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It has been hypothesized that the central nervous system simplifies the pro-
duction of movement by limiting motor commands to a small set of modules
known as muscle synergies. Recently, investigators have questioned whether
a low-dimensional controller can produce the rich and flexible behaviours
seen in everyday movements. To study this issue, we implemented muscle
synergies in a biomechanically realistic model of the human upper extremity
and performed computational experiments to determine whether synergies
introduced task performance deficits, facilitated the learning of movements,
and generalized to different movements. We derived sets of synergies from
the muscle excitations our dynamic optimizations computed for a nominal
task (reaching in a plane). Then we compared the performance and learning
rates of a controller that activated all muscles independently to controllers
that activated the synergies derived from the nominal reaching task. We
found that a controller based on synergies had errors within 1 cm of a
full-dimensional controller and achieved faster learning rates (as estimated
from computational time to converge). The synergy-based controllers
could also accomplish new tasks—such as reaching to targets on a higher
or lower plane, and starting from alternative initial poses—with average
errors similar to a full-dimensional controller.
1. Introduction
Every movement we make, from picking up a glass of water to opening a door,
requires the control of a large number of muscles, which is complex due to non-
linearities and redundancies in the musculoskeletal system. It has been
hypothesized that the central nervous system (CNS) uses modularity to sim-
plify the control of our high-dimensional musculoskeletal system, limiting
motor commands to a small set of modules known as muscle synergies [1]. A
muscle synergy is a group of muscles that have a fixed ratio of excitations. Evi-
dence from experiments with lower vertebrates, cats, and monkeys suggests
that muscle synergies are encoded in the spinal circuitry [2–4]. Previous
investigators have also shown that the muscle activity measured from electro-
myography (EMG) can be reconstructed accurately from a linear combination
of a small number of muscle synergies for a variety of tasks, including walking
[5,6] and reaching [7,8]. However, other studies have presented evidence that
synergies may be a by-product of task and performance constraints [9–11]. A
better understanding of the advantages and limitations of muscle synergies
may help us evaluate their evolutionary role across different species [12] as
well as their role in motor development and learning [13].

More evidence is needed to test the hypothesis that the CNS uses muscle
synergies to simplify control, particularly for movements of the upper extre-
mity. Several investigators have argued for the need to assess muscle
synergies based on task achievement rather than on their ability to reconstruct
EMG, because small errors in muscle excitations could cause large errors in task
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performance [10,14,15]. In simulation studies, Berniker et al.
[16] and Kargo et al. [17] showed that in the movement of
the frog hindlimb, a low-dimensional controller implemented
with muscle synergies causes negligible performance degra-
dation. In another simulation study, Meyer et al. [18]
showed that muscle synergy controls result in more accurate
walking kinematic and kinetic predictions compared to inde-
pendent muscle control. By contrast, for the upper extremity,
previous computational work indicates that muscle synergies
can introduce substantial aiming errors and limitations in
terms of endpoint stiffness and energy consumption during
isometric tasks [10,15]. However, this assessment was made
with simple biomechanical models with little redundancy,
where any dimensionality reduction is likely to introduce
substantial errors. For instance, in de Rugy et al. [10], syner-
gies introduce larger aiming errors in their simplified wrist
model compared to their complex elbow model.

Evidence that modularity aids motor learning could pro-
vide additional support for the muscle synergy hypothesis.
For example, recent experiments with rats that underwent
spinal transections provides evidence that synergies may be
formed early postnatally, and the authors suggest that these
synergies could be evolutionarily advantageous by simplify-
ing skill acquisition through adulthood [19]. Muscle
synergies might speed the learning process by restricting
the size of the action space (i.e. the space of possible muscle
excitation patterns) [20]. On the other hand, it is possible
that a large action space could facilitate skill acquisition as
it would provide an abundance of ways to produce the
desired behaviour [21]. In Berger et al. [22], after a virtual
tendon rearrangement surgery, subjects had difficulty adapt-
ing to perturbations that were incompatible with synergies
identified pre-virtual-surgery, whereas they quickly adapted
to perturbations compatible with the synergies. More infor-
mation about the role of motor modularity in learning new
or more complex tasks is needed.

