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Machine learning approaches are affecting all aspects of modern 
society, from autocorrect applications on cell phones to self-driv-
ing cars to facial recognition, personalized medicine, and precision 
agriculture. Although machine learning has a long history, drastic 
improvements in these application areas recently have been driven 
by improvements to computational infrastructure; increased com-
puting power; increased ability to collect, manage, and store very 
large amounts of data; and algorithmic advances. Multiple types 
of machine learning have been developed, each with its own tech-
niques, strengths, and weaknesses, making certain approaches bet-
ter matches for certain problems than others.

Supervised machine learning and the use of neural networks 
(e.g., deep learning; Table 1) underlie much of the recent accelerated 
application of machine learning to many biological problems, in-
cluding those across a range of scientific questions in plant science. 
For example, deep learning technologies have recently achieved im-
pressive performance on a variety of predictive tasks, such as species 
identification (Unger et al., 2016; Carranza-Rojas et al., 2017), plant 
species distribution modeling (e.g., Zhang and Li, 2017; Botella et 
al., 2018), weed detection (Yu et al., 2019), and mercury damage to 
herbarium specimens (Schuettpelz et al., 2017). They are also being 
applied to questions of comparative genomics (e.g., Xu and Jackson, 
2019) and gene expression (Mochida et al., 2018) and to conduct 
high-throughput phenotyping (e.g., Singh et al., 2016; Ubbens and 
Stavness, 2017) for agricultural and ecological research. Moreover, 
novel approaches are poised to revolutionize studies of plant phe-
nology (e.g., Pearson et al., 2020) and functional traits through ap-
plication to more than 30 million images of herbarium specimens 

now available at iDigBio (http://www.idigb io.org) as well as other 
digital repositories.

The application of machine learning methods to extract data 
from herbarium specimens has grown and diversified in a few short 
years, beginning with species identification in a specific geographic 
region (e.g., Unger et al., 2016). Subsequent attempts to use deep 
learning to tackle the difficult taxonomic task of identifying species 
in large collections of herbarium specimens showed that convolu-
tional neural networks trained on thousands of digitized herbar-
ium sheets are able to learn highly discriminative patterns (e.g., 
Carranza-Rojas et al., 2017). These results are very promising for 
extracting a broad range of accurate annotations in a fully auto-
mated way. Such approaches are also being applied to identification 
of plant phenophase (i.e., bud, flower, fruit), which is important 
for assessing the effects of climate change on plant growth and re-
production and for comparing plant responses with those of pol-
linators, migratory birds, and other species that rely on plants for 
food and/or nesting sites (see, e.g., Lorieul et al., 2019; Pearson et 
al., 2020; Brenskelle et al., 2020; Goëau et al., 2020). Likewise, other 
evolutionary or ecological traits, such as leaf shape and size, leaf 
margins, and flower color, could also potentially be scored from 
images of herbarium specimens. However, despite the promise of 
applying deep learning to herbarium specimen images to address a 
range of questions, this emerging field also raises challenging meth-
odological questions about how to avoid any bias and misleading 
conclusions when analyzing the produced data. Indeed, as for any 
statistical learning method, convolutional neural networks are sen-
sitive to bias issues, including the way in which the training data sets 
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are built. Moreover, as good as the prediction might be on average, 
the quality of the produced annotations can be very heterogeneous 
from one sample to another, depending on various factors such as 
the morphology of the species, the storage conditions in which the 
specimen was preserved, and the age of the specimen when imaged. 
Given both the opportunities and challenges, additional research 
into the application of machine learning approaches to herbarium 
specimen images is needed to enable greater applicability to a broad 
range of scientific questions.

The field of machine learning is moving rapidly, with the devel-
opment of alternative approaches that may be best suited to specific 
questions, data sources, and analytical techniques. This special col-
lection of articles in Applications in Plant Sciences presents 16 pa-
pers, published across two issues of the journal, that explore methods 
and applications of machine learning to studies of plant ecology, 
morphology, genomics, and agriculture. The first issue comprises 
eight papers and focuses on applications to images of herbarium 
specimens, on topics from phenology to herbivory. The second issue 
includes papers that address a broader range of topics, data, and bio-
logical scale. We summarize the content of both issues here.

