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A B S T R A C T

The seventh human coronavirus SARS-CoV2 belongs to the cluster of extremely pathogenic coronaviruses in-
cluding SARS-CoV and MERS-CoV, which can cause fatal lower respiratory tract infection. Likewise, SARS-CoV2
infection can be fatal as the disease advances to pneumonia, followed by acute respiratory distress syndrome
(ARDS). The development of lethal clinical symptons is associated with an exaggerated production of in-
flammatory cytokines, referred to as the cytokine storm, is a consequence of a hyperactivated immune response
aginst the infection. In this article, we discuss the pathogenic consequences of the cytokine storm and its re-
lationship with COVID-19 associated risk factors. The increased pro-inflammatory immune status in patients
with risk factors (diabetes, hypertension, cardiovascular disease, COPD) exacerbates the Cytokine-storm of
COVID-19 into a ‘Cytokine Super Cyclone’. We also evaluate the antiviral immune responses provided by BCG
vaccination and the potential role of ‘trained immunity’ in early protection against SARS-CoV2.

1. Introduction

Coronaviruses are positive-sense, enveloped RNA virus with a
genome of 26–32 Kb, and belong to the Coronaviridae family of viruses
capable of infecting both humans and animals [1]. Human Coronavirus
(HCoV) can be categorized into two groups, depending on their pa-
thogenic capacity; HCoV−OC43, HCoV-NL63, HCoV-229E and HCoV-
HKU are included in the low pathogenic hCoV group that causes upper
respiratory tract infection and cold-like symptoms, while severe acute
respiratory syndrome Coronavirus (SARS-CoV), Middle East respiratory
syndrome coronavirus (MERS-CoV) and the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV2) are highly pathogenic human

coronaviruses [2,3]. Unlike low pathogenic hCoV, the highly patho-
genic viruses produce severe disease and death, as a result of lower
respiratory tract infection leading to clinical pneumonia, acute lung
injury (ALI) and ARDS [4]. Also, SARS CoV2 showed ∼79.0 % genome
identity to SARS‐CoV and ∼50 % to MERS CoV [5]. Similar to MERS
and SARS CoV, bats are considered the natural host of SARS-CoV2. The
virus is then transmitted via intermediate host to human; the inter-
mediate host for MERS CoV, SARS CoV and SARS CoV2 are dromedary
camels, civets and pangolins respectively [6].

Viral entry into the host results in activation of innate immune
mechanisms, together with the synthesis and secretion of inflammatory
mediators. Interaction of specific viral components with pattern
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recognition receptors of the host immune system activates cellular
signalling pathways that culminate in the production of various cyto-
kines. These cytokines elicit host responses such as extravasation of
leukocytes and activation, proliferation and cell differentiation of
adaptive and innate responses [7,8]. Interleukin (IL)-1α/β, IL-18 and
IL-6, tumor necrosis factor (TNF)-α, Interferon (IFN)-α/β, Transforming
growth factor(TGF)-β are the major cytokines produced, while CCL-2/
monocyte chemoattractant protein (MCP)-1, MCP-3, CCL-3/Macro-
phage Inflammatory Protein (MIP-1-α), CCL-5 (Chemokine (C-C motif)
ligand 5)/RANTES (regulated on activation, normal T cell expressed
and secreted) and IFN-γ-inducible protein-10 (IP-10)/CXCL10 (C-X-C
motif chemokine 10) are the chemokines released during an influenza
virus-induced infection [9,10]. These cytokines exert host antiviral re-
sponses in different ways. IFN-α/β can inhibit viral replication, thus
inducing a potent antiviral state in the host [11], while TNF-α triggers
the immune cell localization at infection site and activation of caspases
to promote apoptosis [12]. IL-1 is a pleiotropic cytokine that enhances
inflammatory cell infiltration by increasing membrane permeability
through activation of mast cells and subsequent release of the vasoli-
lator histamine [13]. IL-6 mediates monocyte differentiation to mac-
rophages and enhances mononuclear cell infiltration to the inflamma-
tion loci [14]. Moreover, synergistically IL-6 and TGF-β induces
maturation of naive helper T cells (CD4+) to T Helper 17 (TH17) cells
which are potential effectors against pathogens. Interestingly, IL-6 also
hinders the Treg expansion by TGF-β [15,16]. Enhancement of type 1
immunity and activation of natural killer T cells (NKT) are some of the
additional biological actions of IL-18 during viral infection [17,18].

Although these cytokines are released as a component of the host
response to infection, chronic, exacerbated cytokine release, the cyto-
kine storm, adversely affects the host in both SARS and MERS infection,
leading to severe complications and multiple organ failure [19]. A si-
milar hypercytokinemia-cytokine storm also contributes to SARS-
CoV2/COVID-19 infection [20]. In this review we highlight the pa-
thogenesis of MERS CoV, SARS CoV and SARS CoV2, with a focus on the
role of cytokines in pathology and co-morbidities of COVID-19 infec-
tion.

