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Efforts to digitize natural history collections have resulted in large, 
open data sets that, when linked with collection data, offer an un-
precedented opportunity to evaluate transformative research ques-
tions that link objects through space and time. The tens of millions 
of openly available digitized herbarium specimens allow botanists 
to evaluate ecological and evolutionary questions on a global scale, 
integrating across centuries of botanical collecting and piecing 
together collections with spatially biased holdings to generate bi-
ome-level comparisons of biological patterns (Davis et al., 2015; 
Pearse et al., 2017; Park and Mazer, 2018). Collating millions of 
herbarium specimens into a single analysis, however, necessarily 

involves aggregating noise, error, and bias from thousands of dif-
ferent sampling, mounting, and digitization protocols, given that 
herbarium sheets are digitized in independent efforts in the ap-
proximately ~3000 herbaria worldwide (Thiers, 2018). Such bias 
and noise may influence not only the analysis of digitized collec-
tion records (e.g., Daru et al., 2018), but also analyses of specimen 
images, a growing source of data for botanical questions ranging 
from phenology (e.g., Willis et al., 2017; Lorieul et al., 2019) to mor-
phology (e.g., Kavanagh et al., 2011; Burns et al., 2012; Easlon and 
Bloom, 2014) to global change biology (e.g., Meineke et al., 2018; 
Heberling et al., 2019). To move beyond the important efforts of 

Applications in Plant Sciences 2020 8(6): e11352; http://www.wileyonlinelibrary.com/journal/AppsPlantSci © 2020 White et al. Applications in Plant Sciences 
is published by Wiley Periodicals, LLC on behalf of the Botanical Society of America. This is an open access article under the terms of the Creative Commons 
Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

INVITED SPECIAL ARTICLE
For the Special Issue: Machine Learning in Plant Biology: Advances Using Herbarium Specimen Images

Generating segmentation masks of herbarium specimens 
and a data set for training segmentation models using deep 
learning
Alexander E. White1,2 , Rebecca B. Dikow1,4 , Makinnon Baugh3, Abigail Jenkins3, and Paul B. Frandsen1,3

A P P L I C AT I O N  A R T I C L E

Manuscript received 3 October 2019; revision accepted 3 February 
2020.
1 Data Science Lab, Office of the Chief Information 
Officer, Smithsonian Institution, Washington, D.C., USA
2 Department of Botany, National Museum of Natural 
History, Smithsonian Institution, Washington, D.C., USA
3 Department of Plant and Wildlife Sciences, Brigham Young 
University, Provo, Utah, USA
4 Author for correspondence: dikowr@si.edu

Citation: White, A. E., R. B. Dikow, M. Baugh, A. Jenkins, and  
P. B. Frandsen. 2020. Generating segmentation masks of herbarium 
specimens and a data set for training segmentation models using 
deep learning. Applications in Plant Sciences 8(6): e11352.

doi:10.1002/aps3.11352

PREMISE: Digitized images of herbarium specimens are highly diverse with many potential 
sources of visual noise and bias. The systematic removal of noise and minimization of bias 
must be achieved in order to generate biological insights based on the plants rather than the 
digitization and mounting practices involved. Here, we develop a workflow and data set of 
high-resolution image masks to segment plant tissues in herbarium specimen images and 
remove background pixels using deep learning.

METHODS AND RESULTS: We generated 400 curated, high-resolution masks of ferns using 
a combination of automatic and manual tools for image manipulation. We used those 
images to train a U-Net-style deep learning model for image segmentation, achieving a final 
Sørensen–Dice coefficient of 0.96. The resulting model can automatically, efficiently, and 
accurately segment massive data sets of digitized herbarium specimens, particularly for ferns.