Plant phenological research has seen major advances in recent 
years through the use of herbarium specimens (Willis et al., 2017). 
Herbarium specimens collected over the past three centuries pro-
vide insight into flowering, leaf-out, and fruit timing globally and 
across plant phylogeny (Davis et al., 2015). A major hurdle, however, 
is that to harness the full power of herbarium specimens for phe-
nological research requires counting reproductive structures, which 
can be time consuming. Thus, automated recognition of reproduc-
tive structures on herbarium specimens is a key goal in current phe-
nological research (Lorieul et al., 2019; Pearson et al., 2020). Two 
papers in this special issue address plant reproductive phenology. 
To make use of the extensive volume of herbarium specimens for 
examining angiosperm reproductive phenology, Goëau et al. (2020) 
applied a state-of-the-art segmentation approach (mask R-CNN) to 
automate locating, segmenting, and counting reproductive struc-
tures on images of herbarium specimens of Streptanthus tortuosus 
Kellogg (Brassicaceae). Phenological stages (i.e., buds, flowers, im-
mature fruits, mature fruits) are distinct in S. tortuosus, and speci-
mens were scored for phenophase. Evaluation of the performance of 
the method indicated that it shows particular promise in identifying 
the number of reproductive structures (accuracy was nearly 80%), 
but the accuracy of the results varied with respect to the training 
annotations, the type of reproductive structures scored, and the size 
of the reproductive structures. Although promising, these results 
suggest that further refinement is needed, and it is unclear how well 
the approach will scale to other species with different floral mor-
phologies and perhaps less well-differentiated phenophases.

To train machine learning algorithms to do this, however, will 
require massive input data to data-hungry machine learning algo-
rithms. In this issue, Brenskelle et al. (2020) assess the conditions 
needed for volunteers to help gather these data. The authors test 
for the effects of training type (in person or online), career stage, 
plant taxon, and phenological stage scored on the accuracy of vol-
unteer-provided phenological data from herbarium specimens. 
Regardless of expertise and training method, users provided highly 
accurate data, although data from people trained in person were 
more accurate than those trained online. This study provides a best 
practices guide for collecting annotation data. Importantly, the au-
thors also demonstrate that online citizen science platforms might 
be able to provide accurate annotation data that can then be used 
downstream to train machine learning algorithms to recognize 
phenological stages.

Morphological variation, coupled with variation in the quality 
of herbarium specimens, leads to noise and potential bias in auto-
mated coding of characters from specimen images. Image segmen-
tation is a computer vision algorithm that groups together pixels of 
an image that have similar attributes and generates a mask for each 
focal object in the image, such as a flower in an image of a herbar-
ium specimen. Application of masks, such as those applied to plant 
phenophases, can help to reduce noise and bias. White et al. (2020) 
developed a workflow to apply segmentation masks to plant images 
using deep learning. Focusing on ferns, they generated a model that 
could segment herbarium images automatically, efficiently, and ac-
curately across the morphological diversity of this clade. Although 
their study was restricted to ferns, the workflow is generalizable to 
all herbarium images and, with modification, may be applicable to 
other clades of plants with highly different morphologies.

Plants and insects have been interacting for 400 million years, 
and these interactions have likely driven diversification of both 
clades. The fossil record shows evidence of herbivory, providing a 
glimpse into long-term patterns of plant–herbivore interactions 
and evolution. However, how herbivory changes over shorter 
timescales and geography is much less clear. Despite the fact that 
botanists generally attempt to collect specimens that are free of 
herbivore damage, herbarium specimens offer a view of plant–
herbivore interactions over the past three or four centuries, with 
the potential to infer spatial and temporal patterns of herbivory, 
including response to climate change (Meineke and Davies, 2018; 
Meineke et al., 2018). However, manual scoring of insect damage 
to herbarium specimens is extremely laborious, and the possi-
bility of applying machine learning to quantify the patterns and 
extent of insect damage to plant specimens is appealing. Meineke 
et al. (2020) initiated machine learning methods to explore their 
ability to classify multiple types of herbivory (and its absence) 

TABLE 1. Glossary of terms related to machine learning.

