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Abstract

Reinforcement learning models have proven highly effective for understanding learning in both 

artificial and biological systems. However, these models have difficulty scaling up to the 

complexity of real-life environments. One solution is to incorporate the hierarchical structure of 

behavior. In hierarchical reinforcement learning, primitive actions are chunked together into more 

temporally abstract actions, called ‘options’, that are reinforced by attaining a subgoal. These 

subgoals are capable of generating pseudo-reward prediction errors, which are distinct from 

reward prediction errors that are associated with the final goal of the behavior. Studies in humans 

have shown that pseudo-reward prediction errors positively correlate with activation of anterior 

cingulate cortex. To determine how pseudo-reward prediction errors are encoded at the single 

neuron level, we trained two animals to perform a primate version of the task used to generate 

these errors in humans. We recorded the electrical activity of neurons in anterior cingulate cortex 

during performance of this task, as well as neurons in lateral prefrontal cortex and orbitofrontal 

cortex. We found that the firing rate of a small population of neurons encoded pseudo-reward 

prediction errors and these neurons were restricted to anterior cingulate cortex. Our results provide 

support for the idea that anterior cingulate cortex may play an important role in encoding subgoals 

and pseudo-reward prediction errors in order to support hierarchical reinforcement learning. One 

caveat is that neurons encoding pseudo-reward prediction errors were relatively few in number, 

especially in comparison to neurons that encoded information about the main goal of the task.

Introduction

Reinforcement learning (RL) is one of the most influential learning models to date, and has 

had a dramatic impact on both artificial intelligence (Mnih et al., 2015) and our 

understanding of neural computation (Schultz, Dayan, & Montague, 1997). RL uses 

discrepancies between expected and actual reward outcomes to drive learning (Sutton & 

Barto, 1998). This estimation, known as a reward prediction error (RPE), is encoded by 

midbrain dopamine neurons (Hollerman & Schultz, 1998; Schultz et al., 1997 1997) and is 

thought to underlie how animals and humans learn behaviors necessary to acquire rewards 

from the environment (Dayan & Niv, 2008; Lee, Seo, & Jung, 2012). RPE-related neural 

signals are also found in lateral prefrontal cortex (LPFC) (Asaad & Eskandar, 2011) and 
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anterior cingulate cortex (ACC) (Kennerley, Behrens, & Wallis, 2011). However, RL suffers 

from a problem of scaling (Botvinick, Niv, & Barto, 2009). While it performs well in 

relatively constrained learning environments, when the number of environmental states and 

actions increases, the amount of sampling required by the agent, and hence the amount of 

training time needed to acquire a behavior, scales as a positively accelerating function. Thus, 

an environment can quickly become too complex for RL to be a feasible learning solution.

Computational theoretical studies have proposed modifications to the conventional RL 

models in order to allow them to accommodate more complex hierarchical behavioral 

structure that is typical of the real word (Sutton, Precup, & Singh, 1999). Instead of 

reinforcing individual actions, hierarchical reinforcement learning (HRL) allows the 

chunking of actions into more temporally abstract behaviors, referred to as ‘options’. Each 

option terminates when a particular subgoal is attained, which generates an option-specific 

prediction error, referred to as a pseudo-reward prediction error (PPE). For example, when 

making a cup of coffee, one option might be adding milk, but individual actions that 

contribute to that option (e.g. getting the milk out of the fridge, opening the milk carton) 

would contribute solely to the PPE rather than the RPE generated by drinking the coffee.

The notion that complex behavior is organized hierarchically also has a long history in 

neuroscience. Hughlings Jackson, for example, emphasized the notion that the frontal lobe 

represented behaviors in a hierarchical manner (Phillips, 1973). Neuroimaging and 

neuropsychology studies have shown that progressively more complex behaviors are 

controlled by progressively more anterior regions of prefrontal cortex (Badre & D’Esposito, 

2007; Badre, Hoffman, Cooney, & D’Esposito, 2009; Koechlin, Ody, & Kouneiher, 2003). 