CONCLUSIONS: The application of deep learning in herbarium sciences requires transparent 
and systematic protocols for generating training data so that these labor-intensive resources 
can be generalized to other deep learning applications. Segmentation ground-truth masks 
are hard-won data, and we share these data and the model openly in the hopes of furthering 
model training and transfer learning opportunities for broader herbarium applications.
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quantifying sources of bias in the specimen records, we must there-
fore begin to use statistical methods that allow for the identification 
and elimination of sources of bias in image data to leverage images 
of herbarium specimens to their full potential.

Machine learning and its subfield of deep learning are particu-
larly useful for the analysis of specimen images (Unger et al., 2016), 
as these types of models can be trained to identify and ignore sources 
of image variation and noise. For example, deep learning models 
in the form of convolutional neural networks (CNNs; LeCun et al., 
2015) are well suited to classifying objects in images irrespective 
of the position or orientation of those objects. Although a variety 
of object orientations or contexts might pose a challenge to more 
traditional quantitative methods of classification, these sources of 
noise do not prevent deep learning models from achieving high ac-
curacy for object identification. The ability of deep learning models 
to maintain both high classification accuracy and wide generality 
does not, however, preclude them from identifying a given image 
class (e.g., taxonomic identity) based on information that is oth-
erwise non-biological. Indeed, there are a number of visual cues 
that may allow a specimen to be identified based on the herbarium 
from which it originated rather than the features of the plant itself. 
Other biologically uninformative visual information may include 
rulers, a color bar or palette, collection-specific barcodes, stamps, 
collection identifiers, text that might be included as standard in a 
given collection, or even accumulated sources of debris (e.g., mer-
curic chloride staining; see Schuettpelz et al., 2017). Although most 
of these visual cues may be easily interpreted as noise, which neural 
networks are well suited to ignore, the critical concern is unknown 
cases where these cues are unique, rare, and singularly associated 
with a specific class that the model is built to identify. These cues 
may undermine the performance of a deep learning model on a 
novel data set that lacks such cues. Systematic and scalable methods 
are needed to remove such cues from analyses that rely on digitized 
herbarium specimens as the primary source of data, particularly for 
deep learning data sets where the scale of the sample group often 
prohibits the manual inspection of each image.

One promising solution is to identify biologically relevant im-
age pixels (i.e., plant tissues) a priori, eliminating noisy and biased 
visual information from all other parts of the herbarium specimen 
image ahead of subsequent analyses. Deep learning models can be 
trained to label image pixels based on their content (in this case, 
RGB values). Labeling image pixels in this way is referred to as se-
mantic segmentation, and has been applied in other botanical appli-
cations, for example in automated agriculture (Milioto et al., 2018). 
Novel deep learning model architectures are also being developed 
to improve focal object attention during classification (e.g., atten-
tion-based CNNs, Ba et al., 2014; Simonyan and Zisserman, 2014; 
Ren et al., 2015) and applied in the medical field (e.g., Li et al., 2019); 
however, there are also a number of potential neural network appli-
cations for these models in herbarium science beyond classification. 
In such applications (e.g., automated identification and measure-
ment of specific plant tissues; Lorieul et al., 2019), the semantic seg-
mentation of herbarium specimens may be critical for generating 
meaningful biological insights.

The primary and perhaps most critical step in developing an ac-
curate deep learning model for semantic segmentation is to gener-
ate a high-resolution data set of images with their associated masks, 
images of identical resolution that define the identity of each pixel 
in the original image as belonging to an a priori designated set of 
pixel identities or classes (e.g., plant tissue, label, color bar). These 