Term Definition

Artificial neural network A type of machine learning algorithm whose computational model is (loosely) motivated by biological neural networks.
Deep learning The use of artificial neural networks composed of many layers of neurons.
Supervised learning A type of machine learning in which a model is fit using labeled training examples.
Unsupervised learning A type of machine learning in which data samples are unlabeled. The goal of unsupervised learning is to uncover the latent 

structure in the data.
Clustering A type of of unsupervised learning in which the goal is to partition the data into groups that are composed of similar samples.
Classification A type of supervised learning in which the goal is to identify (i.e., classify) samples into one of several known categories.
Convolutional neural networks A type of artificial neural network (or deep learning network, if the network consists of many layers) in which spatial 

arrangement of input data (e.g., pixels in an image) is leveraged during analysis.
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across a pair of divergent plant species. Although herbivory could 
not always be classified with high accuracy, the use of hand-
drawn boxes to locate areas of potential herbivory increased the 
accuracy of herbivory classification to 81.5%. The authors fur-
ther identify ways to expand the accuracy of the models in future 
applications, potentially paving the way for exploring patterns 
of herbivory in relation to climate change, invasive species, and 
more.

The contributions of machine learning to the plant sciences, es-
pecially for automated species identification from images of digi-
tized herbarium specimens, is showing great promise (Schuettpelz 
et al., 2017; Wäldchen and Mäder, 2018). This is especially true for 
genera with only slight morphological variation among species, 
particularly when compounded by hybridization and the presence 
of infraspecific taxa. Pryer et al. (2020) have built on this work with 
Equisetum L., a distinctive genus with 15 extant species complicated 
by morphological plasticity and frequent hybridization events that 
have resulted in a disproportionately high number of misidentified 
herbarium specimens. Equisetum includes two relatively distinct 
species (E. hyemale L. and E. laevigatum A. Braun) and a wide-
spread, sexually sterile hybrid between them (E. ×ferrissii Clute) 
(Rutz and Farrar, 1984; Des Marais et al., 2003). The challenges faced 
here result from the cylindrical nature of the stem, which results in 
dramatic differences in specimen images due to factors such as the 
geometry of the flattened stems, the number of stems included on 
a single sheet, stem colors, and imaging parameters. Compounding 
the variations among images is the fact that accurate identification 
has more to do with the appearance of stem nodes and strobili than 
other features. Through successive testing of several models, Pryer 
and colleagues discovered that, out of 30 test images, 27 were clas-
sified correctly. Although the number of specimens is probably too 
small to be broadly generalizable, E. hyemale images were correctly 
classified in nine of 10 cases, E. ×ferrissii images in eight of 10 cases, 
and E. laevigatum images were never confused, resulting in an ac-
curacy of 90%. These results suggest strong potential for machine 
learning’s impact on the accurate determination of closely similar 
taxa.