Recent efforts have focused on determining the neural substrates of the algorithmic 

processes derived from computational theories of HRL (Badre & Frank, 2012; Frank & 

Badre, 2012; Holroyd & McClure, 2015; Ribas-Fernandes et al., 2011). However, to date 

there has been little attempt to study HRL at the level of individual neurons, which could 

provide insights into the specific computations performed by prefrontal neurons that support 

HRL. Therefore, we trained two monkeys to perform a primate version of a task that has 

been used in humans to study HRL (Ribas-Fernandes et al., 2011). The task required 

performing a sequence of lever movements in order to move a stimulus from a start position 

to a goal position, by way of an intermediate subgoal position. On a fraction of trials the 

position of the subgoal changed, thereby generating a PPE. In the human version of the task, 

the BOLD response in ACC positively correlated with the magnitude of the PPE. To 

examine whether this information was encoded at the level of single neurons, we recorded 

the electrical activity of single neurons in LPFC, ACC and orbitofrontal cortex (OFC) while 

animals performed the HRL task.

Materials and Methods

Subjects and behavioral task

Two male rhesus monkeys (Macaca mulatta) served as subjects (Q and R). Subjects were 5 

and 6 years of age, and weighed approximately 7 and 9 kg at the time of recording. We 

regulated the daily fluid intake of our subjects to maintain motivation on the task. Subjects 

sat in a primate chair and viewed a computer screen. We used the MonkeyLogic system 
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(Asaad & Eskandar, 2008) to control the presentation of the stimuli and the task 

contingencies. Eye movements were tracked with an infrared system (ISCAN). All 

procedures were in accord with the National Institute of Health guidelines and the 

recommendations of the University of California at Berkeley Animal Care and Use 

Committee.

Our behavioral task has previously been used to measure PPEs in humans (Ribas-Fernandes 

et al., 2011). The delivery task requires subjects to take the perspective of a delivery driver 

that has to choose between two jobs involving picking up a package (the subgoal) and 

delivering it to a customer (goal). After the subject selects one of the jobs, the position of the 

package sometimes changes, which generates a PPE. We trained two animals to perform a 

version of this task (Figure 1A). Subjects were required to fixate a central cue to initiate a 

trial, after which two stimulus configurations appeared on the left and right of the screen. 

Each configuration consisted of three colored dots which represented the start position 

(green), subgoal position (white), and goal position (blue). Subjects selected one of the 

configurations with a joystick movement. Once one of the two configurations was chosen, 

the other one disappeared and the subject had to make a series of joystick movements back-

and-forth between the center location and the chosen side in order to move the green dot 

step-by-step from the start position to the goal position via the subgoal position. Each 

movement outwards caused the cursor to disappear, and then the movement back to the 

center caused the cursor to reappear 1° of visual angle closer to the subgoal or goal. The 

animal was allowed to make these movements as quickly as they desired. A juice reward was 

delivered once the green dot reached the goal position. The optimal choice was to select the 

shortest route, since this would lead to reward more quickly and with less physical effort.

The start and goal positions in each original configuration were placed on the circumference 

of a circle 8° of visual angle in diameter. This circle was not visible to the animal. We 

manipulated two variables in each configuration: total steps (TS), the number of steps from 

the start position to the goal via the subgoal, and subgoal steps (SG), the number of steps 

from the start position to the subgoal. We also calculated the straight-line distance (SD), 

which is the degrees of visual angle in a straight line from the start position to the goal.

Once the animals had been trained on the choice task, we implanted the neurophysiological 

recording equipment and recorded neural activity. During recording sessions, only 10% of 

the trials were choice trials. The other 90% of trials, which we collectively refer to as ‘jump’ 

trials, began with the presentation of a single stimulus configuration for 500 ms in the center 

of the screen (pre-jump configuration), followed by a second configuration (post-jump 

configuration) for 500 ms. On 56% of the jump trials, the post-jump configuration contained 

no new information, either because it was identical to the pre-jump configuration, or because 

the subgoal changed position but remained the same distance from the start and goal 

positions (Figure 1B, ‘mirror’ condition). On the other 44% of the jump trials, the post-jump 

configuration generated a PPE (because the difference from the start position to the subgoal 

changed) and/or an RPE (because the total number of steps to the goal changed). These 

errors were the inverse of the number of steps, since fewer steps meant the animal would 

attain the reward with less effort. In other words, moving goals or subgoals closer would 

generate positive prediction errors while moving them further away would generate negative 
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prediction errors. The fixation cue then changed color indicating to the subject whether they 

should make rightward or leftward joystick movements in order to move the green dot to the 

goal position. Table 1 describes the different combinations of experimental conditions and 

Figure 1B illustrates example configurations.