data (original images paired with their masks) are used to train the 
deep learning model to generate accurate pixel classifications by 
comparing the model predictions for each pixel against the pixel 
class defined in the mask (i.e., the ground truth). A more detailed 
description of the learning process is beyond the scope of this work, 
but see Garcia-Garcia et al. (2017) for a general review of semantic 
segmentation and its applications in deep learning. Although im-
age masks for herbarium specimens can be as simple as a binary 
image identifying two classes, one for all pixels containing plant 
tissues and another for all other visual information (background), 
herbarium specimens contain such a wide diversity of plant sizes 
and shapes that drawing boundaries along the edges of the spec-
imens, particularly around complex leaf structures, is extremely 
labor intensive and nearly impossible on a large scale. Generating 
masks of complex plant structures at high resolution is not only 
labor intensive but also particularly difficult using polygon-based 
annotation approaches such as those offered in ImageJ (Schneider 
et al., 2012; Rueden et al., 2017). In this paper, we present a system-
atic workflow for generating high-quality image masks of digitized 
herbarium specimens for use with deep learning segmentation 
models. We describe our efforts to train and validate such a model 
using a Python-based deep learning framework and share an open 
repository where the original images, ground-truth masks, and the 
trained deep learning model can be accessed for future use outside 
the application we detail below.

Potential uses for the image segmentation of digitized herbar-
ium images include the detection of flowers, the quantification of 
fruits, and the estimation of the intensity of disease and the extent 
of herbivory (e.g., Meineke and Davies, 2019); the data and model 
we present could be leveraged for those applications as well. Similar 
uses exist across different fields where machine learning has be-
come an essential tool; for example, these types of analyses are vital 
in the medical field, where precision in the determination of tis-
sue types and pathologies in medical images is essential for accu-
rate diagnosis and successful treatment decisions made by medical 
professionals (e.g., Ciresan et al., 2012; Roth et al., 2015; Moeskops 
et al., 2016; Zhuang et al., 2019). There are other industrial applica-
tions of this technology beyond medicine, one of which, agriculture, 
is more closely related to the work we present here. For example, 
whereas high-throughput genotyping has been used in plant breed-
ing applications for decades, the nascent field of high-throughput 
phenotyping is focused on generating reliable genotype–phenotype 
associations (Choudhury et al., 2019). The accurate evaluation of 
changes in phenotype requires models that result in well-resolved 
measurements of phenotypic change (Singh et al., 2016).

Our workflow draws upon best practices and recent advances in 
computer vision and deep learning, making use of openly available 
Python libraries for image manipulation (OpenCV, Bradski and 
Kaehler, 2008; PlantCV, Gehan et al., 2017) and machine learning 
(PyTorch, Paszke et al., 2017; fastai, Howard et al., 2018). The deep 
learning model architecture we employ (U-Net; Ronneberger et al., 
2015) was originally developed in a medical context, but is now well 
known for its efficient and accurate performance in general image 
segmentation tasks. We combine these practices in one protocol to 
allow more systematic improvement and transparency regarding 
training data inputs in machine learning applications in herbarium 
science. Critically, to motivate model sharing and facilitate transfer 
learning applications within the herbarium science community, we 
share the trained model and these data, including both high-reso-
lution images and image masks, on Figshare (see Data Availability).



Applications in Plant Sciences 2020 8(6): e11352 White et al.—Deep learning segmentation of herbarium images • 3 of 8

http://www.wileyonlinelibrary.com/journal/AppsPlantSci © 2020 White et al.

MATERIALS AND RESULTS

Data

Our goal was to generate a segmentation model for plant tissues 
with complex margins, yet we felt that some measure of taxonomic 
specificity would increase the model’s accuracy and utility. Ferns are 
known to exhibit an incredible diversity of leaf forms (see Vasco 
et al. [2013] for a comprehensive review of fern leaf morphology) 
and, in the absence of fruits, flowers, and woody material, fern 
specimens in herbaria largely reflect leaf material mounted on pa-
per. Recognizing both the broad diversity and complexity of fern 
leaf margins as well as their relatively simple representation across 
specimens within herbaria, we limited our data set to only include 
images of fern specimens. We obtained digital images (high-resolu-
tion JPEG [.jpg] files, ca. 9100 × 6800 pixels) of all such specimens 
housed in the U.S. National Herbarium at the National Museum 
of Natural History (Washington, D.C., USA). The images were ac-
quired from the Smithsonian Institution Digital Asset Management 
System and transferred to the Smithsonian High-Performance 
Computing Cluster for analysis. To curate these images into a man-
ageable data set for mask generation, we chose 400 random images 
and subjectively hand-curated our image set to reflect the broad di-
versity of leaf shapes present in ferns as much as possible (Fig. 1A); 
replacement images were chosen at random until the set of images 
subjectively appeared to reflect the wide morphological diversity of 

