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Abstract
Background  Genetic variations of some driver genes in 
non-small cell lung cancer (NSCLC) had shown potential 
impact on immune microenvironment and associated with 
response or resistance to programmed cell death protein 1 
(PD-1) blockade immunotherapy. We therefore undertook 
an exploratory analysis to develop a genomic mutation 
signature (GMS) and predict the response to anti-PD-(L)1 
therapy.
Methods  In this multicohort analysis, 316 patients with 
non-squamous NSCLC treated with anti-PD-(L)1 from three 
independent cohorts were included in our study. Tumor 
samples from the patients were molecularly profiled by 
MSK-IMPACT or whole exome sequencing. We developed a 
risk model named GMS based on the MSK training cohort 
(n=123). The predictive model was first validated in the 
separate internal MSK cohort (n=82) and then validated in 
an external cohort containing 111 patients from previously 
published clinical trials.
Results  A GMS risk model consisting of eight genes 
(TP53, KRAS, STK11, EGFR, PTPRD, KMT2C, SMAD4, and 
HGF) was generated to classify patients into high and 
low GMS groups in the training cohort. Patients with high 
GMS in the training cohort had longer progression-free 
survival (hazard ratio (HR) 0.41, 0.28–0.61, p<0.0001) 
and overall survival (HR 0.53, 0.32–0.89, p=0.0275) 
compared with low GMS. We noted equivalent findings 
in the internal validation cohort and in the external 
validation cohort. The GMS was demonstrated as an 
independent predictive factor for anti-PD-(L)1 therapy 
comparing with tumor mutational burden. Meanwhile, 
GMS showed undifferentiated predictive value in patients 
with different clinicopathological features. Notably, 
both GMS and PD-L1 were independent predictors and 
demonstrated poorly correlated; inclusion of PD-L1 with 
GMS further improved the predictive capacity for PD-1 
blockade immunotherapy.
Conclusions  Our study highlights the potential 
predictive value of GMS for immunotherapeutic benefit 
in non-squamous NSCLC. Besides, the combination 
of GMS and PD-L1 may serve as an optimal partner 
in guiding treatment decisions for anti-PD-(L)1 based 
therapy.

Introduction
Despite recent years have witnessed consid-
erable successes of immunotherapy with 
immune-checkpoint inhibitors (ICIs) in 
treating non-small cell lung cancer (NSCLC), 
there still existed unneglectable limitations 
since its unsatisfactory response rate.1 2 
Emerging biomarkers have been identified 
to predict therapeutic benefit, those related 
to increased expression of tumor specific 
neo-antigens, such as tumor mutational 
burden (TMB)3 4 and those indicated inflam-
matory tumor microenvironment (TME), 
such as programmed cell death ligand-1 
(PD-L1) protein expression on cancer and 
antigen-presenting cells.5 6 Unfortunately 
however, drawbacks still remained in current 
biomarkers. The intra/intertumor heteroge-
neity, non-standardized cut-off value, unsatis-
factory predictive power, and relatively high 
cost-effectiveness have none the less restricted 
the clinical application of existing signatures, 
highlighting the critical need to discover 
more effective and precise biomarkers.

NSCLC typically harbors higher mutation 
load which can stimulate stronger antitumor 
immune response. TMB is thus preferen-
tially capable of predicting clinical benefit 
of immunotherapy for NSCLC,7 irrespective 
of PD-L1 expression.3 8 Recent studies also 
certified the robust association of TMB and 
response to ICI.9 Despite these discoveries, 
however, TMB is still imperfect. Instead of 
focusing on specific mutation itself, TMB 
simply puts emphasis on the number of muta-
tions in each tumor’s genome. But numerous 
mutations may exert different, or negative 
influences on the outcome and some TMB 
high patients may harbor decisive muta-
tions (STK11/LKB1, B2M, and so on) which 
have been demonstrated closely related to 
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immunotherapy resistance, leading to their unrespon-
siveness to ICIs.10 11

We therefore set out a study to build a risk model based 
on gene-mutation profiles of patients with non-squamous 
NSCLC treated with anti-PD-(L)1 based therapy to 
develop a comprehensive molecular signature that can 
predict immunotherapy responsiveness in patients with 
NSCLC. Taking all these decisive mutations into consider-
ation, we aimed to establish such a pattern to better cover 
the shortages of existing biomarkers.