2. Pathogenesis of human coronaviruses

2.1. SARS CoV

The epidemic outbreak of SARS-CoV in 2002–2003 had a fatality
ratio of 14%–15%, which was higher in an older age group (greater
than 50 %) and less than 1% in younger age group (WHO:https://www.
who.int/csr/sars/archive/2003_05_07a/en/). The reproductive
number, an indicator of the ability to spread the viral infection to others
was 3 (https://www.who.int/csr/sars/en/WHOconsensus.pdf?ua=1).
SARS-CoV infected patients had clinical features such as malaise, fever,
chills, cough and myalgia, along with laboratory findings of thrombo-
cytopenia, elevated concentration of enzymes like alanine amino-
transferase (ALT), lactate dehydrogenase (LDH) and creatine kinase
(CK) and lymphocytopenia [21]. Autopsy of lungs from patients who
died of SARS-CoV showed epithelial denudation, haemophagocytosis,
macrophage infiltrates in alveoli and interstitium of the lung [22].
Chronic obstructive pulmonary disease (COPD), cardiac disease, dia-
betes and cancer in patients infected with SARS CoV were associated
with adverse clinical results [23].

SARS CoV entry to the cells is mediated by ACE2 (Angiotensin
converting enzyme 2) receptor that is highly expressed in lung, kidney,
heart, liver and tongue. Viral Spike protein (S) binds to the ACE2 re-
ceptor, followed by viral fusion with the cell membrane, which involves
priming of the S protein by proteases on the cell surface, and culminates
in the entry and replication of the virus in the host cell cytoplasm [24].
It has been shown that ACE2 has protective role in ALI [25]. The ACE2
receptor plays a key role in renin-angiotensin system (RAS) that
maintains blood pressure and water electrolyte balance. Decreased

expression of ACE2 negatively affects the RAS system, leading to in-
creased microvascular permeability and inflammation [26]. ACE2 ex-
pression has also been found to be down regulated by SARS CoV in-
fection, which further augments the intensity of lung injury [27].
Moreover, increased viral load, excessive immune cell infiltration and
increased pro-inflammatory cytokine release, further exacerbate lung
injury in SARS, suggesting that both the cytokine storm and direct cy-
topathogenic effects of the virus contribute to the immunopathogensis
observed in SARS CoV infection [28].

Profiling of systemic cytokine levels in individuals suffering from
SARS-CoV disease showed elevated concentrations of T Helper 1 (TH1)
cytokines such as IFN-γ, IL-2 and IL-12. Additionally, cytokines that
promote inflammation like IL-6, IL-1, MCP-1, IP-10, CXCL9/MIG
(monokine induced by gamma interferon), IL-18, TGF-β and IL-8 were
also increased [29–33]. Interestingly, SARS patients showed no change
in blood IL-10 and IL-4 levels [33]. Increased amounts of MIG, MCP-1,
IP-10, IL‐6, IL‐8 and IL‐18 in blood correlated with disease severity in
SARS patients [30,31]. In bronchoalveolar lavage (BAL) fluid, cytokine
levels were also increased in patients with SARS infection. Higher
concentrations of MCP-1, TNF-α, IL-8, IL-6 and RANTES in BAL could
explain the clinical observation of alveolar infiltration of mononuclear
cells of SARS-CoV patients [34]. Furthermore, SARS CoV delayed the
induction of the IFN antiviral response and expression of interferon-
stimulated genes [35]; the delayed-type 1 interferon signalling, coupled
with increased secretion of pro-inflammatory mediators produced lung
immunopathology in SARS CoV infected mice [36].

2.2. MERS CoV

According to WHO, the Middle East respiratory syndrome (MERS)
was observed in 2494 individuals, with a 34.4 % case-fatality rate as of
November 2019. The R0 was estimated to be less than 1,indicating a
relatively low transmissibility of virus [37]. MERS was reported in 27
countries globally, with 50-59 year old men as the highest risk group
(WHO, 2019) (https://applications.emro.who.int/docs/EMRPUB-CSR-
241-2019-EN.pdf?ua=1&ua=1&ua=1&ua=1&ua=1&ua=1). Si-
milar to SARS-CoV, the early clinical indications of infection by MERS-
CoV included cough, dyspnea, fever, and myalgia, followed by the
development of pneumonia. In addition to symptoms associated with
the respiratory system, patients infected with MERS-CoV also experi-
enced diarrhea, vomiting, and abdominal pain. Interstitial infiltrates
were observed in chest radiography of MERS-CoV infected individuals,
while laboratory findings demonstrated increased concentrations of
LDH and aspartate aminotransferase (AST), low eosinophil and platelet
count and decreased albumin level [38].

Dipeptidyl peptidase 4 (DPP4 or CD26) is the functional receptor for
MERS-CoV. Compared to other coronavirus, MERS-CoV exhibits a
broad tropism because of the wide expression of DPP4 in different tis-
sues, including epithelial cells in the kidney, small intestine, alveoli,
prostate, liver, and activated T lymphocytes [39]. In lungs, DPP4 is
expressed in multinucleated epithelial cells, submucosal gland cells and
bronchial pneumocytes but not in upper airway epithelium [40]. Ad-
ditionally, MERS-CoV can infect monocyte-derived-dendritic cells and
macrophages when compared with SARS-CoV [28]. Ultra-structural
findings in MERS infected patients showed the presence of viral parti-
cles in pneumocytes, pulmonary and skeletal muscle macrophages and
renal proximal tubular epithelial cells [41]. Furthermore, up-regulation
of Smad7 and FGF2 (fibroblast growth factor 2) expression in kidney
and lung by MERS‐CoV resulted in cell death and tissue damage [42].
Infection of T cells of peripheral blood, spleen and tonsils with MERS
CoV resulted in activation of extrinsic and intrinsic apoptosis pathways
leading to cell death, thus supporting the observation of lymphopenia
in MERS infection [43]. Moreover, patients with co-morbidities such as
diabetes, cardiovascular diseases, end-stage renal disease, and hy-
pertension were more prone to fatal conditions [44].