ferns. Images without plant tissue (e.g., specimens housed in enve-
lopes and affixed to sheets) were removed and replaced with an-
other random specimen containing visible tissues. In total, the 400 
images we curated include specimens from 11 orders, 30 families, 
99 genera, and 308 species (specimen metadata is included, see Data 
Availability).

Protocol for generating image masks

We developed a workflow to generate ground-truthed herbarium 
image masks for a simple binary segmentation task in which all pix-
els are labeled as either plant pixels or background pixels (Fig. 1B). 
This protocol combines a thresholding method of automatic image 
segmentation (Otsu, 1979) with manual postprocessing and mask 
editing to generate high-resolution and high-quality image masks 
(Fig. 2). We describe each component of our workflow below.

First, we import a grayscale version of each original high-res-
olution image into Python (van Rossum and Drake, 2009) using 
the imread method in OpenCV (Bradski and Kaehler, 2008). We 
then use Otsu’s binarization method (Otsu, 1979) as implemented 
in OpenCV to estimate image thresholds. In short, Otsu’s method 
searches the distribution of pixel values to estimate a threshold that 
minimizes intraclass variance. We then assign a binary value  (either 
black [0 in byte image values] or white [255]) to each pixel accord-
ing to the Otsu threshold to create both foreground and background 
images. The foreground image is the inverse of the background 

FIGURE 1. Herbarium sheets and associated masks made available in this study. (A) Four example digitized herbarium sheets from the U.S. National 
Herbarium at the National Museum of Natural History (Washington, D.C., USA). (B) The same four sheets shown as high-resolution masks. A total of 400 
masks were generated using the methods described in the text and were used to train a deep neural net to automatically segment plant tissues from 
herbarium specimens. Species names for each image clockwise from top left: Rumohra adiantiformis (G. Forst.) Ching, Thelypteris kunthii (Desv.) C. V. 
Morton (synonym Christella kunthii), Asplenium peruvianum var. insulare (C. V. Morton) D. D. Palmer, Thelypteris palustris Schott.



Applications in Plant Sciences 2020 8(6): e11352 White et al.—Deep learning segmentation of herbarium images • 4 of 8

http://www.wileyonlinelibrary.com/journal/AppsPlantSci © 2020 White et al.

image. We export both the foreground and background images with 
filenames corresponding to the original image. We automatically 
generated these preliminary masks in Python version 3.7 using 
OpenCV version 4.0.1. The code is available at https://github.com/
sidat ascie ncela b/fern_segme ntation.

The ideal image mask would include a single pixel value for 
plant tissue and another pixel value for the rest of the herbarium 
sheet, thus allowing the extraction of plant-only elements for down-
stream applications. Although the segmentation process described 
above worked well to include all plant materials in one grouping, 
each mask also included herbarium elements, such as label data 
and the color palette (see top middle box, Fig. 2). Because removing 
these elements automatically is particularly challenging, we instead 
developed a manual process for their removal. We chose the fore-
ground images (those with white pixels assigned to the plant tissue) 
and manually edited them in Adobe Photoshop CC 2018 (Adobe 

Inc., San Jose, California, USA). We used the Brush Tool and the 
Rectangle Tool to adjust the pixels that should have been assigned a 
black (0) pixel value during segmentation but were otherwise mis-
labeled. Due to the behavior of these tools in Photoshop, some of 
the edge pixels were assigned intermediate gray values, yet pixels 
needed to be assigned binary pixel values according to our objec-
tive. Thus, after we sufficiently edited the extraneous herbarium ele-
ments from the images in Photoshop, we binarized the mask images 
(using the binarize function in OpenCV) to ensure that the pixel 
values were either 0 or 255.