In their contribution, Ott et al. (2020) outline the development 
and output of GinJinn, object-detection software designed to extract 
leaf images from herbarium specimens based on the TensorFlow 
(Abadi et al., 2016) object-detection application programming in-
terface (API), an API designed to make supervised deep learning 
object detection accessible for plant scientists. Although GinJinn 
makes heavy use of TensorFlow’s API, the authors maintain that 
GinJinn is not merely a wrapper for the API; it also provides data 
preprocessing, project set up, pretrained model download, simple 
model exporting, and the use of trained networks for the extraction 
of bounding boxes from newly acquired data. GinJinn was tested 
on a data set of 286 JPEG images of preserved plant herbarium 
specimens provided by the herbarium of the Botanic Garden and 
Botanical Museum Berlin-Dahlem, Berlin, Germany. The images 
were annotated using the free open-source tool LabelImg version 
1.8.1 (https://github.com/tzuta lin/labelImg), resulting in a total of 
889 annotated intact leaves within 243 images of herbarium spec-
imens of two species of Leucanthemum Mill. (the diploid L. vul-
gare Lam. and the tetraploid L. ircutianum DC.) known for their 
high variability in leaf shape. The task is complicated by the rare 
occurrence of intact leaves versus non-intact leaves in these species. 
Using 183 specimens as the training data set, the GinJinn pipeline 
extracted one or more intact leaves in 95% of 61 test images.

A major challenge to cataloging and describing plant diversity 
lies in the development of high-throughput technologies that facili-
tate rapid discovery of new taxa hidden in the backlog of still-to-be 
processed herbarium specimens. The 400,000 plant species cur-
rently known to science have required more than 250 years to name 
and classify, and as many as 70,000 flowering plant species are likely 
yet to be discovered (Joppa et al., 2011). Many of these may well be 
among the estimated one million specimens currently backlogged 
in herbaria. From Little et al.’s (2020) perspective, this renders her-
baria largely untapped resources for the new and rapidly developing 
use of artificial intelligence (AI) in taxonomic research (Wäldchen 
and Mäder, 2018). To capitalize on this enthusiasm and encour-
age an increasing number of AI specialists to devote attention to 
algorithms that can produce species identifications, these authors 
mounted a Kaggle competition platform to crowdsource effective 
machine learning algorithms for analyzing plant specimen images. 
The competition data set included 46,469 images representing 683 
species of the family Melastomataceae (Tan et al., 2019). In just two 
months, 254 models were developed that automatically identified 
the taxa among these digital representations, with the top four mod-
els identifying specimens to species with >88% accuracy.

Trait extraction from herbarium specimens can be laborious and 
time consuming, making the process an excellent candidate for the 
application of high-throughput machine learning protocols and al-
gorithms. Here, Weaver et al. (2020) describe and test LeafMachine, 
an automated, open-source software tool for recognizing and mea-
suring leaf dimensions from herbarium specimens and single leaf 
images across a wide range of largely woody taxa (trees, shrubs, li-
anas), although some herbaceous taxa were also included. The tests 
show varying results based on image resolution, specimen presen-
tation, leaf condition, and whether leaf clumping was present. Of 
~1000 images containing measurable leaves as confirmed through 
assessment, LeafMachine produced morphometric information for 
at least one leaf in 82.0% of high-resolution images and 60.8% of 
low-resolution images, suggesting positive results to the researchers 
but with a need for enhancement as machine learning technologies 
advance.

The second set of papers explores a broad range of topics, begin-
ning with application of machine learning approaches to agricul-
ture. The use of herbicides to control weeds in agricultural fields is 
costly both economically and environmentally, and alternatives are 
needed, especially for organic farming. Possible solutions include 
the use of targeted application of small doses of herbicide pre-
cisely on weeds via a robotic detector and application system and 
non-herbicide methods of removal such as electrocution. However, 
such approaches to precision agriculture require highly accurate 
methods of detection and identification of weeds in agricultural 
fields. Champ et al. (2020) applied an instance segmentation convo-
lutional neural network to robotically generated images of agricul-
tural field plots to detect individual plants and then identify them as 
crops or weeds. Using this mask R-CNN approach, the authors were 
able to correctly identify individual maize and bean crop plants at 
average precision values of 0.85 and 0.59, respectively; identification 
of weeds was generally more difficult, with average precision values 
as high as 0.73 for Brassica nigra W. D. J. Koch but less than 0.5 for 
the other weeds studied. Using these detection results, up to 60% of 
weeds could be removed, and plant centroids were more precisely 
located than with alternative bounding box approaches. Refinement 
of the models to account for plant species, plant size, plant position, 
and possible crop–weed interactions could improve accuracy for 

https://github.com/tzutalin/labelImg
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greater automated weed removal with fewer possibilities of confu-
sion with crops.