Methods
Clinical cohorts
We collated data from previous published clinical 
cohorts of patients with advanced NSCLC treated with 
anti-PD-(L)1 based therapy. A total of 240 patients with 
NSCLC who were treated with anti-PD-(L)1 therapy alone 
or in combination with anti-CTLA-4 between April 2011 
and January 2017 were selected retrospectively from 
Memorial Sloan Kettering Cancer Center (MSKCC) 
dataset, among which 205 patients with non-squamous 
NSCLC. Computer-generated random numbers were 
used to assign these patients with non-squamous NSCLC 
(3:2) into a training cohort consisting of 123 patients and 
an internal validation cohort consisting of 82 patients.

A total of 111 patients with non-squamous NSCLC 
treated with anti-PD-(L)1 based therapy in previ-
ously published clinical trials (CheckMate-012, n=59; 
KEYNOTE-001, n=30; Stand Up To Cancer, n=22) were 
identified as external validation cohort. Clinical informa-
tion and DNA sequencing data were obtained from previ-
ously published article.7 12 13 Key variables of these above 
cohorts including demographic and clinical information 
have been provided in online supplementary table S1.

Study design
This multicohort study consisted of a three-step approach 
(training, internal validation, and external validation) to 
verify the predictive value of genomic mutation signature 
(GMS) for PD-(L)1 blockade immunotherapy. We devel-
oped the risk model of GMS based on the clinical informa-
tion and gene mutation profiles of MSK training cohort. 
The predictive model was first validated in the separate 
internal MSK cohort and then validated in the external 
clinical trial cohort. Furthermore, our predictive model 
was also tested in two independent lung adenocarcinoma 
cohorts without immune checkpoint inhibitors (ICIs) 
treatment (TCGA and MSK non-ICI cohort) to confirm 
whether GMS functioned as a prognostic biomarker in 
non-squamous NSCLC (online supplementary figure S1).

Analysis of mutational data
The MSK cohort was molecularly profiled by MSK-
IMPACT Sequencing. The DNA sequencing data were 
retrieved from the cbioportal (http://www.​cbioportal.​
org/) or previously published studies.14 MSK-IMPACT 
sequencing, based on the MSK-IMPACT assay, was 

performed as previously described.15 Germline variants 
were eliminated through the use of patient-matched DNA 
extracted from blood. To normalize somatic TMB across 
panels of various sizes, the total number of mutations was 
divided by the coding region captured in each panel, 
which covered 0.98, 1.06, and 1.22 megabases (Mb) in the 
341-gene, 410-gene, and 468-gene panels, respectively.

External validation cohorts, including CheckMate-012, 
KEYNOTE-001, and Stand Up To Cancer, were profiled 
by whole exome sequencing, which were performed as 
previously described.12 13 Somatic Single Nucleotide 
Polymorphims (SNPs) were identified by MuTect, with 
computational filtering of artifacts introduced by DNA 
oxidation during sequencing or Formalin Fixed and 
Parafiin Embedded (FFPE)-based DNA extraction using a 
filter-based method that mutations with allelic fractions of 
less than 0.05 or coverage of ≤30× were excluded. Indelo-
cator (http://www.​broadinstitute.​org/​cancer/​cga/​inde-
locator) was applied to detect small indels. Annotation 
of the variants identified was performed using Oncotator 
(http://www.​broadinstitute.​org/​cancer/​cga/​oncotator).

Mutated genes included in our analysis were restricted 
to non-silent mutations consisting of nonsense mutation, 
missense mutation, frameshift mutation, inframe muta-
tion, splice site mutation, translation start site mutation, 
and nonstop mutation. Some driver mutations, such as 
EGFR and KRAS, of lung cancer included in our GMS 
model were defined as genetic mutations in specific exon 
site. One of the driver mutations, EGFR, consists of muta-
tions in exon 18 to exon 21, while KRAS consists of muta-
tions in exon 2 and exon 3.

Outcome
Outcomes of this study included progression-free survival 
(PFS), overall survival (OS), and objective response rate 
(ORR). PFS was defined as the time from the start of anti-
PD-(L)1 treatment to the first occurrence of a progres-
sion event according to Response Evaluation Criteria in 
Solid Tumors (RECIST) V.1.1 or death. OS was defined 
as the time from the start of anti-PD-(L)1 treatment to 
death or the date of the last follow-up. ORR was assessed 
by investigator-assessed RECIST 1.1, efficacy also was 
defined as durable clinical benefit (DCB: complete 
response (CR)/partial response (PR) or stable disease 
(SD) that lasted >6 months) or no durable benefit (PD or 
SD that lasted ≤6 months).