An additional compelling case for the synergy hypothesis
would be if a few synergies could generate a wide variety of
behaviours. There is some evidence for the generalizability of
synergies from experiments in the frog hindlimb during
jumping, swimming, and walking movements [1]. Research-
ers have also demonstrated that the synergies computed
from EMG measured in one task can reconstruct EMG
measured for other tasks, including postural perturbations
in cats [23] and humans [24,25], and isometric force gener-
ation in humans [26]. Similarly, it has been shown that only
six synergies are necessary to reconstruct EMG accurately
for planar reaching movements with different directions
and speeds [7], and through visuomotor adaptations [27].
These studies provide promising evidence for the generaliz-
ability of synergies, but as discussed above, even small
errors in muscle excitations could significantly degrade task
performance. In simulation studies, researchers have shown
that synergies computed for one walking task facilitate the
generation of walking dynamics at different speeds [18] and
body weights [28], but it is not known if these results
extend to the upper extremity and non-periodic tasks. Giszter
suggests that a possible hybrid control architecture, where the
CNS has access to both synergies and the control of individ-
ual muscles, could potentially avoid the limitations of a
reduced control set, while maintaining its advantages [29].

Computational models can help reveal the interplay
between synergies and task space errors, motor learning
and generalization, allowing us to quantitatively assess
these debated relationships. While computational studies
have begun to unravel these relationships, previous models
have often been simplified due to the challenges of modelling
complex musculoskeletal structures and synthesizing realistic
movements. Detailed models of the upper extremity are
available [30], along with computational models that syn-
thesize kinematics instead of track experimental data. These
computational models are being used to study cause–effect
relationships between muscular deficits and movement
abnormalities and to test hypotheses in motor neuroscience
[31–33].

We implemented muscle synergies in a biomechanically
realistic upper extremity model [30] and used optimal control
to synthesize reaching movements to a specified target. We
focus on point-to-point movements because many voluntary
upper extremity movements consist of moving from one pose
to another, and being able to hold one or more joints in a
static pose [34]. We performed computational experiments to
determine whether a modular architecture based on muscle
synergies introduces task performance deficits, as defined by
a cost term that incorporates target accuracy and muscle
effort. We examined the rate the optimization converged to a
set performance threshold for models with varying numbers
of synergies to assess whether synergies facilitate motor skill
acquisition. We also tested whether synergies generated from
one set of reaching tasks generalized to new tasks, such as
reaching from alternative starting postures or while holding a
weight. Finally, we implemented a hybrid controller that
included both synergy and individual muscle control to deter-
mine whether this architecture improved generalizability to
new tasks without sacrificing convergence rates. Overall, our
aim was to assess how muscle synergies influence the ability
to acquire and generate a repertoire of movements.
2. Methods
2.1. Modelling and simulation
We used an upper extremity biomechanical model developed by
Saul et al. [30] (available at https://simtk.org/projects/upex
dyn). It consists of 47 Hill-type muscle–tendon actuators [35]
with parameters and paths derived from experimental and ana-
tomical studies. The skeletal model has three degrees-of-freedom
for the shoulder, one degree-of-freedom for the elbow, and one
degree-of-freedom for the forearm to allow for pronation and
supination. We removed the wrist degree-of-freedom. The bio-
mechanical modelling and simulation was performed with
OpenSim 3.3 [36] using a semi-explicit Euler integrator with an
accuracy of 10–2.

2.2. Trajectory optimization
We used a numerical optimal control method to synthesize
motion [37]. We optimized for muscle excitations that minimized
the following cost function:

F ¼ w1khN � hdNk2 þ w2

XN

i¼1

kaik2 þ w3

XN

i¼1

l(qi)þ w4k _qNk2

þ w5r(qN): (2:1)