Blood cytokine analysis performed in severely infected MERS
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individuals demonstrated a marked increase in concentration of IL-6,
IL-10, IL-15, IP-10, IL-17, TNF and IFN-γ /α2 in comparison to controls
[44,45]. Additionally, significantly increased mRNA expression of IL-8,
IL-12, IFN-γ, RANTES, IP-10, MCP-1 and MIP1-α were seen in human
macrophages infected by MERS-CoV [46], suggesting that these cyto-
kines are implicated in the infiltration of immune cell in lungs leading
to hyper inflammation and lung injury.

2.3. SARS CoV2/COVID 19

The first documented case of COVID19 was in December 2019 in
Wuhan China, (https://www.who.int/docs/default-source/
coronaviruse/situation-reports/20200121-sitrep-1-2019-ncov.pdf?
sfvrsn=20a99c10_4) and as of 22 June 2020, 8,860,331 individuals
were SARS-CoV-2 positive resulting in the death of 465,740 patients,
with 216 countries and regional territories affected globally. Thus
SARS-CoV-2 pandemic fit the very high-risk category of the earlier
epidemics caused by SAR-CoV and MERS-CoV (https://www.who.int/
docs/default-source/coronaviruse/situation-reports/20200622-covid-
19-sitrep-154.pdf?sfvrsn=d0249d8d_2). According to WHO, the esti-
mated R0 was 2–2.5, but a later report estimated the R0 as 3.28, sig-
nifying high transmission capacity of virus [47].

Initially, the majority of patients presented with clinical indications
like dry cough, myalgia, fever, fatigue, dyspnoea, headache, vomiting
and diarrhoea. At later stages, severely infected patients showed

clinical manifestations including pharyngeal pain, dizziness, abdominal
pain, and anorexia. Laboratory analysis of the patient samples revealed
leucopenia, lymphopenia, high pro-thrombin time, high levels of he-
patic enzymes like AST, LDH, increased bio-markers of inflammation
like erythrocyte sedimentation rate, serum C-reactive protein and fer-
ritin. Elderly people and those patients with underlying diseases like
COPD, hypertension, cardiovascular disease and diabetes belonged to
the high-risk group, where the disease could advance to fatal acute
respiratory distress syndrome (ARDS). Patients with COVID-19 pneu-
monia showed ground-glass opacity and segmental consolidation of
both lungs, shown as patchy areas in computer-assisted tomography
scan. Other major complications of SARS-Cov2 infection included
shock, arrhythmia, acute cardiac injury and secondary infection which
finally need assistance by mechanical ventilation [48,49].

Like SARSCoV, ACE2 is the primary cell entry receptor for SARS-
CoV2. Upon priming of Spike protein by the cellular protease TMPRSS2
(transmembrane protease serine 2), viral fusion with the cell membrane
is triggered [24]. Protein structural analysis demonstrated that the re-
ceptor binding domains (RBD) of S protein from SARSCoV2 and SARS
CoV showed 72 % amino acid sequence identity, indicating a higher
affinity of SARS-CoV2 to its receptor in comparison to SARS-CoV [50].
Furthermore, the furin-like cleavage site of SARS-CoV2 Spike protein
also contributed to priming, making the virus more contagious. Inter-
estingly this furin-like cleavage site was observed in human coronavirus
OC43 and MERS but not in SARS-CoV [51]. Infection with a cytopathic

Fig. 1. Venn diagram showing peripheral cytokine profile of SARS CoV, MERS CoV and SARS CoV2 infection. IL-6, IFN-γ and IP-10 showed significantly higher levels
in all three highly pathogenic hCoV infections. IL-8, MIG, IL-1, MCP-1 and IL-2 levels were altered in both SARS CoV and SARS CoV2 infected patients. TNF-α and IL-
10 levels were increased in SARS CoV2 and MERS. Cytokines and chemokines like IL-1RA, IL-7, IL-9, IL-2R, GCSF, GMCSF, PDGF, CXCL16, MIP2- α, MCP-2, VEGF,
bFGF, MIP1-α and MIP1-β cytokines were uniquely elevated in SARS CoV2 infection.
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virus like SARS-CoV-2 resulted in inflammasome formation and pyr-
optosis mediated by Caspase1 activation and associated inflammatory
response [52].