Statistical analysis
Statistical analyses were conducted using GraphPad Prism 
(V.7.01), R, and SPSS V.22.0 (SPSS). We used R program-
ming language for χ² test of the correlation between 
individual gene mutation frequencies and the ORR in 
MSK cohorts. Maximally selected rank statistics was used 
to determine the optimal cut-point for GMS, which was 
performed by the survminer R package.16 PFS and OS 
were calculated using the Kaplan-Meier method and the 
log-rank test, and HRs were calculated using a univar-
iate Cox regression analysis. We adopted multivariate 
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Table 1  Multivariable Cox regression analysis of candidate 
mutation genes in training cohort for progression-free 
survival

Variable B HR 95% CI P value

KRAS 0.359 0.698 0.447 to 1.091 0.112

STK11 −0.398 1.489 0.919 to 2.411 0.115

TP53 0.320 0.726 0.471 to 1.119 0.149

EGFR −0.459 1.583 0.906 to 2.766 0.120

PTPRD 0.413 0.661 0.371 to 1.179 0.142

KMT2C 0.643 0.526 0.270 to 1.025 0.043

SMAD4 −1.156 3.177 1.312 to 7.692 0.023

HGF 1.091 0.336 0.130 to 0.868 0.009

B, regression coefficient; CI, confidence interval; HR, hazard ratio.

Cox regression analysis using backward selection to test 
the independent significance of different genes, and 
the p value threshold was 0.15 (p>0.15) for removing 
non-significant variables from the analysis. A GMS risk 
model consisted of these selected genes was developed 
based on the multivariable Cox regression analysis. ORRs 
in different subgroups based on GMS and PD-L1 were 
analyzed using a χ² test. Forest plots of HRs for PFS in 
subgroup analysis comparing GMS-high with GMS-low 
were performed by using Review Manager V.5.3 (RevMan, 
Cochrane Collaboration, Oxford, England).

Results
Development of genomic mutation signature (GMS)
To define a GMS associated with patients who would 
gain clinical benefit from anti-PD-(L)1 based therapy, we 
studied 205 MSK patients with non-squamous NSCLC and 
classified them into training (n=123) and internal valida-
tion (n=82) cohorts. We first performed a χ² test of the 
correlation between each gene mutation and the ORR of 
patients treated with anti-PD-(L)1 based therapy in the 
MSK training cohort. Thus, we screened 18 candidate 
genes potentially related to the response of anti-PD-(L)1 
therapy according to the criteria of χ² test p≤0.15 and gene 
mutation frequency ≥5%, on the basis of their potential 
biological significance and detecting power in the analysis 
which was indicated in the previous study17 and reducing 
bias resulted from rare mutations (online supplementary 
table S2). Then, a multivariable Cox regression analysis 
of these candidate mutation genes was performed for the 
PFS in the MSK training cohort. Finally, eight genes (TP53, 
KRAS, STK11, EGFR, PTPRD, MLL3/KMT2C, SMAD4, and 
HGF) were identified associated with PFS independently 
in the training cohort (table 1), with no significant differ-
ence observed in mutation frequency among cohorts 
(online supplementary table S3). A risk model defined 
as GMS was calculated for each patient using a formula 
derived from the mutation status (1 or 0) of these eight 
genes weighted by their regression coefficient.

GMS score = (0.320×TP53) + (0.359×KRAS) – 
(0.459×EGFR) – (0.398×STK11) + (0.413×PTPRD) + 
(0.643×MLL3/KMT2C) – (1.156×SMAD4) + (1.091×HGF).

We assessed the association of clinical and molecular 
features including individual genes, GMS, and other 
known biomarkers (TMB and PD-L1) with response to 
anti-PD-(L)1 based immunotherapy. We observed that 
single mutation from the primary 18 candidate genes 
presented comparatively dispersive associations with 
response to ICI treatment, suggesting single mutation 
was not sufficient to define the whole landscape of anti-
tumor immune response, while the GMS risk score stood 
comparison with the known biomarkers as TMB and 
PD-L1 (figure 1).

We next used the maximally selected rank statistics 
based on GMS score and PFS to determine the optimal 
cut-point to separate patients into GMS-high (>0.565) 
and GMS-low (≤0.565) groups in the training cohort 
(figure  2A). The GMS model classified 37 (30.1%) of 
123 patients into the GMS-high group and 86 (69.9%) 
patients into the GMS-low group in the training cohort. 
With the help of GMS, we observed a general pattern of 
favorable objective response (PR/CR) in patients who 
had higher GMS score (online supplementary figure 
S2A), and Kaplan-Meier survival curves showed patients 
with higher GMS obtained significant longer PFS (6.63 
vs 2.50 months, HR 0.41, 0.28–0.61, p<0.0001, figure 2B) 
and OS (not reached vs 13.00 months, HR 0.53, 0.32–
0.89, p=0.0275; figure 2C) than those with lower GMS in 
the training cohort.