Neurophysiological procedures—Our methods for neurophysiological recording have 

been reported in detail previously (Lara, Kennerley, & Wallis, 2009). Briefly, we implanted 

both subjects with a titanium head positioner for restraint and one recording chamber over 

each hemisphere, the position of which was determined using a 1.5 T magnetic resonance 

imaging (MRI) scanner. One recording chamber was positioned at an angle to allow access 

to LPFC and ACC, and the other was a vertical chamber to allow access to OFC. We 

recorded simultaneously from LPFC, ACC, and OFC using arrays of 6–14 tungsten 

microelectrodes (FHC Instruments). We determined the approximate distance to lower the 

electrodes from the MRI scans and advanced the electrodes using custom-built, manual 

microdrives until they were located just above the cell layer. We then slowly lowered the 

electrodes into the cell layer until we obtained a neuronal waveform, which were digitized 

and analyzed off-line (Plexon Instruments). We randomly sampled neurons; we did not 

attempt to select neurons based on responsiveness. This procedure aimed to reduce any bias 

in our estimate of neuronal activity thereby allowing a fairer comparison of neuronal 

properties between the different brain regions. We reconstructed our recording locations by 

measuring the position of the recording chambers using stereotactic methods. We plotted the 

positions onto the MRI sections using commercial graphics software (Adobe Illustrator). We 

confirmed the correspondence between the MRI sections and our recording chambers by 

mapping the position of sulci and gray and white matter boundaries using 

neurophysiological recordings. We traced and measured the distance of each recording 

location along the cortical surface from the lip of the ventral bank of the principal sulcus. We 

also measured the positions of the other sulci in this way, allowing the construction of 

unfolded cortical maps.

Statistical methods

Behavioral data analysis.: We conducted all statistical analyses using MATLAB 

(Mathworks). All data for behavioral analyses were from the choice trials. To determine how 

the parameters of the stimulus configurations affected choice behavior, we performed a 

formal model comparison. We predicted that configurations with fewer total steps should be 

considered more valuable than configurations with more steps and consequently should be 

chosen preferentially by the animals. We expected the position of the subgoal to have a 

smaller or negligible influence on choice behavior. We also included the straight line 

distance between the start and goal position, since this provided a complete description of 

the triangular arrangement of start, subgoal, and goal positions. We tested logarithmic 

transformations of the distances, in addition to linear distances, since we have previously 

observed a better fit between visual stimuli and reward value using logarithmic 

transformations (Rich & Wallis, 2014). We used these parameters to estimate the subjective 

value (SV) of the left and right choice options:
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SV L = 1 − w1TSL − w2SGL − w3SDL (1)

SV R = 1 − w1TSR − w2SGR − w3SDR (2)

where TS is the total steps from the start position to the goal position by way of the subgoal, 

SG is the distance from the start position to the subgoal position, and SD is the straight line 

distance between the start and goal position. We then fit a logistic regression model using 

the discounted values (SVL - SVR) to predict PL, the probability that the subject chose the 

left configuration. We included a bias term, b, which accounted for any tendency of the 

subject to select the leftward configuration that was independent of the configurations’ 

values:

PL = 1
1 + ew4 SV L − SV R − w5b (3)

We estimated the weights of each parameters in the model by determining the values that 

minimized the log likelihood of the model. To fit the weights (w1 to w5), we used a 

maximum likelihood fitting (“fmincon” function in MATLAB) to find the set of parameters 

that best predicted the experimental data. To obtain fitted weights, we ran the maximum 

likelihood fitting function 100 times for each of 10 different randomly determined initial 

weights and then calculated the mean of the fitted weights. This helps to avoid accepting 

weights that reflect a local minimum in the fitting function. We compared models using 

Akaike’s Information Criterion (AIC) (Akaike, 1974).