COVID-19 infected patients showed higher concentrations of per-
ipheral blood immune mediators including MIG, IL-6, CCL8 (MCP-2),
IL-9, IL-1β, MIP2-α (CXCL2), TNF-α, CXCL16, IL-2, IL-1RA(interleukin-
1 receptor antagonist), IL-7, MIP1-α, IP-10, IL-8, basic fibroblast growth
factor (bFGF), MCP-1, Granulocyte-colony stimulating factor (G-CSF/
GCSF), IFN-γ, GM-CSF(Granulocyte-macrophage colony-stimulating
factor), MIP1-β, PDGF(Platelet-derived growth factor), IL-10, and VEGF
(Vascular endothelial growth factor). IL-2, IL-6, IL-7, IP-10, IL-2R, IL-
10, TNF-α, MIP1-α, MCP-1 and GSCF levels positively correlated with
disease severity suggesting that hypercytokinemia can aggravate im-
munopathology and inflammation [48,53–55]

Only a few in vitro studies on COVID-19 and cytokine deregulation
are currently available; based on in vitro data, there is a significant
distinguishable pattern in the cytokine storm of COVID-19 with SARS-
CoV and MERS-CoV infection (Fig. 1). Only three cytokines viz., IL-6,
IP-10 and IFN-γ showed markedly elevated levels in all three highly
pathogenic hCoV infections. In SARS patients, the level of IP -10 cor-
related with disease severity [31], where IP-10 induction in lungs led to
immune cell infiltration and apoptosis causing acute lung injury in
SARS [30]. Moreover, increased levels of IP-10 were also associated
with disease progression and poor prognosis in MERS-CoV infection
[44]. Increased expression of MIG and IP-10, chemo attractants that
enlist activated T cells by chemokine receptor CXCR3 signalling was
observed in inflammation, specifically in activated bronchial epithe-
lium [56]. The SARS-CoV murine model showed up-regulation of IP-10,
MIG and its receptor in the lungs, implicating the CXCR3 cascade in the
development of ARDS in SARS CoV [57]. Enhanced CXCR3 signalling
was previously reported with aetiology of pulmonary fibrosis [58]. A
recent study on COVID-19 reported that elevated levels of nasophar-
yngeal IP-10 could be used as a biomarker for undiagnosed COVID-19
[59], and overall indicates the importance of IP-10 signalling in the
progression to pneumonia and ultimately, the fatality of COVID-19
patients. Recent ex vivo experiments conducted in human lung tissue
idenitifed high transmission and asymptomatic infection by SARS-
CoV2, and further demonstrated increased replication compared to
SARS-CoV, However, SARS-CoV2 did not induce significant levels of
IFN(type I, II, III), or pro-inflammatory mediators except IP-10 in
human lung tissues [60]. In another study, peripheral blood mono-
nuclear cells (PBMC) and BAL transcriptome sequencing of SARS-CoV-2
infected patients revealed enrichment of MCP-1, IP-10, MIP1-A, and
MIP-1B genes. Of note, SARS-CoV-2 also induced apoptosis and P53
signalling pathways, again implicating this laboratory finding of lym-
phopenia in COVID-19 patients [61].

Another major cytokine that mediates organ damage in cytokine
storm is IL-6. Excessive secretion of IL-6 results in activation of coa-
gulation pathway, conversion of naive T cells, increase in vascular
permeability and reduced cardiac function, contributing to the in-
creased disease severity [62,63]. SARS patients also showed increased
levels of IL-6 which correlated with disease progression [30]. Increased
levels of Th17 CD4 T cells seen in COVID-19 patients can be explained
by high levels of IL-6, which is implicated in T Helper 17 (TH17) cells
development [16,64]. Interestingly, spike protein of SARS CoV induced
activation of NF-κB signalling, resulting in IL-6 and TNF-α secretion in
murine macrophages [65]. Another study reported that inhibiting NF-
κB signalling was associated with decreased IL-6 levels and increased
animal survival in SARS [66]. These studies implicate IL-6 as a key
contributor to the patho-physiology of the cytokine-storm seen in both
SARS CoV infections. One mechanism proposed for decreased T cells in
COVID-19 infection implicated increased levels of IL-6 and increased
interaction between Fas and its ligand. Moreover, an increased lym-
phocyte count was observed in patients SARS CoV2 infection when
treated with tocilizumab, the IL-6 receptor antagonist [67,68]. Addi-
tional studies are required to understand the mechanisms of SARS Cov2

induced lymphopenia and other immunological features.
As depicted in Fig. 1, altered MCP-1, IL-2, MIG and IL-8 levels were

observed in both SARS CoV and SARS CoV2 infected patients. Thus, the
cytokine storm in SARS-CoV2 infection has been linked with both TH1
(mediated by IFN-γ, IP-10, IL-1 β, MCP-1, IL-2) and TH2 responses,
mediated by IL-10 production [48]; in SARS-CoV infection, no change
occurs in TH2 cytokines [33]. Compared to SARS-CoV, an increased
range of cytokines and chemokines are involved in the immune pa-
thology of COVID-19. Common cytokines increased in SARS-CoV2 and
MERS infection included IL-10, IP-10, IL-6, and TNF-α, indicating that
SARS-CoV2 displayed less similarity with MERS CoV than with SARS-
CoV. Based on these observations, it is reasonable to suggest that an
increased response of TH1 cytokines, TH2 cytokines and pro-in-
flammatory chemokines contributed to the immune pathology of
COVID-19 infection, in contrast to SARS which was predominantly
mediated by IFN-γ induced TH1 response [69]. Another study also
demonstrated that COVID-19 patients display defective interferon ac-
tivation and enhanced NFκB mediated TNF-α and IL-6 production [70].
Moreover, SARS CoV2 infection was also associated with defective IFN1
expression, as seen with SARS-COV. Blanco-Melo et al., using data from
ferret models, infected cell lines, primary bronchial cells and serum
cytokine profiling, demonstrated delayed IFN (type1 and 111) expres-
sion, along with increased levels of chemokines [55]. Single-cell se-
quencing (scRNA-seq) of COVID-19 patients showed impaired immune
response by activation of pro-inflammatory signalling pathways in lung
samples [71]. These findings suggest that the combined action of ex-
aggerated cytokine levels and defective antiviral response by inter-
ferons resulted in the deterioration of SARS-CoV2 infected patients.
Interferon therapy for COVID-19 patients has already been suggested
[72] and findings of a clinical trial with Interferon-α2b have shown
promising results [73]. Further studies will have to be performed to
reveal the actual immune mechanisms contributing to the cytokine
storm-induced hyper-inflammation during disease. Comparative ana-
lysis of SARS-CoV, MERS-CoV and SARS-CoV2 is summarised in
Table 1.