Validation of the predictive value of GMS for anti-PD-(L)1 
therapy
To prove the generalization of GMS in predicting the effi-
cacy of anti-PD-(L)1 therapy, we first validated the predic-
tive value of GMS in the internal validation cohort. Using 
the optimal cut-off value determined in the training 
cohort, the MSK internal validation cohort was sepa-
rated into 29.3% GMS-high and 70.7% GMS-low patients. 
A general pattern of favorable objective response (PR/
CR) was observed in patients who had higher GMS score 
(online supplementary figure S2B). Kaplan-Meier survival 
curves showed patients with higher GMS obtained signifi-
cant longer PFS (PFS: 9.20 vs 2.67 months, HR 0.42, 0.25–
0.69, p=0.0018, figure 2D) and OS (not reached vs 14.0 
months, HR 0.26, 0.13–0.54, p=0.0057, figure  2E) than 
those with lower GMS.

To further confirm the predictive value of GMS for 
the response of immunotherapy across cohorts, we 
validated the risk model in previously published clin-
ical trial cohorts. In the external validation cohort, the 
GMS model discriminated 34 (30.6%) patients from 
111 ones into the GMS-high group and 77 (69.4%) 
patients into the GMS-low group. Patients with higher 
GMS score were prone to obtain favorable objective 
response (figure  3A), and notably, patients in GMS-
high group demonstrated favorable PFS than those in 
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Figure 1  Summary of clinical and molecular features associated with response of anti-PD-(L)1 based therapy in three cohorts 
with non-squamous NSCLC. Individual patients are represented in each column, sorted by progression-free survival time and 
treatment response (CR/PR or SD/PD). PD-L1 expression is stratified as 0%, 1%–49%, or ≥50%. NsM or mutations/megabase, 
and GMS score from each cohort are shown in histograms. Categories of smoking status (never or ever) and clinical benefit 
(DCB or NCB) are characterized. The occurrences of selected genes in each case are represented in the OncoPrint. CR, 
complete response; DCB, durable clinical benefit; GMS, genomic mutation signature; NDB, no durable benefit; NSCLC, non-
small cell lung cancer; NsM, nonsynonymous mutations; PD-(L)1, programmed cell death (ligand)1; PR, partial response; SD, 
stable disease; TMB, tumor mutation burden.

GMS-low group (22.14 vs 4.11 months, HR 0.31, 0.20–
0.48, p<0.0001; figure 3B).

Predictive and prognostic role of GMS in non-squamous 
NSCLC
We next verified whether GMS was an independent 
predictor for immunotherapy. Univariable and multivari-
able analysis of clinicopathological factors in the MSK 
cohort (n=205) for PFS and OS were performed. The 
GMS, TMB, and smoking status were correlated with PFS 
in univariable analysis. After multivariable adjustment by 
clinicopathological variables, GMS remained the exclu-
sively independent predictive factor for both PFS (HR 
0.39, 0.27–0.56; p<0.001) and OS (HR 0.43, 0.26–0.71; 
p=0.001) (table 2).

Since the GMS risk model consisted of several driver 
genes of lung cancer, we also investigated the prog-
nostic role of GMS in two lung adenocarcinoma (MSK 
non-ICI and The Cancer Genome Atlas (TCGA)) 
cohorts without the treatment of immune check-
point inhibitors. There was no significant difference 
between GMS-high and GMS-low group in both the 
MSK non-ICI cohort, which consisted of patients with 
stage IV cancer (n=1105, HR 0.82, 0.62–1.10; p=0.1663, 
figure  3C), and the TCGA cohort, which mainly 
contained patients with early stage cancer (n=520, HR 

1.16, 0.84–1.60; p=0.3711, figure 3D), suggesting that 
GMS functioned as a predictive biomarker but not a 
prognostic biomarker.

Applicability of GMS in patients with different clinical 
characteristics
We next investigated whether GMS risk model was appli-
cable in different populations or restricted to certain 
specific groups. A univariate subgroup analysis of PFS 
was performed in the three cohorts according to base-
line clinical and biological characteristics. High GMS 
score was significantly associated with increased PFS in 
patients regardless of their age (≤65 vs >65) and gender 
(male vs female). Meanwhile, GMS showed undiffer-
entiated predictive value for anti-PD-(L)1 therapy 
in patients regardless of their treatment lines (1st vs 
≥2nd), treatment types (monotherapy vs combination 
treatment) and whether the patients were included in 
the clinical trials or not. More importantly, we also iden-
tified that GMS could be served as an effective predictor 
in patients independent of their PD-L1 expression level 
(≥50% vs 1%–49% vs 0), suggesting GMS was a potential 
biomarker for anti-PD-(L)1 therapy in non-squamous 
NSCLC with different clinical characteristics (figure 4).
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Figure 2  GMS in MSK training and internal validation cohort of patients with non-squamous NSCLC treated with anti-PD-
(L)1 based immunotherapy. (A) Survminer R package determine the optimal cut-point to separate patients into GMS-high and 
GMS-low groups based on GMS score and progression-free survival in the training cohort. Kaplan-Meier estimates of (B) 
progression-free survival and (C) overall survival according to GMS status in MSK training cohort. Kaplan-Meier estimates of 
(D) progression-free survival and (E) overall survival according to GMS status in MSK internal validation cohort. GMS, genomic 
mutation signature; MSK, Memorial Sloan Kettering; NSCLC, non-small cell lung cancer.