Our other behavioral measure was the lever movement time, which we defined as the time 

taken to move the joystick from the center position to the chosen side and then back again 

following the movement of the green dot.

Neural data analysis.: All data for the neural analysis was from the jump trials. We 

visualized single neuron activity by constructing spike density histograms. We calculated the 

mean firing rate of the neuron across the appropriate experimental conditions using a sliding 

window of 100 ms. We then analyzed neuronal activity in two predefined epochs of 50–500 

ms each, corresponding to the presentation of pre- and post-jump configurations. For each 

neuron, we calculated its mean firing rate on each trial during each epoch. To determine 

whether a neuron encoded an experimental factor, we used linear regressions to quantify 

how well the experimental manipulation predicted the neuron’s firing rate. Before 

conducting the regression, we standardized our dependent variable (i.e., firing rate) by 

subtracting the mean of the dependent variable from each data point and dividing each data 

point by the SD of the distribution. The standardization of firing rate was performed across 

all trials, pooling across conditions. We evaluated the significance of selectivity at the single 

neuron level using an alpha level of p < 0.05.

We examined how neurons encoded information about the pre-jump configuration by 

performing a linear regression on the neuron’s mean firing rate (F) during the pre-jump 

configuration presentation:
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F = b0 + b1SV + b2LR (4)

where SV denotes the subjective value of the pre-jump configuration calculated according to 

the weights derived from our behavioral model and LR was a dummy variable that indicated 

whether the start position was to the left or right of fixation. Selective neurons were defined 

as those in which Equation 4 significantly predicted the neuron’s firing rate (F-test evaluated 

at p < 0.05) and one or more of the beta coefficients (excluding b0) was significant 

(coefficient t-test evaluated at p < 0.05).

We examined how neurons encoded the post-jump configuration by performing a linear 

regression on the neuron’s mean firing rate (F) during the post-jump event with six 

predictors:

F = b0 + b1SV + b2LR + b3RPEp + b4RPEn + b5PPEp + b6PPEn (5)

RPE = SV post − SV pre (6)

PPE = w2 SGpost − SGpre (7)

SV and LR are defined as for Equation 4. Another four predictors represented positive or 

negative reward prediction errors (RPE) or pseudo-reward prediction errors (PPE). We 

defined PPE as the difference between the original position of the subgoal and it’s position 

following the jump. Thus, we calculated this difference using the weighting that was 

ascribed to this parameter from the animal’s initial choice behavior (equations 1 and 2). 

Selective neurons were then defined in the same way as for Equation 4.

To quantify the strength of neural encoding, for each neuron, we calculated the coefficient of 

partial determination (CPD) for each parameter. This is the amount of variance in the 

neuron’s firing rate that can be explained by one predictor over and above the variance 

explained by other predictors included in the model. The CPD for predictor i is defined as:

CPDi = SSEX − i − SSEX
SSEX − i

(8)

where SSEX-i is the sum of squared errors in a regression model that includes all of the 

relevant predictor variables except i, and SSEX is the sum of squared errors in a regression 

model that includes all of the relevant predictor variables.

To examine the time course of the contribution of each predictor, we performed a “sliding” 

regression analysis to calculate the CPD at each time point for each neuron. We fit each 

regression model (Equation 4 for the pre-jump configuration and Equation 5 for the post-

jump configuration) to neuronal firing for overlapping 200 ms windows, beginning with the 

200 ms immediately prior to the task epoch and then shifting the window in 10 ms steps 

until we reached the end of task epoch. The sliding regression analysis requires a correction 

for multiple comparisons, since it involves performing a statistical test for each time point. 

Chiang and Wallis Page 6

J Cogn Neurosci. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We calculated this correction by calculating a false alarm rate. We applied the same 

statistical criterion to an equivalent analysis using shuffled neural data where significant 

parameters can only reflect noise. We preserved the firing patterns of individual neurons on 

individual trials, but shuffled the experimental conditions. The results of this analysis 

showed that a statistical criterion of three consecutive time bins where the regression 

parameter was significant at p < 0.005, yielded a false alarm rate less than 5%.