3. Relation of risk factors of COVID-19 and cytokine pattern

Like SARS and MERS, major co-morbidities related with COVID-19
patients include diabetes, hypertension, cardiovascular disease and
COPD which increase the mortality rate in COVID-19 patients [48].
Several possible mechanisms may explain why patients with these
diseases are more prone to COVID-19 mortality.

3.1. COPD and COVID-19

Although the occurrence of COPD in COVID-19 patients was re-
ported as 3.2 % [74], disease severity and mortality rate was markedly
higher (60 % and 63 % respectively [75],increasing the adverse effects
of COVID-19 by 5.9 fold [76], although this data needs to be stratified
based on cause and stages of COPD. Interestingly, current smokers tend
to develop more COVID-19 associated complications compared to non-
smokers; the collective frequency of smokers with COVID-19 is 9%
[75]. Chronic exposure to environmental pollution, smoking and other
irritants eventually result in chronic obstructive pulmonary disease
(COPD), the main features of which are inflammation of the lung par-
enchyma, obstruction in airflow, pulmonary emphysema and chronic
bronchitis [77]. Damage to epithelial cells resulted in the excessive
infiltration of monocytes, neutrophils, and cytotoxic T lymphocytes
(CD8+ T-cell) to peripheral airways and lung parenchyma, together
with the release of inflammatory mediators [78]. Release of these in-
flammatory mediators from airway inflammation to systemic circula-
tion further resulted in systemic inflammation and associated mani-
festations. A complex network of cytokines has been implicated in the
inflammatory process of COPD; prominent cytokines elevated in both
plasma and sputum samples of COPD patients were IL-18, VEGF, IL-6,
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IL-1β, TNF-α and IL8 [79–82]
Protein-Protein interaction (PPI) network analysis identified

CXCR4, TNF, CCL5, CCL2, IFN-γ, CXCL8, IL-6, IL-10, ICAM1, CXCL1 as
the major cytokine genes involved in high risk COPD group of COVID-
19 patients [83]. Additionally, the ACE2 receptor was upregulated in
the lower airway epithelium of smokers and COPD patients, perhaps
reflecting increased infectability of these patients [84]. Taken together,
the dysregulated immune function, including increased cytokine pro-
duction and subsequent inflammation in COPD, when superimposed on
SARS-CoV2 infection, further aggravated the course of disease in the
COPD risk group of COVID-19 patients.

3.2. Hypertension and COVID-19

Hypertension was shown to increase mortality in COVID-19 infected
hypertensive patients by 2.5 fold [85]. Triggers such as angiotensin II,
excessive salt in the diet etc., have been shown to affect immune cells in
the kidney, heart and blood vessels, culminating in vascular injury and
inflammation [86]. Several studies identified the role of IL-1β, IL-6, IL-
8, IL-17, IL-18, IL-23, IFN-γ, TNF-α and TGF-β in the inflammatory
pathogenesis of hypertension [87]. An increased concentration of IL-2,
IFN-γ, IL-8, IL-1α, MCP-1, VEGF, epidermal growth factor, and TNF-α
was observed in the serum of hypertensive patients [88]. Additionally,
IL-4 and IL-10 (anti-inflammatory cytokine) concentrations were no-
tably lower in hypertensive patients in comparison to control subjects,
suggesting a skewed TH1, TH2 and TH17 immune response, stemming
from hypertension [88,89]. As discussed earlier, COVID-19 patients
also displayed high levels of IL-1, MCP-1, IL-6, IL-2, TNF-α and IL-8,
suggesting an interrelated role between hypertension, inflammatory
mediator release and deterioration of COVID‐19 patients.

Moreover, the role of the RAS in pathology of hypertension is well
described and type 1 (AT1) angiotensin II (ANG II) receptor blockers
(ARBs) and angiotensin-converting enzyme (ACE) inhibitors are given
to hypertensive patients as first line therapies [90]. In addition to the
increased ACE2 expression, decreased viral clearance also contributes
to the intensified pathological scenario in COVID-19 infections [91].
Computational network analysis identified CXCL8, VEGFA, CCL2, IL-
10, IL-6, MMP-9, TNF, as key genes in hypertension high-risk COVID-19
patients [83]. Thus the low-grade chronic inflammation observed in
hypertensive patients facilitated the cytokine storm, culminating in
ARDS and death in COVID-19.

3.3. Cardiovascular disease and COVID-19

The death rate of COVID-19 patients with CVD was 10.5 % [92].