As a final step in preparing the images for our data set, we uti-
lized the blur method contained within the PlantCV library (Gehan 
et al., 2017) to remove any remaining disparities (e.g., there were 
images where dust particles were labeled as plant material and blur 
uses pixel neighborhood values to smooth away these disparities). 
For all images, we used three different parameter values and chose 

FIGURE 2. Workflow outlining the automatic and manual steps in generating the image masks and training the U-Net. High-resolution JPEG (.jpg) 
files were exported from the Smithsonian Digital Asset Management System to the High-Performance Computing Cluster where we ran the segmen-
tation Python code. Outputs from this step were edited in Adobe Photoshop to remove label and color palette before running the postprocessing 
code (binarize and blur tools) that produced the final ground-truth masks. These ground-truth masks were then used as training data for the U-Net 
model.

https://github.com/sidatasciencelab/fern_segmentation
https://github.com/sidatasciencelab/fern_segmentation
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the “best” mask by visually inspecting them. This was necessary be-
cause the plants vary in size, age, and overall condition (e.g., amount 
of debris).

Training a deep learning model for segmentation

We trained a PyTorch (version 1.1.0, Paszke et al., 2017) deep learn-
ing model for binary image segmentation of herbarium images using 
fastai (version 1.0.55, Howard et al., 2018) in Python 3.7. Following 
an emerging standard of best practices for data set preparation and 
image transformations (He et al., 2018), we trained a U-Net style 
neural network using 80% (n = 320) of our original images paired 
with ground-truthed masks prepared using the protocol above. This 
resulted in approximately 21 million pixels with associated class la-
bels for training this model. The goal of such training is to expose 
the model to a wide diversity of pixel values and contexts paired 
with the associated pixel class identity (plant or background). All 
images and associated masks were resized to 256 × 256 pixels to 

maximize the downstream training efficiency. Our model therefore 
produces predicted image masks of 256 × 256 pixels regardless of 
the size of the image input (Fig. 3). The square output predictions 
crop image inputs if they are rectangular (see Fig. 3C).

We transformed our data randomly during the training process 
using image augmentation, as is standard practice to maximize the 
generality of deep learning models. Transformations included flip-
ping images horizontally, rotating (maximum rotation 10 degrees), 
zooming (maximum zoom by a factor of 1.1), lighting adjustments 
(maximum adjustment by a factor of 0.2), and warping (maximum 
warping by a factor of 0.2). All transformations were applied with a 
probability of 0.75 except for horizontal flipping (probability = 0.5) 
using fastai.

The model was constructed using the U-Net architecture 
(Ronneberger et al., 2015), which is known to be computationally 
efficient during training and highly accurate for segmentation in 
a diverse range of applications. Leveraging pretrained models us-
ing transfer learning, we used a dynamic U-Net as implemented in 

FIGURE 3. A comparison of high-resolution original images, ground-truth masks, and U-Net-predicted mask outputs. (A) Two example original im-
ages. (B) Ground-truth masks. (C) Mask outputs predicted by U-Net (Sørensen–Dice coefficient = 0.95). Note that the predicted masks are all resized 
to 256 × 256 pixels to maximize downstream model training efficiency regardless of image input size. The square output predictions crop rectangular 
inputs. Species names from top: Callistopteris apiifolia (Presl) Copel., Ceradenia capillaris (Desv.) L. E. Bishop.
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fastai, building our model atop a resnet-34 architecture pretrained 
for classification on the ImageNet data set (Deng et al., 2009). 
The pretrained resnet-34 architecture was downloaded from the 
PyTorch model zoo (https://pytor ch.org/docs/stabl e/torch visio n/
models.html).