Plant–insect interactions are biodiverse (Forister et al., 2015) 
and can be highly consequential for agricultural productivity 
(Sharma, 2014) and ecosystem function (Kurz et al., 2008). As a re-
sult, quantifying plant traits associated with resistance to insects is 
of broad interest in the natural sciences. One such type of defense 
against insect herbivores are trichomes, small hairs that serve as 
mechanical defenses that discourage insect herbivore feeding, ovi-
position, and movement. Like many such leaf traits, counting the 
trichomes required to address a given research hypothesis can be 
a Herculean task. Mirnezami et al. (2020) make advances toward 
automating quantification of trichome densities by capturing im-
ages of leaves, making the leaves transparent through a clearing 
process, and applying novel semi-automatic and automatic meth-
ods for counting trichomes. They then compare results from these 
novel methods to manual counting and determine that the most 
accurate novel method was semi-automatic (requiring input from 
the user) and was 90% accurate at estimating trichome densities on 
leaf surfaces. Although fully automated trichome counting has not 
yet been achieved, this study represents an important and detailed 
description of a major step forward in automated defense trait phe-
notyping for plants.

Given the ability to automate the estimation of plant traits, 
a follow-on question would be whether the plant traits extracted 
could be reliably used for plant species identification. Furthermore, 
could the most informative traits for species identification be deter-
mined using machine learning approaches? Almeida et al. (2020) 
investigate the use of decision trees for plant identification using 
trait databases as well as identifying the most informative traits dis-
tinguishing between species. Using the TRY Plant Trait Database 
(Kattge et al., 2011, 2020) and a collection of species that spanned 
trees, herbs, grasses, and other taxa, they were able to correctly iden-
tify plant species with up to 90% accuracy in cross-validation. Traits 
such as leaf shape, fruit type, and flower color were identified as 
being some of the most informative. As more plant trait data are 
collected (including by automated methods as mentioned above), 
the type of approach presented in this paper can be used to guide 
and inform the data collection process.

Acquiring high-resolution images of plant root architecture for 
use in downstream analysis and machine learning algorithms has 
proved a challenging endeavor. Most current methods use tech-
niques that are destructive to root architecture (e.g., Trachsel et al., 
2011); involve ex situ imaging under controlled conditions, often 
using aboveground rhizotrons (chambers with windows into the 
soil of plants under cultivation); incorporate intrusive methods 
through which cameras are inserted into the ground (Johnson et 
al., 2001), sometimes by soil coring (Wu et al., 2018), with the ten-
dency to disturb soil and roots; or use non-intrusive methods such 
as ground-penetrating radar for trees and woody plants with roots 
≥1 cm in diameter or X-ray computed tomography (Tabb et al., 
2018) or magnetic resonance imaging (Pflugfelder et al., 2017) for 
pot-grown plants with finer root systems. Ruiz-Munoz et al. (2020) 
report on experiments to improve the resolution of these images 
by adapting two state-of-the-art deep learning approaches, the 
Fast-Super-Resolution Convolutional Neural Network (FSRCNN) 
(Dong et al., 2016) and the Super Resolution Generative Adversarial 
Network (SRGAN). Their method is designed to estimate high- 
resolution output from low-resolution images to expose details not 
clearly delineated by a sensing device. Results of these evaluations  

demonstrate that these super-resolution models outperform the ba-
sic bicubic interpolation even when trained with non-root data sets.