High blood pressure, hyperlipidemia, insulin resistance and other risk
factors activate complex inflammatory cascades leading to athero-
sclerosis. Chronic endothelial injury results in endothelial dysfunction
with augmented vascular permeability followed by extravasation of T
lymphocytes, monocytes and mononuclear leukocytes. This finally
leads to macrophage activation, foam cells formation and plaque de-
velopment [93,94]. Cytokines such as IL-1β, IL-6, PDGF, IL-8, IFN-γ,
TNF-α, and MCP-1, released from smooth muscle cells, epithelial cells
and immune cells of atherosclerotic plaques, modulated smooth muscle
cell activity and increased cell death [95,96]. High levels of IL-18, IL-
1β, TNF-α, IL-8, IFN-γ, IL-6, PDGF, and MCP-1 are known to modulate
inflammatory angiogenesis in cardiovascular disease [95], and more-
over, systemic levels of IL-6 and IL-18 are considered a predictor of
increased mortality in CVD patients [97–99]. Overall, the hyperin-
flammation observed in CVD likewise appears to negatively influence
the course of SARS-CoV2 infection in these patients.

3.4. Diabetes and COVID-19

Altered glucose homeostasis and immune imbalance contributes to
the increased susceptibility of diabetic patients to various microbial
pathogens [100]. SARS CoV2 infected patients with diabetes had a 2
times increased risk of disease and mortality, compared to individuals
without diabetes [101]. Hyper immune activation and increased pro-
inflammatory markers are associated with type2 diabetes (T2DM) and
its microvascular complications such as retinopathy, nephropathy etc
[102]. These inflammatory mediators alter glucose metabolism, insulin
resistance and insulin sensitivity, enhanced liver acute phase proteins
synthesis and secretion and other inflammatory markers [103]. TNF-α,
MCP-1, IL-6 and IL-1β are prevalent cytokines that participate in the
immune pathologic process of type 2 diabetes [104]. Additionally, le-
vels of IL-4, TNF-β, IL-7, GMCSF, IL-15, IFN- α/γ, IL-1α/β, TNF-α, IL-
12p70, MIP1-α, IL-17A, IL-6, IP-10, IL-10, MIP1-β, MCP-1, IL-8, IL-13
and IL-9 are increased in type 2 diabetic patients [105,106].

An immune-mediated inflammatory cascade is a crucial event in
type1 diabetes, which involves the activation and infiltration of T
lymphocytes, macrophages and other immune cells, as well as pro-
duction of inflammatory mediators in the pancreas [107]. Increased
levels of IL-1α, TNF-α, IL-23, IL-1β, IL-10, IL-17A, and IL-6 were seen in
type1 diabetic patients [108–110] and in a non-obese diabetic murine
model [111].

SARS CoV2 infection resulted in high levels of inflammatory cyto-
kines as described above, and contributed to the deterioration of
COVID‐19 patients with diabetes. Patients with type 1 or type 2 dia-
betes are treated with ARBs and ACE inhibitors, which may contribute

Table 1
Comparative analysis of SARS CoV2, MERS CoV2 and SARS CoV2.

SARS CoV MERS CoV SARS CoV2

Origin Bat Bat Bat
Intermediate Host Civet Camel Pangolin?
Receptor ACE2 DPP4 ACE2
Clinical manifestations Malaise, fever, cough, myalgia, Chills Fever, dyspnea, cough, myalgia,

diarrhoea, vomiting, and abdominal pain
Fever, dry cough, myalgia, fatigue, dyspnoea, headache,
vomiting and diarrhoea

Lung Pathology Epithelial denudation, haemophagocytosis,
macrophage infiltrates in alveoli and
interstitium of the lung

Interstitial infiltrates were observed in
chest radiography

Ground glass opacity and segmental consolidation of both
lungs seen as patches in chest CT scan.

Major Laboratory
Findings

Increased levels of ALT, CK and LDH
lymphocytopenia and thrombocytopenia

Thrombocytopenia, low eosinophil count,
decreased albumin level, higher levels of
LDH and AST.

Leucopenia, lymphopenia, high pro-thrombin time, high
levels of AST, LDH, increased inflammatory markers like C-
reactive protein, serum ferritin and erythrocyte
sedimentation rate

Cytokine Profile MCP-1, IL-8, MIG, IL-2, TGF-β, IL-6, IP10,
IL-1, IFN-γ, IL-18, and IL-12

TNF-α, IP-10, IL-6, IL-17, IL-10, IL-15,
IFN-α2, and IFN- γ

MCP-1, TNF-α, IP-10, IL-2, MIG, IL-8, IL-2R, IL-10, IL-1β,
IFN-γ, IL-7, IL-1RA, IL-9, GM-CSF, basic FGF, G-CSF, MIP1-
α, MIP1-β, PDGF, IL-6, and VEGF

Associated Risk Factors Cancer, diabetes, cardiac disease, COPD Diabetes, cardiovascular diseases, end
stage renal disease and hypertension

COPD, Diabetes, hypertension and cardiovascular disease

Reference (6,21−24,29−33) (6,38,39,44,45) (6,24,48,49,53−55)
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to increased ACE2 expression in diabetic patients with SARS-CoV2
[90]. TNF, CXCL8, IL-10, CCL2, ICAM1, IFN-γ, IL-2, CXCR4 were the
key genes identified by PPI network analysis for the COVID-19 diabetic
high-risk group [83]. Hyperglycemia, increased coagulation rate, and
elevated release of pro-inflammatory cytokines [112] all facilitate the
severity of COVID‐19 in diabetic patients.