The significance of combining GMS with PD-L1 for the 
prediction of anti-PD-(L)1 therapy
Recent studies have highlighted the relevance of TMB or 
PD-L1 with response to PD-1 blockade immunotherapy. 
We collected whole data from the patients in three cohorts 
with valid TMB, PD-L1, and GMS results. There were 156 
non-squamous NSCLC with complete data included for the 

univariable and multivariable analysis of PFS. We observed 
that GMS, TMB, PD-L1, and smoking status equally served 
as effective predictors for PFS in the univariable analysis. 
However, multivariable analysis demonstrated that GMS 
(HR 0.30, 0.19–0.49; p<0.0001) and PD-L1 (HR 0.64, 0.44–
0.93; p=0.020) were two independent predictors for anti-
PD-(L)1 treatment (table 3).
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Figure 3  GMS analysis in external validation cohort of patients with non-squamous NSCLC treated with anti-PD-(L)1 therapy 
or without the treatment of immune checkpoint inhibitors. (A) The association of GMS score with PFS time and objective 
response rate in external validation cohort. Vertical and horizontal dashed lines were indicated as GMS cut-point (0.565) and 
PFS≥6 months (durable clinical benefit), respectively. (B) Kaplan-Meier estimates of PFS by GMS in external validation cohorts 
treated with anti-PD-(L)1. Kaplan-Meier estimates of overall survival by GMS in (C) MSK and (D) TCGA lung adenocarcinoma 
cohorts without the treatment of immune checkpoint inhibitors. GMS, genomic mutation signature; MSK, Memorial Sloan 
Kettering; NSCLC, non-small cell lung cancer; PFS, progression-free survival; TCGA, The Cancer Genome Atlas.

Given that GMS and PD-L1 were independent predic-
tors, we next investigated the correlation between these 
two biomarkers. As expected, we found there were few 
patients overlapped when GMS>0.565 (cut-point) and 
PD-L1 ≥50%, indicating these two biomarkers were poorly 
correlated (online supplementary figure S3A). Based on 
these above findings, we speculated the combination of 
GMS and PD-L1 might function as synergistic factors for 
the prediction of immunotherapy. Kaplan-Meier analysis 
of MSK cohort revealed patients with dual positive of GMS 
and PD-L1 (GMShighPD-L1high: GMS>0.565, PD-L1 ≥1%) 
obtained favorable PFS than either single positive (GMShigh 
or PD-L1high) or dual negative (GMSlowPD-L1low, 14.50 vs 
5.47 vs 2.10 months, p<0.0001, figure 5A). Since there was 
no significant difference between GMShighPD-L1low and 
GMSlowPD-L1high (online supplementary figure S4) and 
individual group would have lesser sample size if they were 
taken apart, we combined these two situations together as 
GMShigh or PD-L1high group. Analysis of objective response 
also supported that GMShighPD-L1high subgroup repre-
sented increased proportion of PR/CR than that of other 

two groups (50% vs 22.2% vs 3.2%, p=0.001, figure 5C). The 
GMShighPD-L1high group also had significantly prolonged 
PFS compared with other two subgroups in external vali-
dation cohorts (22.14 vs 6.50 vs 5.09 months, p=0.0012, 
figure 5B). Similarly, increased proportion of PR/CR was 
observed in the GMShighPD-L1high group than the other two 
groups in the external validation cohort (62.5% vs 30.3% vs 
13.6%, p=0.002, figure 5D). These findings suggested that 
the inclusion of PD-L1 with GMS might further improve 
the predictive value for the response to anti-PD-(L)1 based 
therapy.

