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ABSTRACT

This paper proposes a cluster-based method to analyze the evolution of multivariate time series and applies this to the COVID-19 pandemic.
On each day, we partition countries into clusters according to both their cases and death counts. The total number of clusters and individual
countries’ cluster memberships are algorithmically determined. We study the change in both quantities over time, demonstrating a close
similarity in the evolution of cases and deaths. The changing number of clusters of the case counts precedes that of the death counts by 32
days. On the other hand, there is an optimal offset of 16 days with respect to the greatest consistency between cluster groupings, determined
by a new method of comparing affinity matrices. With this offset in mind, we identify anomalous countries in the progression from COVID-
19 cases to deaths. This analysis can aid in highlighting the most and least significant public policies in minimizing a country’s COVID-19
mortality rate.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0013156

COVID-19 has resulted in a global pandemic with severe human,
social, and economic costs. In order to manage the economic
ramifications of prioritizing citizen safety, policymakers have
sought a multi-level approach involving social distancing, busi-
ness closures, and movement restrictions. For this purpose, a
careful identification of the most and least successful countries
at responding to the spread of COVID-19 is of great relevance.
This paper meets such a demand by developing a new method
to analyze multivariate time series, in which the variables are the
cumulative cases and death counts of each country on each day.
We have three goals: first, we analyze the cases and death counts
on a country by country basis; second, we analyze the two mul-
tivariate time series in conjunction to elucidate their similarity
further; and third, we determine anomalous countries relative to
cases and deaths.

I. INTRODUCTION

Understanding the trajectories of COVID-19 cases and death
counts assists governments in anticipating and responding to
the impact of the pandemic. As the disease spreads, the timely

identification of anomalous countries, both successful and unsuc-
cessful, provides opportunities to determine effective response
strategies. This analysis can be difficult as death counts naturally lag
behind case counts.

This paper builds on the extensive literature of multivari-
ate time series analysis, developing a new mathematical method
and a more extensive analysis of COVID-19 dynamics than previ-
ously performed. Existing methods of time series analysis include
parametric models,1 such as exponential2 or power-law models,3

and nonparametric methods, such as distance analysis,4 distance
correlation,5–7 and network models.8 Both parametric and nonpara-
metric methods have been used to model COVID-19.9,10

Cluster analysis is another common statistical method with
successful applications to COVID-19 and more broadly, epi-
demiology. Designed to group data points according to similar-
ity, cluster analysis has been used to study non-communicable
diseases,11,12 infectious diseases,13,14 and epidemic outbreaks such
as Ebola,15 SARS,16 and COVID-19.10 Clustering algorithms are
highly varied—common examples are K-means17 and spectral
clustering,18 which partition elements into discrete sets, and hier-
archical clustering,19,20 which does not specify a precise number
of clusters. In this paper, we will use hierarchical clustering,19,20
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K-means,17 and its optimal one-dimensional variant
Ckmeans.1d.dp.21 K-means and Ckmeans.1d.dp require an initial
choice of the number of clusters k. We draw upon several meth-
ods to address the subtle question of how to select this k. The goal
of this paper is to use a dynamic and smoothed implementation
of cluster analysis to study the worldwide spread of COVID-19,
track the relationships between different countries’ cases and death
counts, and make inferences regarding the most successful strategies
in managing the progression from cases to deaths.

This paper is structured as follows: in each of the follow-
ing three sections, we introduce portions of our methodology and
present our results. Section II investigates the multivariate time
series of cases and deaths individually. Section III analyzes the two
time series in conjunction, determining suitable offsets for the num-
ber of clusters and the cluster memberships. Section IV determines
anomalous countries with respect to cases and deaths. Section V
summarizes the results and the new findings regarding COVID-19.

II. INDIVIDUAL ANALYSIS OF COVID-19 CASES AND

DEATHS

A. Time-varying cluster analysis methodology

The most general setup of our methodology is as follows: let

x(t)
i be a multivariate time series over an interval of length T, for

i = 1, . . . , n and t = 1, . . . , T, with each x(t)
i belonging to a com-

mon normed space X. Slightly different procedures apply if X is
one-dimensional, namely, R, or higher-dimensional.