Gestational Diabetes Mellitus (GDM) as a comorbidity has been
observed in two pregnant women, who died of COVID-19 infection
[113]. As described above, GDM is associated with increased cytokine
levels that further enhanced maternal insulin resistance, as well as in-
creased the high risk of pregnancy outcome and neonatal complications
[114]. Pro-inflammatory cytokine such as IL-6, TNF-α, IL-8, and IL-18
were elevated in GDM patients, together with a decreased expressionof
IL-10 [115].

On the basis of the above mentioned data, one can envisage that
elevated concentrations of these pro-inflammatory chemokines and
cytokines in COVID-19 patient with underlying risk factors, further
intensifies cytokine storm-associated inflammation associated with
SARS CoV2, ultimately converting the cytokine-storm of COVID-19 into
a ‘Cytokine Super Cyclone’ (Fig. 2). Importantly, co-morbidities asso-
ciated with COVID-19 share an overlapping hyperinflammatory cyto-
kine profile that may further indicate the importance of anti-cytokine
therapy strategies in the management of these co-morbidities. Further
studies are necessary to evaluate risk factors like COPD, hypertension,
CVD and diabetes in COVID-19 disease management.

4. BCG Vaccination as a strategy to control the Cytokine Super
cyclone in COVID-19 patients with risk factors

Bacillus Calmette-Guérin (BCG), a vaccine given to protect against
Tuberculosis (TB) and other non-tuberculous mycobacteria (NTM) in-
fections such as Buruli ulcer, is administered in new-born [116]. This
live attenuated vaccine was developed at Pasteur Institute in Paris by
Albert Calmette and Camille Guérin. The research work started in 1908
and took over 13 years for the first trial in human. During this long
period that spans the First World War, they successfully sub-cultured
Mycobacterium bovis isolated from cow for 231 times and generated a
less virulent strain of M bovis. Since then, BCG is the only vaccine used
against TB and more interestingly, it also confers protection against
leprosy [117,118]. WHO recommends a single dose of BCG for infants
in TB endemic as well as leprosy high risk countries and globally almost
100 million infants are vaccinated yearly [119]. The strains of Myco-
bacterium bovis used as BCG vaccine currently in different countries are
generated by a number of passages from actual Paris strain. Pasteur
1173 P2, the Glaxo 1077, the Danish 1331, the Russian BCG-I, the
Moreau RDJ and the Tokyo 172-1 strains are commonly used BCG
strains and they differ both phenotypically and genotypically
[117,120]. Additionally, the use of BCG for intravesical treatment in
bladder cancer is also reported [121].

Based on several clinical trials and observational studies, it has been
shown that BCG vaccination reduced the neonatal, as well as childhood
death rate [122,123]. Retrospective cross-sectional studies conducted
in sub-Saharan African children below 5 years of age demonstrated a
positive association between BCG vaccination and lower risk of malaria
[124]. Additionally, epidemiological studies also established the

Fig. 2. Schematic diagram representing higher pro-inflammatory cytokines and chemokines in COVID-19 patients with underlying risk factors, with hyper-cyto-
kinemia associated inflammation culminating in lethal complications in SARS-CoV2 infection.

B.S. Johnson and M. Laloraya Cytokine and Growth Factor Reviews 54 (2020) 32–42

37



protective role of BCG against respiratory tract infections in children
[125,126]. Vaccination with BCG enhanced IFN-γ and IL-10 level, thus
providing immunity against respiratory tract infection even in an el-
derly age group [127].

BCG also provides non-specific innate immunity against pathogens
such as viruses and parasites, through an innate immune mechanism
termed ‘trained immunity’ which is defined as the immunological recall
of the innate immune system via epigenetic reprogramming [128]. In-
nate immune cells such as monocytes, NK cells and macrophages un-
dergo epigenetic modification of histones that include methylation and
acetylation, and enhance expression of IL-6, TNF-α and IL-1β after BCG
vaccination. Thus, the trained phenotype of innate immune cells results
in an increased secretion of pro-inflammatory cytokines on exposure to
pathogens, thereby enhancing host protection [129,130]. Healthy
subjects immunized with BCG showed increased production of TNF-α
and IL-1β in response to bacterial and non-bacterial stimulants. Mole-
cular alterations included increased H3K4me3 (trimethylation of his-
tone H3 at lysine 4) at exposed promoter regions of these pro-in-
flammatory cytokines, leading to their increased expression [131]. In
another study, BCG vaccination reduced viremia in an experimental
yellow fever virus infection model by inducing trained immunity; epi-
genetic modification of monocytes resulted in increased production of
IL-1β [132]. Moreover, BCG enhanced heterologous TH1/TH17 re-
sponses by inducing the long-lasting release of IL-22, IFN-γ, and IL-17,
thereby attaining non-specific immune response to infections [133].
BCG also promotes host defence by enhancing adaptive T cell and B cell
immune response mediated by CD8, CD4 T cells and antibodies re-
spectively [134]. In line with this, several in vivo studies in murine
models were also reported. BCG immunized mice expressed anti-
microbial peptides and bestowed protection against malarial para-
sitemia [135]. Additionally, prior BCG vaccination in influenza virus
challenged mice were found to have considerable protection via se-
cretion of antibody or activation of cell-mediated immunity [136]. An
in vivo murine study conducted to understand the effect of BCG against
various viral infections such herpes simplex type 1, influenza A2 and
encephalomyocarditis viruses demonstrated increased resistance of
BCG immunised mice against these viruses compared to control mice
[137]; also BCG vaccinated newborn mice were shown to be more re-
sistant to Herpes Simplex Type 2 Infection [138].