The terms hN and hdN denote the actual and desired position of
the centre of the hand at the last timestep N of the trajectory, ai
denotes the vector of muscle activations at timestep i, l(qi) is a
quadratic penalty on joint limit violations given pose qi, _qN
denotes the joint velocities at the last timestep, ρ(qN) is a
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Figure 1. Reaching for a target on a horizontal plane. We solved trajectory optim-
ization problems to reach random targets (grey sphere) on a horizontal plane.
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quadratic term to encourage pronation of the forearm at the last
timestep (as is typical in reaching movements to a target), and
|| · || denotes the 2-norm. The muscle activations are related to
the muscle excitations through a first-order differential equation
[35]. We empirically tuned the weights w1, w2, w3, w4 and w5 to 5,
1
N × 10−3, 10−5, 0.15 and 0.5. We refer to w1khN � hdNk2 and
w2

PN
i¼1 kaik2 as the task and effort terms, respectively. The cost

function encourages the hand to be as close as possible to a
target with a small final velocity and the forearm in pronation,
while minimizing muscle activations and joint limit violations
throughout the movement. We specified the movement duration
T and the number of timesteps N in the trajectory was chosen to
achieve the desired integration accuracy.

We optimized for the muscle excitations to produce move-
ment with the covariance matrix adaption evolution strategy
(CMA-ES) [38]. The free variables were the values of the
muscle excitations at every 0.1 s interval in the movement. The
excitations were held constant for the 0.1 s interval. The CMA-
ES algorithm used a Gaussian distribution over the free variables
to sample a number of possible control solutions (referred to as
the population size). Given each sample of control solutions
(i.e. muscle excitations), we used a forward simulation to
obtain a trajectory which we evaluated according to the cost
function described above. A new Gaussian distribution was
then formed as a function of a subset of the samples with the
lowest costs. The CMA-ES algorithm iterated through this pro-
cess to steer the distribution towards a low-cost region. The
number of iterations and the population size in CMA-ES deter-
mined the exhaustiveness of the search; we set both to 100
based on empirical testing. We tested a more exhaustive search
by doubling the population size and the number of iterations
to ensure that it yielded little change to the optimized solutions.
We initialized the algorithm with a Gaussian distribution with
mean 0.1 and a diagonal covariance matrix with variance 0.09
in all dimensions. We ran our parallelized code on two Intel
Xeon CPU E5-4640 processors. The optimization for a single
movement took about 6 hours of computation time. In Al
Borno et al. [31], we show that this method can synthesize move-
ments that replicate kinematic features reported in motor control
studies and in experimental three-dimensional reaching data.

2.3. Computing synergies
We incorporated time-invariant muscle synergies in our compu-
tational model. According to the time-invariant formulation, the
muscle excitations e can be decomposed as linear combinations
of synergies wi

e(t) ¼
XK

i¼1

ci(t)wi, (2:2)

where ci denote the combination coefficients, t denotes time and
K denotes the number of synergies. When performing trajectory
optimization (§2.2) with synergies, the free variables were the
combination coefficients ci instead of the muscle excitations.

We computed muscle synergies when reaching to a target on
a horizontal plane from a chosen initial starting pose (figure 1).
The plane was placed approximately 20 cm below the top of
the clavicle. We randomly chose a target position on the plane,
within a squared area 65 cm on a side and solved a trajectory
optimization problem to steer the hand as close as possible to
the target. We empirically found that 15 trajectory optimizations
with random targets was sufficient to cover the workspace (i.e.
the domain of possible targets). The muscle excitations were
stored in a matrix E ¼ [e1, . . . , eL], where L denotes the total
number of timesteps from all the synthesized trajectories. We
performed dimensionality reduction on E with principal com-
ponent analysis (PCA) to compute the muscle synergies. It has
been argued that non-negative matrix factorization (NNMF)
computes more physiologically realistic muscle synergies than
PCA because it does not allow negative components [39]. In
this work, we were mainly interested in studying the compu-
tational implications of motor modularity, which could be
implemented in different and currently unknown ways. For
this reason, we used PCA to compute the modules in our exper-
iments. We used NNMF to assess the sensitivity of our results to
the dimensionality reduction technique.
2.4. Evaluating synergies
We next solved trajectory optimization problems to reach new
random targets on the plane, except that we constrained the exci-
tations to be linear combinations of synergies by setting the free
variables in the optimization to be the synergy combination coef-
ficients, rather than individual muscle excitations. We evaluated
how well a task was achieved based on the final value of the cost
function in equation (2.1). In addition to the overall cost value,
we evaluated the performance of the full and low-dimensional
controllers in reaching the target (i.e. the Euclidean distance
between the final hand position and the target) and minimizing
muscle effort (i.e. the sum of muscle activations squared). We
chose every third number between 5 and 20 as the number of
synergies to study how performance varies with the amount of
dimensionality reduction.