We set aside 20% of our original images (n = 80) to validate 
our model. The pixels of these images were never presented to the 
model during training and thus model performance on these im-
ages can be viewed as a measure of the model’s applicability to novel 
data. We trained our model for 22 epochs (one epoch equals one 
pass through the training data), following the one-cycle learning 
rate policy (Smith, 2018).

Segmentation model performance

We evaluated the performance of our model by comparing the pre-
dicted pixel labels from the U-Net with the ground-truth labels we 
generated for the 80 validation images. Across all 80 images in the 
validation set, our model achieved a 0.95 Sørensen–Dice coefficient 
on the predicted masks generated by the model (Fig. 3C). In this 
case, the Sørensen–Dice coefficient is equivalent to the proportion 
of shared pixel identities between the ground-truth mask and the 
predicted mask. It is important to note that generating predictions 
for even a single herbarium image involves 65,536 predictions (i.e., 
256 × 256 pixels). The performance of our model is therefore evalu-
ated across ~5 million individual pixel predictions.

In order to understand how the model performed across the tax-
onomic diversity of our sample, we also measured the Sørensen–
Dice coefficient for each of the 23 fern families in our validation 
data (Table 1). We found that the model performed roughly com-
parably across these groups, although for two families the model 
generated a Sørensen–Dice coefficient < 0.9. On inspection, the 
validation images representing these two families (Schizaeaceae 
and Athyriaceae) expose some key limitations of the model. First, 

the image representing the Schizaeaceae (catalog number 1054905, 
see Data Availability) contained very little leaf material and mostly 
thin stems. In the absence of leaves to outline, the model perfor-
mance was evaluated entirely on its ability to partition thin stems 
from the backdrop. In general, our model may struggle with these 
types of features. The image representing Athyriaceae (catalog num-
ber 66902) was generated under less than ideal lighting conditions 
using older digitization technology and also shows a yellowed her-
barium sheet. Model performance may be compromised under 
these conditions, although the 0.86 Sørensen–Dice coefficient for 
this image is still likely to meet the standard of quality for nearly all 
herbarium applications.

CONCLUSIONS

The deep learning model we present here can rapidly generate 
high-quality masks of images of any herbarium sample across the 
morphological diversity of ferns. Although input images to the 
model may contain different color bars or palettes and other her-
barium-specific labels and features, the masks retain only the pix-
els of each image that belong to plant material, meaning the output 
masks can be combined into a single data set to allow computation 
across images from multiple herbaria. Our training data set was re-
stricted to ferns; therefore, our model may not work as well for plant 
tissues absent from our data set (e.g., flowers and fruits). However, 
the workflow we present is general to herbarium images broadly 
and can be used by botanists specializing in other plant taxa to cre-
ate their own set of masks with which to train similar deep learning 
models for segmentation. We hope that members of the botanical 
community with interests in specific taxa or tissues will create and 
share similar high-resolution data sets and models.

There are ~18.9 million digitized herbarium images currently 
accessible through the Integrated Digitized Biocollections portal 
(iDigBio, https://www.idigb io.org/portal). This new scale of herbar-
ium science requires modern tools and novel approaches to wield 
such massive data. Although automated segmentation is a large part 
of the preprocessing needed before a data set of herbarium images 
can be used for downstream deep learning applications, there are 
other concerns when using digital images of herbarium specimens 
not addressed in our workflow. For example, in any large data set, it 
is common to find multiple specimens in which the plant material 
is contained solely as fragments in envelopes and is therefore not 
visible. Deep learning may yet offer solutions to these challenges; 
however, workflows, training data, and models designed for prepro-
cessing herbarium images for massive-scale (millions of images) 
analyses are still needed to make deep learning tools accessible to the 
broader botanical community. It is critical to recognize the “human 
in the loop” component of machine learning and its applications in 
the biodiversity sciences. The extent to which botanists and biologists 
are willing to become familiar with these advanced computational 
tools will likely predict the utility of machine learning in botanical 
sciences as well as the novelty of the insights such tools may reveal.
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