Based on these observations, BCG vaccination has the potential to
act as a protective agent against SARS CoV2, as it provides antiviral
immunity [139]. SARS-CoV2 virus enhances the generation of IL-6, IFN-
γ, TNF-α and IL-1β in mild to severely infected patients [48]. As dis-
cussed earlier, trained immunity provided by BCG vaccination involved
cytokine release, thus generating an antiviral state and protection
against SARS-CoV2 (Fig. 3). Ozdemir et al. has already documented a
marked decrease in the number of cases per population, death per po-
pulation and deaths per cases ratio of COVID-19 in BCG vaccinated
countries compared to BCG-non-vaccinated countries [140]. Another
observational study conducted in 25 level 4 European countries found a
positive correlation between BCG vaccination and decreased death rate
in COVID 19, but found no association between pneumococcal vaccine
and seasonal influenza vaccination even after adjusting several cov-
ariates, such as days of lockdown, life-expectancy, net migration,
median age, case-fatality rate, etc [141].

Moreover, BCG vaccination protocols and bacteria strains used are
different among BCG vaccinated countries [142]. Furthermore, it will
be important to study the impact of COVID-19 infection in patients with
co-morbidities like diabetes, hypertension, COPD and cardiovascular
disease in BCG vaccinated and non-vaccinated countries. Although
multiple studies support the hypothesis of a non-specific innate immune
role of BCG vaccination against the COVID 19 [143,144], controversies
have also been reported [145,146]. Because each study used different
data extraction techniques, statistical analysis and correction for con-
founding variables, they cannot give ultimate evidence of causality and
underscore the importance of clinical trials to determine the association

between BCG-mediated protection and severity of COVID-19 infection.
Currently, a total of 17 clinical trials are registered with

ClinicalTrials.gov to evaluate BCG induced trained immunity against
SARS-CoV2 (https://clinicaltrials.gov/ct2/results?cond=COVID&
term=bcg&cntry=&state=&city=&dist=). Out of 17, only 8 studies
have started recruitment of participants. Among these, BCG-CORONA
(Reducing Health Care Workers Absenteeism in COVID-19 Pandemic by
Enhanced Trained Immune Responses Through Bacillus Calmette-
Guérin Vaccination, a Randomized Controlled Trial), BRACE (BCG
Vaccination to Reduce the Impact of COVID-19 in Healthcare Workers
Following Coronavirus Exposure), BCG Vaccine for Health Care
Workers as Defense Against COVID 19 (BADAS) and BCG vaccination
for Healthcare Workers in COVID-19 Pandemic are conducting trials in
healthcare workers, because of their vulnerability to COVID 19 infec-
tion. The primary objective of BRACE, BADAS and BCG Vaccination for
Healthcare Workers in COVID-19 Pandemic is to analyse the occurrence
and severity of COVID-19 in BCG vaccinated and non vaccinated
groups. The BCG-CORONA trial is estimated to involve 1500 Health
workers and aims to assess whether unplanned absenteeism of these
participants can be reduced by BCG vaccination in the COVID-19
pandemic. Additionally, another study group in Germany is assessing if
VPM1002, the genetically modified vaccine strain of BCG can be used
as a protective agent against SARS CoV2 infection in the elderly and
health care workers. WHO has not yet advised the use of BCG im-
munization for SARS-CoV2 infection (https://www.who.int/news-
room/commentaries/detail/bacille-calmette-gu%C3%A9rin-(bcg)-
vaccination-and-covid-19). In addition to clinical trials, more epide-
miological studies are required to understand the status of co-morbid-
ities and associated death in BCG vaccinated COVID-19 cases; these
data are important to evaluate the potential benefit of BCG vaccinina-
tion and the trained immune response against COVID-19 in high risk
cases. In conclusion, boosting the innate immune response by BCG
vaccination via trained immunity/immune memory by BCG vaccination
represents a important potential strategy to manage the immune con-
sequences of COVID-19 – at least until a specific vaccine against SARS-
CoV2 becomes available.

5. Conclusion

Uncontrolled secretion of cytokines in COVID 19 patients is asso-
ciated with hyper-inflammation, increased disease severity and devel-
opment of acute respiratory distress syndrome (ARDS). In high-risk
patients with co-morbidities, COVID-19 infection and the ensuing ‘cy-
tokine storm’ can exacerbate severe clinical manifestations, culminating
in high mortality amongst patients with associated risk factors. On the
other hand, vaccination with BCG and the subsequent regulated se-
cretion of IFN and other cytokines including IL-1β, TNF-α and IL-6 can
contribute to the emergence of trained innate immunity, with the po-
tential to generate early protection against SARS-Cov2. Ongoing clin-
ical studies are addressing these important issues with regard to man-
agement of COVID-19.
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