We also investigated the potential consequences of muscle
synergies for motor skill acquisition by analysing how muscle
synergies impacted the time required to achieve a desired per-
formance level with trajectory optimization. Thus we assumed
that optimization time is correlated with motor skill acquisition
difficulty (i.e. how much practice is required to achieve a given
task). In particular, we compared the number of samples
required to achieve the desired performance because sample
evaluation was the most computationally expensive operation
in the optimization. We said that a desired performance had
been achieved when the value of the cost function for the current
optimization reached a threshold value, which we set to 0.1. At
each iteration in the trajectory optimization, we used the same
number of samples as the control dimension (e.g. with eight
synergies, we had eight samples). We tried using fewer samples
per iteration for the full-dimensional optimization (specifically,
20 instead of 47), but the optimization failed to converge to the
desired motor performance.

We then performed computational simulations to determine
whether the synergies computed in the reaching task above gen-
eralized to different tasks with performance comparable to the
full-dimensional optimization. First, we varied the height of the
plane by placing it 60 cm higher and 30 cm lower than its initial
position (figure 2). We also tested four different initial upper
extremity poses chosen to assess the spectrum from which syner-
gies can generalize (figure 2). We next increased the movement
speed by making the motion 1.5 times faster. Finally, we tested
adding a light (1.75 kg) and heavy (8.7 kg) weight to the hand
to model the effect of holding a load. Note that we did not
recompute the synergies, as these were fixed from the simulation
with the initial plane position and model pose (§2.3).



high plane low plane arm raised

shoulder flexed shoulder abducted elbow flexed

Figure 2. Varying target planes and initial model positions to test the generalizability of synergy-based controllers. We tested the controllers in tasks with a high
plane and low plane, with the same initial pose as in the nominal task. We also tested the controllers with varying initial poses, including with the arm raised,
shoulder flexed, shoulder abducted and elbow flexed. For the varying initial poses, the targets were in the same plane as in the nominal pose.
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2.5. Combining synergies and independent muscle
control

Finally, we evaluated a hybrid controller that combined synergies
with independent control of each muscle in the model. We
compared amodelwith a hybrid control architecture (i.e. 12 syner-
gies and independent muscle control for a total of 59 control
variables) to independent muscle control (i.e. the full-dimensional
systemwith 47 variables) and amodel with 12 synergies (and thus
12 control variables). We chose to have 12 synergies in our hybrid
architecture to balance between flexibility and learning speed. We
used the same number of synergies in the hybrid architecture as in
the synergies architecture to aid the comparison. The optimization
procedure followed the descriptions in §§2.2 and 2.3. We set the
initial variance in the optimization to 0.0025 for the independent
muscles and to 0.09 for the synergies. This means that the optim-
ization prioritized finding a control solution with muscle
synergies and started exploring using individual muscles as a
secondary step to improve control.

The advantage of the hybrid architecture can be observed
when optimizing for a movement outside the space where the
synergies are computed. To illustrate this case, we took the initial
position of the arm to be as in the experiment with the arm raised
(figure 2), while the synergies were computed with the arm in a
neutral position (figure 1). To determine the effect of the hybrid
architecture on convergence rates (and thus the potential effects
on skill acquisition), we also investigated the number of samples
required to achieve a desired motor performance (i.e. a cost func-
tion value less than 0.1) for the task of reaching to targets in the
same plane on which the synergies were created.
3. Results
3.1. Synergies do not degrade task performance
Twenty synergies were required to account for 88% of the var-
iance in 47 muscle excitation patterns for the reaching task in
a single horizontal plane (figure 3a). While five synergies
explained only 49% of the variance,with five ormore synergies,
the low-dimensional optimization achieved a performance
within 0.011 or 10% of the full-dimensional optimization for
new, random reaching targets in the same plane for which
synergies were extracted (figure 3b). Differences in the overall
cost function values of this order represented solutions that
are not easily visually distinguishable (see electronic sup-
plementary material, video 1) and are near the variation from
run-to-run due to the stochastic nature of the optimization. In
particular, over 10 runs reaching to the same target, there was
variability of the order of 5% of the total cost, 0.5 cm in the
final hand position, and of 10% in themovement effort (defined
as the sum of muscle activations squared).