Discussion
Cancer immunotherapy, especially ICIs, is epoch-
making, but only a proportion of patients can derive 
durable benefits from it; more accurate biomarkers are 
thus highly needed. In this multicohort retrospective 
study, we developed and validated a novel tool consisting 
of eight genes which can better predict the efficacy 
of PD-1 blockade immunotherapy in non-squamous 
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Table 2  Univariate and multivariable Cox regression analysis of predictive factors in MSK cohort (n=205) treated with anti-PD-
(L)1 for progression-free survival and overall survival

Variable

Univariate analysis Multivariate analysis

HR 95% CI P value HR 95% CI P value

Progression-free survival

 � GMS (high vs low) 0.39 0.27 to 0.56 <0.001 0.39 0.27 to 0.56 <0.001

 � TMB (high vs low) 0.61 0.45 to 0.83 0.001  �

 � Gender (male vs female) 0.97 0.72 to 1.31 0.843  �

 � Age (≥65 vs <65 years) 1.14 0.84 to 1.54 0.403  �

 � Smoking (Ever vs Never) 0.69 0.48 to 0.99 0.042  �

Overall survival

 � GMS (high vs low) 0.43 0.26 to 0.71 0.001 0.43 0.26 to 0.71 0.001

 � TMB (high vs low) 0.95 0.64 to 1.42 0.794  �

 � Gender (male vs female) 1.10 0.73 to 1.64 0.655  �

 � Age (≥65 vs <65 years) 1.24 0.83 to 1.85 0.302  �

 � Smoking (ever vs never) 0.97 0.59 to 1.58 0.896  �

The cut-point for high-TMB and low-TMB was defined as the median value.
The p values in bold were statistically significant.
CI, confidence interval; GMS, genomic mutation signature; HR, hazard ratio; MSK, Memorial Sloan Kettering; PD-(L)1, programmed cell death 
(ligand)1; TMB, tumor mutation burden.

Figure 4  Subgroup analysis of GMS for progression-free survival from three cohorts according to baseline clinicopathological 
characteristics. HR of each subgroup was obtained from univariate analysis. Pooled HRs for each subgroup was computed 
using fixed-effects model. The bars indicate 95% CI. GMS, genomic mutation signature; PD-(L)1, PD-L1, programmed cell 
death ligand-1.

NSCLC. Our study demonstrated that GMS can stratify 
patients into benefited subgroups, who had signifi-
cant PFS and OS advantage, and non-benefited ones, 
in three independent ICIs-treated cohorts. It is also 

worth noting that instead of whole genome assay, our 
GMS may significantly decrease the cost-effectiveness 
by simplifying the test into a small panel of eight deci-
sive common genes, which makes it easier to implement 
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Table 3  Univariate and multivariable Cox regression analysis of progression-free survival in three anti-PD-(L)1 treated cohorts 
with valid TMB, PD-L1, and GMS data (n=156)

Variable

Univariate analysis Multivariate analysis

HR 95% CI P value HR 95% CI P value

GMS (high vs low) 0.29 0.18 to 0.45 <0.001 0.30 0.19 to 0.49 <0.001

TMB (high vs low) 0.43 0.30 to 0.63 <0.001  �

PD-L1 (≥1% vs <1%) 0.53 0.36 to 0.76 0.001 0.64 0.44 to 0.93 0.020

Gender (male vs female) 0.92 0.60 to 1.40 0.691  �

Age (≥65 vs <65 years) 1.07 0.75 to 1.52 0.721  �

Smoking (ever vs never) 0.56 0.37 to 0.84 0.006  �

The p values in bold were statistically significant.
CI, confidence interval; GMS, genomic mutation signature; HR, hazard ratio; PD-L1, programmed cell death ligand 1; TMB, tumor mutation 
burden.

Figure 5  Association of a combination of GMS and PD-L1 with response to anti-PD-(L)1 therapy. Kaplan-Meier estimates 
of progression-free survival classified by the status of GMS and PD-L1 in (A) MSK cohort and (B) external validation cohorts. 
Proportional representation of objective response rate among subgroups categorized by GMS and PD-L1 in (C) MSK cohort 
and (D) combined external validation cohorts. GMS, genomic mutation signature; MSK, Memorial Sloan Kettering; PD-L1, 
programmed cell death ligand-1.

https://www.so.com/link?m=aLOxvgnwK2YBFvSmhYHcTnQe0UTnBi%2FBwtWvuU3OwZUQJDEWQFTg0PipIEwEYGcJl7AEe8mo32NFRGQJTnT7GJeKZQBr5hlLFvZ%2BEkumpAX3MCYTe


9Bai X, et al. J Immunother Cancer 2020;8:e000381. doi:10.1136/jitc-2019-000381

Open access

in clinical praxis, allowing for a more affordable and 
large-scale approach.