Results

Behavioral task performance

To examine the influence of the stimulus configurations, we performed a model comparison, 

as described in detail in the Methods. The full model included parameters for TS, SG and 

SD (w1, w2, and w3). Against this model we compared other models in which we tested 

subsets of these parameters. In addition, we evaluated whether choice behavior relied on 

linear or logarithmic estimates of distances. In both animals, the full model was clearly 

favored, although subject R favored logarithmic estimates of distance while subject Q 

favored linear estimates (Table 2 and Fig. 2A). For subject R, w1 = 3.2, w2 = 0.5 and w3 = 

1.4, while for subject Q, w1 = 0.5, w2 = 0.4 and w3 = 1.1. Thus, for both subjects, the 

subgoal position had the smallest effect on choice behavior, although subject R based his 

choices more on TS, while subject Q used SD. These two variables were positively 

correlated (correlation coefficient = 0.91), which likely accounted for why either variable 

could be used to solve the task. Overall our models provided an excellent fit to choice 

behavior (Figure 2B), explaining 93% of the variance in subject R’s choice behavior, and 

90% of the variance in subject Q.

Although the subgoal position only had a small effect on choice behavior, the model in 

which it was included clearly performed better than the model in which it was omitted in 

both animals. This indicated that the animals were not simply ignoring the subgoal. Further 

evidence was apparent in the lever movement times. Both animals showed a tendency to 

slow down as they approached both the subgoal and the goal, and to speed up again once the 

subgoal had been acquired (Figure 3A). This was evident when we looked at the change in 

movement time from one step to the next (Figure 3B). We found that subjects slowed down 

(positive values on the y-axis) on approaching the subgoal, and sped up (negative values on 

the y-axis) immediately after its attainment (one-way ANOVA, F(5, 227) = 17.62, p < 1 × 

10−13 for subject R; F(5, 179) = 22.85, p < 1 × 10−16 for subject Q). In other words, subjects 

did pay attention to the subgoal position in the series of lever movements.

Neural encoding

We recorded the activity of 308 neurons from LPFC (subject R 132; subject Q 176), 249 

neurons from OFC (R 130; Q 119), and 212 neurons from ACC (R 106; Q 106). Recording 

locations are illustrated in Figure 4. We collected the data across 38 recording sessions for 

subject R and 30 sessions for subject Q. In order to obtain sufficient statistical power, the 

neurons from the two subjects were pooled. For all significant results, there were no 

qualitative differences between the two subjects (i.e. the effects were in the same direction), 

unless otherwise noted.
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During the presentation of the pre-jump configuration the most prevalent encoding was the 

value of the configuration, and this was more prevalent in ACC relative to the other two 

areas (Figure 5). Figure 6A illustrates example neurons that encoded selectively the SV of 

the pre-jump configurations. Fewer neurons encoded sensory information about the stimulus 

configuration, i.e. LR, which is whether the start position was to the right or left of fixation. 

Since sensory encoding is not the focus of this report, we will not discuss LR encoding 

further. The time course of SV selectivity across the neural population is illustrated in Figure 

7. There was no difference between the areas with respect to the onset of SV selectivity 

(median LPFC = 171 ms; median OFC = 166 ms; median ACC = 151 ms, 1-way ANOVA, 

F2,122 = 0.45, p > 0.05).

During the post-jump configuration, we also found that the most prevalent encoding was the 

encoding of the configuration’s value (Figure 5 and 6B). Note that some neurons encoded 

SV before the onset of the post-jump configuration, which indicates that they also encoded 

the SV of the pre-jump configuration. Some neurons also encoded RPE, and these neurons 

were most prevalent in ACC. In our task, rewards were fixed and delivered with certain 

probability, and so the RPE reflected changes in the amount of work that the animal needed 

to do, since the goal had moved either closer (positive RPE) or further (negative RPE) from 

the start position. In contrast, very few neurons encoded PPE, although the prevalence of 

such neurons did exceed chance in ACC (20/212 or 9.4%, binomial test, p < 0.01). However, 

the weak encoding of PPE relative to the other variables is evident in the population plots 

shown in Figure 8, where the robust encoding of SV contrasts with the weaker encoding of 

RPE and the virtually absent encoding of PPE.