In this paper, the two multivariate time series we present are the
cumulative daily counts of cases and deaths on a country by country
basis. We order the countries by alphabetical order and denote these

counts by x(t)
i , y(t)

i ∈ R, respectively. We choose cumulative counts to
best analyze the evolution of the disease over time. Our data spans
12/31/2019 to 04/30/2020, a period of T = 122 days across n = 208
countries.

Given the exponential nature of the data, we choose a loga-
rithmic difference as our metric. First, we do the following data
preprocessing: any entry in the data that is empty or 0—before any
cases are detected—we replace with a 1, so that the log of that num-
ber is defined. Then, we define a distance on case and death counts
by d(x, y) = | log(x) − log(y)|. Effectively, this pulls back the stan-
dard metric on R under the homeomorphism log : R

+ → R and
makes the positive real numbers a one-dimensional normed space.

The goal is to partition the counts x(t)
1 , . . . , x(t)

n into a certain
number of clusters at each time t. We wish to carefully choose the
number of clusters in such a way that provides us meaningful infer-
ence on how the data change. A wildly varying number of clusters
would obscure inference on individual countries’ cluster member-
ships changing with time. Thus, we combine several methods of
choosing this number to reduce the bias in our estimator and per-
form additional exponential smoothing to yield a suitably changing
number with time. In our experiments, we use six methods outlined
in Appendix A. These have been chosen after experimentation and
consultation with the literature, but our method is flexible and could
use any combination of methods. Given cluster numbers k(t)

1 , . . . , k(t)
6

offered by these methods, we compute the average k(t)
av = 1

6

∑6
j=1 k(t)

j .

This is not necessarily an integer; we do not compute clusters
directly with this value.

In our implementation, this average value k(t)
av exhibits itself

as approximately locally stationary. Thus, we apply exponential

smoothing to k(t)
av to produce a smoothed integer value k̂(t). We use

this value k̂(t) at each t to obtain a clustering at that time. As the
daily case and death data are one-dimensional, the most appropriate
clustering method is the optimal implementation of K-means spe-
cific to one-dimensional data, Ckmeans.1d.dp.21 We implement this

algorithm to group daily counts into k̂(t) clusters and sort the clusters
according to the ordering on R.

Similar experiments can also be performed for higher-
dimensional data. Analyzing three-day rolling counts of cases and

deaths x̃
(t)
i , ỹ(t)

i ∈ R
3 requires the use of standard K-means cluster-

ing. These yield similar results to the daily analysis and can be seen
in Appendix B.

B. Matrix analysis of multivariate time series

We record the results of this analysis in several sequences of
matrices. Having performed the data preprocessing described above,
first let D(t) be the n × n matrix of (logarithmic) distances between

counts x(t)
i at time t, that is, D(t)

ij = | log(x(t)
i ) − log(x(t)

j )|. Next, let

Aff(t) and G(t) be two different n × n affinity matrices defined as
follows:

Aff(t)ij = 1 −
D(t)

ij

max D(t)
, (1)

G(t)
ij = exp







−m2
(

D(t)
ij

)
2

2(max D(t))
2






. (2)

We term Aff(t) and G(t) standard and Gaussian affinity matrices,
respectively. These definitions are motivated by standard construc-
tions, but we appropriately normalize G for subsequent analysis. We
vary m = 1, 2, 3 in experiments so that the matrix entries mimic
Gaussian spreads over 1, 2, 3 standard deviations, respectively. Then,

let Adj(t) be an n × n adjacency matrix defined as follows:

Adj(t)ij =

{

1, x(t)
i and x(t)

j are in the same cluster,

0, else.