To compare the task performance of the synergy-based
controllers to the full-dimensional controller, we set the popu-
lation size and the number of iterations in CMA-ES to 100 for
the synergies and we doubled the population size and the
number of iterations for the full-dimensional controller
(label ‘47E’ in figure 3b). On average, the final hand position
with five and eight synergies was 0.6 (1.0) cm and 0.2 (0.8) cm
further from the target, respectively, than the hand position
with the full-dimensional solution (we provide the standard
deviation in parentheses throughout the paper). While the
average error was low for the five-synergy solution, there
were instances where the five-synergy controller performed
poorly. For example, the target error for the worst run with
five synergies was 2.8 cm further away from the target than
the full-dimensional solution. With three synergies, the low-
dimensional optimization was on average 4.2 (4.7) cm further
away from the target than the full-dimensional optimization,
an order of magnitude worse than the five and eight synergy
solutions. The full-dimensional solution required on average
1.6 (0.3) and 1.3 (0.2) times more effort than the five and eight
synergies solutions, respectively. In fact, the low-dimensional
optimizations often achieved a lower cost function value
since the full-dimensional optimization was more prone to
fall in local minima. We found that the optimization tended
to converge to movements requiring more effort when more
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Figure 3. Synergies and task space performance. (a) Variance in muscle excitations explained versus the number of computed synergies. (b) Average cost (equation
(2.1)) for 10 random targets in the plane of figure 1 when the trajectory optimization was performed with increasing control dimensionality. The cost includes
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represent one standard deviation of the cost function value. We set the same population size and the number of iterations in the optimization for the different
controllers, except for 47E where we conducted a more exhaustive search by doubling the population size and the number of iterations.
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control variables were allowed. This local minimum explains
why the cost can increase with the number of control vari-
ables. When comparing the kinematics of the movements,
qualitatively, the synergies produced similar, but simplified
curves compared to the full-dimensional system (figure 4).
We show the movements being performed by the different
controllers in electronic supplementary material, video S2.

We also conducted a search with the full-dimensional
controller using the same population size and number of iter-
ations (100) as for the synergy-based controllers (label ‘47’ in
figure 3b). This less exhaustive search did not have a large
effect on performance. The cost function for the exhaustive
search was 0.016 (0.01) lower. On average, this caused the
final hand position to be 0.6 (0.4) cm closer to the target,
while requiring 16 (20)% less effort than the less exhaustive
optimization. The more exhaustive optimization required
25 h of computation on an Intel Xeon machine with 20
cores for a single movement (as opposed to 6 h) and yielded
relatively small improvements. This indicates that the par-
ameters for the full-dimensional optimization were
adequate to converge to good local minima.

3.2. Synergies facilitate motor learning
A controller with 8 or 20 synergies required about 20 and 14
times fewer samples, respectively, to converge to a cost value
of 0.1 or less, compared to the optimization with 47 muscles
(figure 5a). Note that even computing synergies without
dimensionality reduction (i.e. having 47 synergies) helped
motor learning as the control variables partially encoded
the solution, requiring approximately three times fewer
samples. The eight synergies optimization required about
18 iterations to achieve the same motor performance (evalu-
ated as the current optimization minimum) that the full-
dimensional optimization achieved at about 50 iterations,
while requiring fewer samples at each iteration (figure 5b).
Furthermore, the full-dimensional optimization converged
to a worse local minimum than the optimization with eight
synergies. The low-dimensional optimization achieved a
final hand position that was 0.21 cm closer to the target and
was 2.4 times less costly in terms of the sum of muscle acti-
vations squared. We also tested whether randomly
generated synergies would speed up learning. None of the
five randomly generated, low-dimensional controllers we
tested converged to the desired performance (see electronic
supplementary material, figure S2). This indicates that use
of a low-dimensional basis alone does not speed up learning.