Discussion

We developed a primate version of a task that has been previously used to study HRL in 

humans (Ribas-Fernandes et al., 2011). Animals had to use a lever to move a dot to a 

subgoal position and then on towards a goal position. Many prefrontal neurons encoded the 

value of the presented task configuration, as defined by the parameters that individual 

animals used to guide their choice behavior. This replicates our previous results (Kennerley, 

Dahmubed, Lara, & Wallis, 2009; Kennerley & Wallis, 2009), in which neurons encoded the 

number of lever presses that animals needed to make in order to earn a reward. Prefrontal 

neurons also encoded RPE, particularly in ACC, which is also consistent with our previous 

work (Kennerley et al., 2011). A novel aspect of our results is that these RPEs appeared to 

be driven by changes in effort rather than reward.

Both rodent lesion (Rudebeck, Walton, Smyth, Bannerman, & Rushworth, 2006) and human 

neuroimaging (Prevost, Pessiglione, Metereau, Clery-Melin, & Dreher, 2010) suggest that 

ACC may be particularly involved in effort-based decisions. Furthermore neurophysiology 

studies have shown a stronger dynamical interaction between ACC and LPFC for effort-

based decisions compared to delay-based decisions, whereas the opposite is true for OFC 

and LPFC (Hunt, Behrens, Hosokawa, Wallis, & Kennerley, 2015). These ideas have been 

extended to include decisions about cognitive effort, which could be used to determine 

whether to exert cognitive control (Shenhav, Botvinick, & Cohen, 2013). If ACC is 

responsible for incorporating effort into value calculations, this would include calculating 
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value prediction errors based on effort. An outstanding question is the role that dopamine 

plays in this process. Although dopamine neurons have long been associated with encoding 

reward predictions, the evidence for their involvement in effort calculations is more mixed. 

In an effort-based decision-making task, only a small minority of dopamine neurons 

incorporated effort information (Pasquereau & Turner, 2013). Future research should 

examine the precise role of dopamine in ACC prediction error calculations.

Very few neurons encoded PPEs, although those that did appear to be located in ACC. 

Neuroimaging studies in humans that used the same task showed that PPE correlated with 

increased BOLD activation in ACC (Ribas-Fernandes et al., 2011). Our data therefore 

appear to provide convergent evidence to support the HRL theoretical framework and a role 

for ACC in this process. However, an important caveat is that the degree of neural encoding 

that we observed in ACC was not particularly compelling. Only a handful of neurons 

showed significant encoding, and none of those neurons were particularly strongly tuned to 

PPE.

One possible explanation for the weak effects is that the animals were not paying sufficient 

attention to the task configurations, since the majority of trials did not require a choice. This 

explanation seems inadequate. In previous tasks where we have interleaved trials requiring a 

choice with those that did not require a choice, we have seen little difference in the response 

of prefrontal neurons to both types of trial (Rich & Wallis, 2016). In addition, in the current 

study, we observed robust encoding of the value of the stimulus configuration. Finally, both 

animals showed changes in reaction time on attaining the subgoal. Taken together, these 

results suggest that the animals were appropriately attending to the task and the subgoal.

Differences might also have arisen due to the way the task was represented across the two 

species. Humans bring context to the task in a way that monkeys cannot. For example, in 

humans, the description of the task involved a driver picking up a package and delivering it 

to a customer. This real-world knowledge might have contributed to humans approaching the 

task in a more hierarchical fashion compared to the relatively abstract representation that the 

animals experience. An additional difference between the two species relates to the value of 

acquiring the subgoal. In humans, there was no evidence that the subgoal influenced choice 

behavior, suggesting that acquiring the subgoal was not rewarding. In contrast, in the current 

study, the subgoal did influence the animals’ choice behavior, albeit to a smaller extent than 

the other stimulus parameters. Thus, we cannot rule out the possibility that the PPE that was 

generated in ACC simply reflected an RPE that was generated by the acquisition of the 

subgoal.