Supervised machine learning methods are the methods most 
commonly used when applied to plant science. Often machine 
learning approaches are used to automate or reduce the effort and 
time needed to complete tasks that were traditionally completed 
manually by researchers. These sorts of tasks lend themselves well 
to supervised approaches. Yet, machine learning approaches also 
provide mechanisms for data mining and unsupervised exploration 
of collected data. Saryan et al. (2020) investigated and proposed the 
use of an unsupervised spectral clustering aid in discovery of spe-
cies boundaries. The authors (with comparison to principal compo-
nent analysis and non-metric multidimensional scaling) determine 
that interactive spectral clustering can lead to improved partition-
ing and understanding in some problems and data sets.

Text recognition and mining are useful in a range of applica-
tions including the automated processing of specimen labels and 
search indexing. Thus, the automated recognition of Latin scientific 
names can be particularly useful for some applications. Little (2020) 
investigated and developed an open-source browser-executable ap-
proach for Latin scientific name recognition using artificial neural 
networks. The method relies on an ensemble network approach that 
can recognize Latin scientific names across a range of languages 
(e.g., Chinese, French, German, Japanese) with high recall and pre-
cision and at competitive speeds of 8.6 ms/word.

Plant genomes are generally large and complex, with multi-
gene families and high amounts of repeated sequences. With over 
200 plant genomes now published (Chen et al., 2018), many more 
underway, and both genomic and transcriptomic resources avail-
able for thousands of other plant species (e.g., Matasci et al., 2014; 
Leebens-Mack et al., 2019), data are now available for comparative 
analysis of plant genomes across phylogenetic scales. Although 
methods for identifying genic regions are currently quite success-
ful, tools for inferring gene function and other attributes of plant 
genomes require further refinement. Machine learning approaches 
are being applied to a range of problems in plant genomics, and 
Mahood et al. (2020) review the promise of these methods. They 
focus on supervised machine learning for predicting gene function 
from sequence information as well as post-genomic data. Because 
gene function may vary spatially and temporally within a plant and 
have either direct or indirect effects on phenotypes, functional pre-
diction involves a combination of analyses aimed at genome struc-
ture, gene expression patterns, and protein–protein interactions, 
and the authors review machine learning methods aimed at each of 
these problems as well as those designed to integrate information 
across molecular and biological scales. Beyond introducing these 
methods, the authors identify current roadblocks to more efficient 
models and suggest possible solutions.

Many machine learning methods have been developed for visual 
imagery and text as outlined above. Yet more and more methods 
are being developed and adapted to non-visual imagery such as 
X-ray computed tomography, ground-penetrating radar, and hyper-
spectral imagery (Zare and Ho, 2013; Rogers et al., 2016; Travassos  
et al., 2018). Théroux-Rancourt et al. (2020) developed a three- 
dimensional segmentation and characterization approach for leaf 
internal anatomy using X-ray microcomputed tomography. The 
approach outlined by the authors leveraged a small number of 
hand-segmented image slices to automate segmentation over more 
than 1000 scans with accuracies of greater than 90%. The approach 
is focused on segmented grapevine leaf scans while requiring 
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minimal manual labeling, but highlights the possibilities of being 
able to apply machine learning methods to automate the analysis of 
a wide variety of data and image types.

The application of machine learning to questions in plant bi-
ology is still in its infancy, yet the promise of these methods to 
a broad range of problems is clear. From genomic tools to mea-
sures of plant morphology, growth, and development, and from 
assessing ecological interactions of plants with herbivores and 
their broader, changing environment to use in agriculture, new ap-
proaches involving machine learning have the potential to change 
how we study plants and even the questions we can ask. Further in-
tegration with fields ranging from subcellular to ecosystem scales, 
all likewise enabled by new machine learning approaches, will 
further enable new discoveries in plant biology. However, as the 
contributions to this special issue have cautioned, methods with 
sufficiently high accuracy for application are still under develop-
ment and may require extensive investments in generating training 
data sets. Thus, despite the promise and appeal of machine learning 
approaches, certain problems may not be amenable either because 
of difficulty in refining the underlying model or because the data 
needed for appropriate training sets are not available or not easily 
acquired. We hope that the papers presented in this collection en-
courage further progress on the emerging applications of machine 
learning to plant biology.
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