3.3. Synergies generalize to new tasks
The optimizations with eight or more muscle synergies con-
verged to solutions that were similar in cost function value
(i.e. on average within 0.005 or better) to the full-dimensional
optimization for many, although not all, of the new tasks that
we simulated (figure 6). When the plane of targets was raised
60 cm higher, the final hand position with eight synergies was
within 1.4 (1.9) cm of the full-dimensional optimization and
had 23 (15)% times less effort (figure 6a). When the plane was
lowered 30 cm and for three of the alternative initial poses
(elbow flexed, shoulder flexed and shoulder abducted), all the
low-dimensional controllers (i.e. 5 or greater synergies) also
achieved an average performance within 0.005 (or better) of
the full-dimensional controller, which corresponds to an aver-
age difference of 0.36 (0.79) cm in the final hand positions and
of 28 (13)% in the total effort (figure 6a). While the differences
in the percentage of the total effortwere large, the effort required
for thesemovementswas relatively small; hence, the effort has a
small contribution to the overall cost function value. For
example, when reaching to the lower plane, the effort terms
accounted on average for only 20% of the overall cost. For the
initial pose with the arm raised (180 degrees shoulder flexion),
the controller needed at least 17 synergies to achieve a compar-
able (or better) performance to the full-dimensional controller
(figure 6b). Note that the initial pose for this task was quite
different from the initial pose where the synergies were com-
puted (figure 1). The model was able to execute the reaching
task at higher speed and with the 1.75 kg weight using low-
dimensional controllers with eight or more synergies (figure
6c). The low-dimensional solution with eight synergies was
on average 0.25 (0.9) cm closer to the target and requires 33
(9)% less total effort. The reaching task with the 8.7 kg weight
was a case where the task-specific synergies did not generalize
effectively (figure 6d), as the full-dimensional solution per-
formed substantially better on equation (2.1). In this case, the
full-dimensional optimization was on average 13.0 (7.7) cm
closer to the target than the solution with eight synergies. This
is due to the fact that the synergies did not produce sufficient
joint torques to hold and move the heavy object because the
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database of movements from which the synergies were
computed did not require large joint torques. We again verified
that our results were robust to more exhaustive optimizations
(i.e. doubling the population size and the number of iterations
in §2.2 yielded the same trend for the new tasks).
3.4. Synergies and independent muscle control
The synergy-only architecture had relatively low perform-
ance on the task that required reaching from an arm raised
position; however, a hybrid architecture with 12 synergies,
along with independent control of the model’s 47 muscles
achieved a lower cost than the full-dimensional optimization,
while still being nearly as sample-efficient as the synergy
solution. On average, the 12 synergies solution was 6.9
(2.5) cm further away from the target than the full-
dimensional solution, while the hybrid solution was 1.8 (2.5)
cm further away (figure 7a). On average over 10 runs, the
hybrid architecture achieved the desired motor performance
for the same-plane reaching task using 8.5 fewer samples
than the full-dimensional optimization, while the synergies
optimization used 20 times fewer samples (figure 7b).
4. Discussion
We developed a computational model of upper extremity
movement to study the muscle synergy hypothesis for
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voluntary movement generation. The upper extremity model
is more biomechanically realistic than previous work, but it is
also more complex to control due to its many muscles and
degrees-of-freedom. Our computational experiments indicate
that a low-dimensional controller based on muscle synergies
does not lead to a significant loss of performance, generates a
wide variety of behaviours, and supports the acquisition of
skills at a faster rate than a full-dimensional controller (up
to a 20-fold increase in some cases). A study indicating the
converse would pose a serious challenge for the synergy
hypothesis. Our results do not imply the existence of
synergies, but highlight and quantify their potential benefits.
Further speed-ups in motor learning could potentially be
achieved with the time-variant formulation of muscle syner-
gies by capturing the time dependence of muscle
activations [40], but one would also need to study its effects
on movement generalization. We also showed that muscle
synergies can be combined with the control of individual
muscles to maintain the ability to quickly acquire motor
skills, while being able to generalize to more novel tasks.