This raises a broader issue with the HRL framework. The original study examining HRL in 

humans emphasized that pseudo-rewards are distinct from primary rewards because attaining 

subgoals is not necessarily rewarding in and of itself (Ribas-Fernandes et al., 2011). An 

example is adding milk to coffee: the subgoal brings one closer to the first sip of coffee, but 

the act itself is not rewarding. However, traditional RL models can also account for the 

influence of non-rewarding subgoals on behavior, because reward values become 

progressively associated with earlier reward-predictive events, which would include 

attaining subgoals that are not in themselves necessarily rewarding. Thus, the critical 
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difference between HRL and RL rests, not so much in the distinction between pseudo-

rewards and primary rewards, but rather in the way in which behavior is organized, in 

particular, the unit of behavior that is reinforced. In RL, prediction errors are calculated for 

each individual action, whereas in HRL, individual actions are chunked into a subroutine 

that generates its own prediction error on completion. It is not clear whether the prediction 

error generated by the subroutine necessarily needs to involve a distinct neural signal 

compared to the prediction error generated by the primary reward.

How the brain determines the appropriate behavioral unit for reinforcement learning 

mechanisms is an area of active investigation. One idea is that the brain tends to group 

together mutually predictive stimuli and actions into a single event (Schapiro, Rogers, 

Cordova, Turk-Browne, & Botvinick, 2013). For example, driving to a restaurant and 

ordering a meal are both actions that can acquire an ultimate goal of eating a tasty meal, but 

behaviorally, the agent experiences a continuous stream of stimuli and actions. However, the 

act of driving involves many mutually predictive stimuli (e.g. steering wheel, traffic lights, 

seat belt) but only weakly predicts going to a restaurant, since one can drive to many 

alternate destinations. Likewise, ordering a meal involves many mutually predictive stimuli 

(e.g. server, menu, water), but may only weakly predict driving, since one could have also 

walked or caught the subway. Thus, the act of driving is grouped as a separate event from 

ordering the meal. The responses of prefrontal neurons are consistent with organizing 

behavior into these high-level events. For example, one of the major determinants of 

prefrontal firing rates is in which part of the task the agent is currently engaged (Sigala, 

Kusunoki, Nimmo-Smith, Gaffan, & Duncan, 2008). Prefrontal neurons also encode events 

at an abstract, high-level, incorporating categories (Freedman, Riesenhuber, Poggio, & 

Miller, 2001) and rules (Wallis, Anderson, & Miller, 2001). It may be that standard RL 

mechanisms operating on these high-level, behavioral events are sufficient to account for 

hierarchical behavior.

In summary, our results provide partial support for the involvement of ACC in HRL. In a 

task designed to use hierarchical behavior, we observed neurons in ACC whose firing rate 

correlated with PPE. However, there were caveats to this support, including the weak 

encoding, particularly in comparison to other signals that have been more firmly associated 

with ACC, such as predicted value and RPE, and whether HRL even requires a PPE signal 

distinct from RPE.
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Figure 1. 
(A) Timeline of the behavioral task. On choice trials, subjects chose one of two stimulus 

configurations and then moved a joystick back-and-forth to move the green dot forwards on 

a green-white-blue route. The three dots were arranged on or within a circle of 8° (dashed 

black line) that was not visible to the subject. The optimal choice was to select the shortest 

route, since this would lead to reward more quickly and with less physical effort. On jump 

trials, a single configuration was presented, followed by a second configuration, which 

sometimes required updating the expectancy of how much work would be required to earn 

the reward because the position of the goal and/or subgoal changed. (B) Sample post-jump 

configurations. The original configuration is shown in the top left. Numbers above the 

configuration indicate the number of steps for TS, SG and SD. The subscript p and n refer to 

positive and negative prediction errors, respectively.
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Figure 2. 
(A) AIC weights across the 14 tested models. The AIC weight is the relative likelihood of a 

given model within the set of tested models. The full model was clearly favored in both 

subjects, although a logarithmic transformation of distance was favored by subject R, 

whereas subject Q estimated distances linearly. (B) Behavioral performance during the 

choice trials. The probability of selecting the left configuration as a function of the 

difference in value of the left and right configurations as determined by Equations 1 and 2. 