Emerging evidence has indicated that carcinogenesis 
driver genes can modulate tumor immune milieu, espe-
cially in lung adenocarcinoma.18–21 Nevertheless, single 
alteration may not be sufficient enough to turn the tide 
and thus is likely not a sufficiently comprehensive stand-
alone biomarker for ICIs. For example, TP53 alteration 
significantly increased PD-L1 expression and immune 
cytolytic activity related genes, but the mutation alone was 
not able to distinguish sensitive patients from receiving 
immunotherapy in lung adenocarcinoma, however those 
with co-occurring TP53/KRAS responded remarkably well 
to PD-1 blockade therapy,22 indicating a necessity of a 
model combining different genes together. We therefore 
established a model to include most of the possible deci-
sive genes together, and found eight genes that can effec-
tively distinguish sensitive patients. Each of these genes 
may exert impact on the immune contexture or immune 
response in some way; thus, our signature has biological 
meaning and theoretical rationality. In addition to TP53/
KRAS, EGFR mutation, which occurred nearly exclusively 
in adenocarcinoma, is associated with an uninflamed 
TME and poor immunogenicity, resulting in impaired 
response to PD-1 inhibitors,22 while STK11 alteration, 
correlated with a “cold” immune microenvironment, has 
been acknowledged as the most prevalent driver gene 
for primary resistance to PD-1 blockade immunotherapy 
in KRAS-mutant lung adenocarcinoma.10 Additionally, 
SMAD4 mutation is associated with upregulation of extra-
cellular matrix genes in cancer, which is linked to cancer 
immune evasion through TGF-β signaling activation.23 As 
a result, our GMS holds promise in predicting immuno-
therapy efficacy since almost each of these eight genes 
might indicate underlying tumor-immune interactions.

Preferable immunotherapy responses tended to be 
observed in carcinogen-driven cancer, such as melanoma 
and NSCLC,24 both of them typically possessing higher 
mutational load, and TMB is thus a particularly suitable 
biomarker for NSCLC. But it still has limitations; there 
are still some patients with high TMB who do not respond 
and vice versa. One of the important reasons is that TMB 
only focuses on the quantity of mutations, but functional 
heterogeneity of gene alterations potentially shaping 
tumor-immune landscape has been diluted. Common 
mutated genes, including activation of oncogenes and 
loss of tumor suppressor genes, may influence the recruit-
ment, activation or restraining the immune milieu,25 
as we mentioned above, STK11 alteration may lead to 
primary resistance to ICIs.10 Additionally, gene defects 
in the pathways involved in interferon-receptor signaling 
and in antigen presentation, such as JAK1, JAK2, IFNGR1, 
and B2M, were found to be associated with acquired 
resistance to ICIs.11 26 Carrying these mutations, even 
though the TMB may be high, patients tend to respond 
poorly to ICIs. As a result, roughly determine the predic-
tive effect on the overall burden of mutations is far from 
sufficient. Further, we recognized that GMS was positively 

correlated with TMB in the MSK (R2=0.230, p<0.0001, 
online supplementary figure 5A) and the external valida-
tion cohorts (R2=0.264, p<0.0001, online supplementary 
figure 5B). Besides, 51 patients overlapped when TMB 
≥upper quantile (64.6%) and GMS>0.565 (54.3%), which 
demonstrated high correlation between them (online 
supplementary figure 3B). In addition, GMS rather than 
TMB is an independent predictor in our multivariate anal-
ysis, indicating GMS might in some way cover TMB with 
more predictive power. We had also checked the possi-
bility of combining TMB with GMS together to predict 
the efficacy and found out that patients with GMShighTM-
Bhigh did not obtain favorable PFS than patients with 
GMShighTMBlow (p=0.7971) (online supplementary figure 
6A). Further, adding TMB to the combination model of 
GMS and PD-L1 might bring relatively limited improve-
ment (online supplementary figure 6B).

Importantly, our risk model holds great promise by its 
broad applicability; GMS showed equivalent predictive 
value for anti-PD-(L1) therapy in the cohorts regardless 
of the treatment lines (1st vs ≥2nd) and treatment types 
(monotherapy vs combination treatment). However, 
PD-L1 protein expression is flawed as a biomarker in this 
regard, although it is applicable for efficacy predicting of 
anti-PD-(L)1 monotherapy; for example, pembrolizumab 
is approved for patients with NSCLC who are PD-L1 posi-
tive; it notoriously lacks predictive power for response to 
combination immunotherapy.3 Taking this step further, 
we also noticed that GMS was able to be proposed as an 
effective predictor in patients regardless of their PD-L1 
expression level, suggesting that it can discriminate 
potential sensitive patients with low to no detectable 
PD-L1 expression who may experience DCB, making it 
a very meaningful work. In addition, we also explored 
the stability of our GMS model. We added the analysis of 
selecting the optimal cut-off value by ROC curve based on 
GMS scores and ORR. By calculating Youden index, the 
optimal cut-off value selected by ROC was 0.609 (online 
supplementary figure S7A). Only one patient and two 
patients changed their GMS group in the the training 
cohort and the internal validation cohort, respectively, 
while no difference was observed in the external valida-
tion cohort. We used the optimal cut-off value obtained 
by ROC to do the survival analysis in MSK cohorts and 
the results remained consistent (online supplementary 
figure S7B–F), indicating the robustness of our model 
from another point of view.