For our nominal reaching task, 20 synergies were needed to
explain 88% of the variance in the muscle excitations. By
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contrast, experiments with rhesus monkeys indicate that 10
synergies are sufficient to capture 95% of the variance in the
reaching EMG data [41]. In human reaching movements on a
plane, 4–5 time-varying synergies capture 73–82% of the var-
iance observed in experiments [42]; a larger number of time-
invariant synergies is expected to achieve the same variance
explained. In experimental studies, EMG is typically only
recorded from at most 19 muscles of the upper extremity due
to measurement difficulties. We thus expect a larger number
of synergies would be needed to explain most of the variance
with our simulations that used 47 muscles to control reaching.

Inouyue et al. [15] argue that muscle synergies can cause a
drastic reduction in task space performance, and thus per cent
variance explained may not be a good metric of synergy per-
formance. However, this prior analysis was performed with a
simplified biomechanical model, and the authors acknowledge
that ‘having many more muscles will naturally allow the
implementation of synergies without such a drastic reduction’.
This is the conclusion we have reached in our work. We did
not see a significant performance degradation when using
eight synergies that onlyexplained 62%of the variance.Another
difference that could explain the divergent results is that the
synergies in Inouyue et al. were hand-tuned (and possibly less
effective), while our synergies were obtained through optimiz-
ation. We have also shown that our synergy-based controller
often achieved better performance than the full-dimensional
optimization, which was more prone to fall in local minima.

The muscle synergies hypothesis is appealing in part
because it potentially simplifies the control and learning of
movements [43]. Loeb et al. [21] hypothesized that a large
action space could facilitate skill acquisition as it would pro-
vide an abundance of ways of producing the desired
behaviour. Our computational study does not support this
hypothesis as the large action space made learning more
costly by a numerical optimizer. This result is consistent
with the experiments by Berger et al. [22] that indicate that
it is more difficult (i.e. requires more trials and time) to
learn movements that are incompatible with existing exper-
imentally determined muscle synergies than to learn
movements that are consistent with measured synergies.
Hagio et al. [44] previously showed that modularity speeds
up motor adaptation to rotational perturbations in an iso-
metric force production task. We extend their result by
studying reaching movements and by studying the effects
of modularity on motor learning, not just adaptation.
Human motor learning can be framed in terms of optimiz-
ing a movement policy or reinforcement learning [45]. Our
evolutionary algorithm for trajectory optimization (§2.2)
shares similarities with reinforcement learning and can be
seen as a scalable alternative [46].Hence, the numberof samples
required to achieve a motor performance in our model may
provide a first-order assessment of the motor learning difficulty
of the task in humans. If future research shows that humans
learn in ways fundamentally different from our current
reinforcement learning models, then our assessment will need
to be re-evaluated. State-of-the-art deep reinforcement learning
approaches in motor control currently require a prohibitive
number of samples to learn new movements, with limited
fidelity [47]. It would be interesting to investigate whether
modular architectures can help scale these approaches from
torque-driven to muscle-based models to achieve greater
motion realism. Synergy-based control architectures may also
offer an alternative to recent work in computer graphics that
attempt to simplify the computational problem by learning
realistic torque-driven models instead of muscle-based models
directly [48].

There is growing evidence that synergies can generalize
across tasks [7,25–27], and our study provides further support.
We go beyond showing the ability of synergies to reconstruct
EMG across tasks and demonstrate that synergies from one
reaching task enable task performance in other reaching
taskswith accuracy equivalent to a full-dimensional controller.
Sohn & Ting [49] present evidence that generalizability does
not arise directly from musculoskeletal or optimality con-
straints and causes an increase in effort. We complement this
study by showing that synergies are generalizable for upper
extremity reaching tasks, although we did not see large cost
increases for our synergy solutions, likely becausewe included
an effort term for all of our optimizations. The generalization
tests designed in our study limit basis generation to a subset
of theworkspace (i.e. reaching to random targets on a horizon-
tal plane). In an organism, the optimal basis (as might be
discovered on evolutionary timescales) can likely only be
well identified from a richer dataset, involving a larger work-
space (i.e. given the common tasks that an organism must
perform). Nevertheless, our study suggests that synergies gen-
eralize well outside the workspace, which is valuable
independently of how the workspace is defined.

