2) 77 (34.1)

 Multiparous 45 (28.0) 47 (20.8)

Mode of Delivery

 Vaginal 121 (75.2) 157 (68.9)

 Cesarean 40 (24.8) 71 (31.1)

Breastfeeding current child

 No 29 (18.0) 42 (19.8)

 Yes 132 (82.0) 170 (80.2)

Maternal Vitamin Use

 Daily 129 (80.1) 165 (74.0)

 <Daily 22 (13.7) 41 (18.4)

 Never 10 (6.2) 17 (7.6)

Maternal alcohol consumption

 Never 91 (56.5) 125 (56.1)

 <1 per month 47 (29.2) 68 (30.5)

 >1 per month 23 (14.3) 30 (13.5)

Maternal Smoking

 None 140 (87.0) 181 (79.4)

 ETS 12 (7.5) 23 (10.1)

 Active 9 (5.6) 24 (10.5)

Maternal BMI

 Underweight/Normal 61 (37.9) 104 (45.6)
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Included Excluded

n (%) n (%)

 Overweight 59 (36.7) 69 (30.3)

 Obese 41 (25.5) 55 (24.1)

Child Sex

 Male 68 (42.2) 114 (49.8)

 Female 93 (57.8) 115 (50.2)

Marital Status

 Married 119 (73.9) 185 (83.0)

 Not Married 42 (26.1) 38 (17.0)

Mean (SD) Mean (SD)

Maternal Blood

 Lead
b 0.7 (0.3) 0.8 (0.4)

Maternal Serum

 DDT 3.1 (3.9) 4.0 (8.1)

 DDE 95.8 (188.3) 118.9 (207.4)

 BDE-28 1.7 (2.0) 1.7 (3.0)

 BDE-47 35.2 (49.3) 38.8 (103.4)

 BDE-99 8.4 (11.9) 11.3 (37.6)

 BDE-100 7.3 (11.6) 8.5 (18.0)

 BDE-153 10.6 (19.9) 11.4 (19.2)

 CB-74 3.2 (1.9) 3.5 (2.0)

 CB-99 3.3 (2.3) 3.3 (2.4)

 CB-118 6.0 (5.3) 6.5 (5.9)

 CB-138/158 9.7 (8.2) 10.5 (8.9)

 CB-153 13.5 (13.0) 14.9 (13.6)

 CB-180 8.4 (9.9) 8.9 (7.7)

 ΣPCBs 53.4 (45.1) 52.6 (39.4)

 PFOA 6.1 (3.8) 6.2 (3.7)

 PFOS 13.9 (7.9) 15.0 (7.4)

 PFHxS 1.7 (1.4) 2.3 (3.4)

 PFNA 1.0 (0.4) 1.0 (0.4)

 Maternal IQ
b 105.1 (14.7) 108.4 (14.3)

Units: lead (μg/dL); OCPs, PBDEs and PCBs (ng/g lipid); PFAS (ng/mL)

a
Percentages may not add to 100% due to rounding.

b
p < 0.05
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