The parsimony and sensitivity of the GMS model 
was explored in our study. We limited the criterion for 
gene selection in multivariate Cox regression analysis 
to p≤0.10 and p≤0.05, respectively, where three GMS 
genes (MLL3/KMT2C, SMAD4, and HGF) were included 
for modeling in both cases. We also developed a model 
based on four well-established genes of GMS (TP53, 
KRAS, EGFR, and STK11). Nonetheless, neither of the 
two models was capable to predict both PFS and OS in 
the three cohorts (online supplementary figure S8). 
Furthermore, we demonstrate that GMS (the eight-gene 

https://dx.doi.org/10.1136/jitc-2019-000381
https://dx.doi.org/10.1136/jitc-2019-000381
https://dx.doi.org/10.1136/jitc-2019-000381
https://dx.doi.org/10.1136/jitc-2019-000381
https://dx.doi.org/10.1136/jitc-2019-000381
https://dx.doi.org/10.1136/jitc-2019-000381
https://dx.doi.org/10.1136/jitc-2019-000381
https://dx.doi.org/10.1136/jitc-2019-000381
https://dx.doi.org/10.1136/jitc-2019-000381
https://dx.doi.org/10.1136/jitc-2019-000381
https://dx.doi.org/10.1136/jitc-2019-000381
https://dx.doi.org/10.1136/jitc-2019-000381
https://dx.doi.org/10.1136/jitc-2019-000381


10 Bai X, et al. J Immunother Cancer 2020;8:e000381. doi:10.1136/jitc-2019-000381

Open access�

model) outperforms any other models regardless of 
cohorts according to HR (online supplementary table 
S4). In addition, to prove the non-randomness of GMS, 
thousands of randomly selected eight-gene models were 
established through computer simulation. We found that 
only around 5% (online supplementary table S5) of them 
were eligible, while those outperforming GMS were even 
rare (online supplementary table S6). These results indi-
cate that our GMS model is non-random and irreplace-
able, of which every gene plays a crucial role in predicting 
survival.

Several limitations should be addressed in our study. 
First, we recognized that low GMS group still had CR/
PR cases, which indicated that our model still was not 
able to precisely select all the responsive patients and 
non-responders from anti-PD-(L)1 therapy. However, 
intriguingly, when we looked into all the CR/PR cases 
in the MSK and the external validation cohorts and 
discriminated their PFS data between GMShigh and 
GMSlow groups, we discovered that GMShigh group still 
outperformed with longer PFS, which implied that 
patients with GMShigh were prone to have durable 
response (online supplementary figure S9). Nonethe-
less, there are still numerous cellular and molecular 
mechanisms involved in immunotherapy, for example, 
PD-L1 expression, that our GMS model may not 
cover all the possible situations in antitumor immune 
responses. Notably, we demonstrated that it is reason-
able to combine GMS with PD-L1 together and thus it 
might help make clinical decisions in NSCLC. Patients 
with GMShighPD-L1high should be preferentially recom-
mended for anti-PD-(L)1 therapy, while patients with 
GMShighPD-L1low or GMSlowPD-L1high can optionally 
consider anti-PD-(L)1 therapy; however patients with 
GMSlowPD-L1low should carefully choose anti-PD-(L)1 
therapy. Nevertheless, this GMS model and the clinical 
recommendation were still based on small cohorts and 
retrospective analysis. Heterogeneity existed among 
our cohorts. Most patients in the external validation 
cohort received first-line combination therapy, whereas 
the majority of MSK patients received second-line treat-
ment with anti-PD-1 monotherapy. There also existed 
internal heterogeneity in our external validation 
cohorts, composed by three different cohorts with low 
number of patients, different mutation panels, and so 
on. Therefore, further validation based on large-cohort, 
independent, prospective clinical trials are warranted 
in the future.

Conclusion
Ultimately, our study demonstrated that GMS might be 
an optional and cost-effective tool to predict responses 
to PD-1 blockade therapy in patients with non-
squamous NSCLC. Our quantitative model may enable 
rational, biology-driven personalized immunotherapy 
and is simple to be implemented in the real-world 
setting. Besides, this approach may also offer a research 

framework for constructing and evaluating response 
biomarkers of ICIs based therapy in other tumor types.
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