We determined the muscle synergies with PCA as we were
interested in analysing the computational implications of
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motor modularity without regard to the actual physiological
implementation (e.g. in the spinal circuitry [50] or in cortex
[51]), which is unknown. We observed a decrease in perform-
ance when performing the experiments with NNMF, using the
solver provided in Kim et al. [52]. For instance, the average
cost over five runs when reaching in the horizontal plane was
0.04 higher with NNMF. In task space, this difference amounts
to the hand being 2.6 cm further from the target with twice the
effort (as measured by the sum of muscle activations squared)
compared to the PCA solution. When reaching on the 60 cm
higher horizontal plane (outside the space where the synergies
were computed), the NNMF cost is 0.069 higher. This reduced
performancewithNNMF could be due to the fact that PCA gen-
eralizes better to data outside the subspace where
dimensionality reduction occurs [53]. The synergies determined
from NNMF are included in the electronic supplementary
material. Similarly to the results reported in d’Avella et al.
[7,42,54], the first synergy is related to elbow flexion, while
synergies 2–4 are related to elbow extension and shoulder
flexion.

There are several other modelling simplifications and
assumptions that may have impacted our study. First, we did
not model spinal circuitry feedback or individual motor units.
Second, choosing a different cost function or weights in our
cost function might lead to different solutions. However, we
chose a cost function andoptimization strategy thatwe have pre-
viously shown produces realistic movements with features
reported in motor studies [31]. Finally, since our trajectory opti-
mizer is stochastic, it is more likely to return a local minima than
the globalminimum. In our experiments, the performance of the
full-dimensional optimization was not always optimal (e.g. see
figure 6). The reason is that it is computationally difficult to
find the optimal solution with such a high-dimensional
system.We chose to terminate ouroptimizationswhen themaxi-
mum number of iterations was reached for all cases except the
learning experiments (wherewe stopped iteratingwhen a speci-
fied performance threshold was achieved). We tested stricter
convergence criteria and did not observemarkedly different sol-
utions. Our results in §2.4 indicated that, when employingmore
exhaustive optimizations, most of the improvements were in the
effort term (up to a 16 (20)% improvement in some cases). The
standard deviation in the effort term was large, but this is
partly due to the fact that this term can have a relatively small
contribution to the overall cost function (the optimization aims
to reduce the overall cost function value). The improvements
in the final hand positions were less than one centimetre.
These results indicate that our optimization parameters were
sufficient to achieve good local minima.

Our results in §3.1 indicate that we should expect variabil-
ity of the order of half a centimetre in the final hand position
and of 10% in the movement effort due to the stochastic
optimization. This also limits the resolution of our study: it
becomes difficult to assess the implications of synergies at
this magnitude. However, we have chosen to perform our
analysis on tasks and movements (i.e. three-dimensional
upper extremity reaching) where this magnitude is typically
not significant.

Wehave shown thatmodularity speedsmotor learningwith
our evolutionary optimization algorithm. There may exist other
(potentially unknown) algorithms where having independent
control of each muscle does not significantly impede motor
learning. This touches upon the age-old question of whether
intelligent behaviour arises because of a prior, possibly innate,
structure or because of general learning algorithms. Our results
indicate that a modular architecture as a prior structure for
reaching movements could improve motor learning, without
significantly degrading performance and generalizability.
Synergies may be favoured by Darwinian natural selection to
speed up both motor development and skill acquisition, a
hypothesis that is consistent with results in the lower limb
that suggest that synergies are conserved across individuals
with significantly different motor experiences and even across
species [12,13,19]. How this prior structure—if it exists—is
implemented remains an open question.
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