Gray circles indicate actual data, whereas green lines indicate the best fitting model as 

determined by a formal model comparison.
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Figure 3. 
(A) Lever movement times for steps relative to subgoal or goal positions. (B) Movement 

times relative to the previous steps. The diagram indicates the specific movements 

referenced by the x-axis. Asterisks indicate that the values were significantly lower than any 

other values, using appropriate pairwise comparisons (p < 0.01, Bonferroni corrected).
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Figure 4. 
(A) Coronal MRI scans illustrating potential electrode paths. Red, green, and blue target 

areas indicate LPFC, ACC, and OFC, respectively. (B) Flattened reconstructions of the 

cortex indicating the locations of recorded neurons. The size of the circles indicates the 

number of neurons recorded at that location. We measured the anterior–posterior position 

from the interaural line (x-axis), and the dorsoventral position relative to the lip of the 

ventral bank of the principal sulcus (0 point on y-axis). Gray shading indicates unfolded 

sulci. LPFC recording locations were located within the principal sulcus. ACC recording 

locations were located within the cingulate sulcus. OFC recording locations were largely 

located within and between the lateral and medial orbital sulci. All recording locations are 

plotted relative to the ventral bank of the principal sulcus, which is a consistent landmark 

across animals. PS, principal sulcus; CS, cingulate sulcus; LOS, lateral orbital sulcus; MOS, 

medial orbital sulcus.
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Figure 5. 
Percentage of neurons in LPFC, OFC, and ACC that encode different predictors during the 

pre-jump and post-jump configurations. Shading indicates the proportion of neurons that 

encoded the variable with a given relationship: dark shading = positive, light shading = 

negative. For the post-jump configuration, gray color indicates the proportion encoding both 

positive and negative predictors, which was possible since we included these as separate 

regressors. None of the proportions significantly differed from the 50/50 split expected by 

chance (binomial test, p < 0.05, Bonferroni corrected for multiple comparisons). Asterisks 

indicate that the prevalence of neurons is significantly different between areas (chi-squared 

test, * = p < 0.05, ** = p < 0.01). Dotted line indicates the percentage of selective neurons 

expected by chance given our statistical threshold for selectivity.
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Figure 6. 
Spike density histograms illustrating selective neurons for subject value (SV) from three 

recording areas during the pre-jump (A) or post-jump (B) configurations. In each plot, the 

top panel indicates mean firing rate as a function of SV. The bottom panel indicates the 

coefficient of partial determination (CPD) for SV. This measure indicates the amount of 

variance in the neuron’s firing rate that is accounted for by SV and cannot be explained by 

any of the other parameters in the regression model (see Materials and Methods). Magenta 

data points indicate that SV significantly predicts neuronal firing rate. The gray lines 

indicate the onset and offset of the pre- and post-jump configurations.

Chiang and Wallis Page 18

J Cogn Neurosci. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
Encoding of the SV of the pre-jump configuration across the population in three prefrontal 

areas. Each horizontal line on the plot indicates the selectivity of a single neuron as 

measured using the coefficient of partial determination (see Materials and Methods). 

Neurons have been sorted according to the latency at which they first show selectivity. The 

vertical white lines indicate the onset and offset of the pre-jump configuration.
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Figure 8. 
Encoding of predictors related to the post-jump configuration across the population in three 

prefrontal areas. Conventions are as in Figure 7.
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Table 1.

Relationship of jump configurations to parameters in the HRL model.

Config.
number

TS SG SD RPE PPE Notes

1 - - - = = original

2 - - - = = mirror

3 ↓ ↓ ↓ + + min

4 ↑ ↑ ↑ - - max

5 - ↓ - = + PPEp only

6 - ↑ - = - PPEn only

7 ↓ - - + = RPEp only

8 ↑ - - - = RPEn only

9 ↓ ↓ - + + RPEp and PPEp

10 ↑ ↑ - - - RPEn and PPEn

11 ↓ ↑ - + - RPEp and PPEn

12 ↓ ↓ - + + RPEp and PPEp

13 ↑ ↑ - - - RPEn and PPEn

14 ↑ ↓ - - + RPEn and PPEp
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Table 2.

AIC values for both subjects across all tested models.

Subject Distance
estimate

Parameters included in the model

TS
SG
SD

TS
SG

TS
SD

SG
SD

TS SG SD

R logarithmic 700 706 703 735 709 902 763

linear 706 710 709 737 713 902 759

Q logarithmic 955 981 959 964 984 1112 979

linear 952 975 956 958 980 1107 972
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