Finally, we define a distance on the set of dates
t = 1, . . . , T. Let the Frobenius norm of an n × n matrix A be

defined as ‖A‖ =
(

∑n
i,j=1 |aij|

2
)

1
2
. Given s, t ∈ [1, . . . , T], let d(s, t)

= ‖Adj(t) − Adj(s)‖. Performing hierarchical clustering on these dis-
tances d(s, t) produces a dendrogram on the set of dates that we
term the cluster evolution dendrogram. This groups moments in
time according to similarity in the evolving cluster structures. In
Appendix C, we include an algorithmic presentation of the steps
taken in Secs. II A and II B. In Appendix D, we include a list of
mathematical objects and their respective definitions used in this
paper.
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FIG. 1. Smoothed number of clusters k̂(t) as a function of time, defined in Sec. II A. In (a), the blue and orange curves track the number of clusters for cases and deaths,
respectively, from 12/31/2019 to 04/30/2020. In (b), the curves are shown after translation by the optimal series evolution offset, defined in Sec. III, computed to be δ = 32.
There is a strong similarity between the two curves up to this offset: both peak at 17 clusters before declining, suggesting reduced spread in the data.

C. Results for time series of cases

In this section, we implement Ckmeans.1d.dp21 on daily counts
of cases. Experiments using standard K-means on three-day rolling
counts of cases produce similar results included in Appendix B. Our
analysis supports several aspects of the empirically observed natu-
ral history regarding the spread of COVID-19 cases. The smoothed

number of clusters k̂(t), depicted in Fig. 1(a), ranges between
{2, . . . , 17}. Until the end of January, there were only two clusters,
with China being the only country severely impacted by the virus.
However, as the virus has spread around the world, reported counts
have changed day by day, with the number of clusters increasing
rapidly toward a peak in early March. As depicted in Fig. 2(a), Italy

FIG. 2. Heat maps track the changing cluster membership of the 15 most severely impacted countries with respect to their counts of (a) cases and (b) deaths, respectively.
Cluster membership, determined by Ckmeans.1d.dp, depicts COVID-19 severity relative to the rest of the world. Clusters are ordered with 1 being the worst impacted at any
time. Darker and lighter colors correspond to smaller and greater numbered cluster labels and represent worse and less affected clusters, respectively.
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was the first country to join the most severely impacted cluster,
with the United States (US), Spain, France, Germany, Iran, and the
United Kingdom (UK) all joining by late March. Subsequently, clus-
ter numbers slowly declined until the end of our analysis window
and appear to have stabilized. Indeed, the ranking of worst affected
countries has largely stabilized in April, producing more consistent
clustering results.

In Fig. 3(a), we depict the cluster evolution dendrogram for the
daily cases, defined in Sec. II B, to study the evolution of the cluster
structure. This uses hierarchical clustering to determine similarity
between adjacency matrices at different times, which encode the
cluster structure on each day. We exclude the first 50 days, in which
the cluster structure and associated adjacency matrices are all iden-
tical, with only China in its own cluster. The dendrogram identifies
two distinct clusters, the larger of which contains two meaning-
ful sub-clusters. All three (sub-)clusters identified are contiguous
intervals of dates, 02/19–03/01, 03/02–03/14, and 03/15–04/30. This
reveals a marked transition in cluster behavior on 03/02 for the case
counts, with a smaller transition on 03/15.

D. Results for time series of deaths

In this section, we implement Ckmeans.1d.dp21 on daily counts

of deaths. The smoothed number of clusters k̂(t), depicted in
Fig. 1(a), ranges between {1, . . . , 17}. The trajectory for number of
death clusters follows a similar pattern to that of cases, with a lag
of approximately one month. As with the case counts, our anal-
ysis highlights the key takeaways in severely impacted countries.
Although we have highlighted a one-month offset in the general
evolution of COVID-19 cases and deaths, there are dissimilarities
regarding the membership of the worst affected cluster. In mid-
March, China moved out of the worst cluster into the second death
cluster, demonstrating its relative success in responding to the pan-
demic. On the other hand, the US, Spain, Italy, France, and the UK
have recently moved into the worst cluster, as depicted in Fig. 2(b).
Examining cluster constituencies of cases and deaths over time
confirms that China has managed potential COVID-19 deaths rel-
atively effectively, while Italy, Spain, the UK, and the US have been
ineffective.

In Fig. 3(b), we depict the cluster evolution dendrogram, defined
in Sec. II B, for the daily deaths. We exclude the first 66 days, in
which the cluster structure and associated adjacency matrices are
all identical. Figures 3(a) and 3(b) show near-identical hierarchi-
cal clustering results for cases and deaths, respectively. Again, two
distinct clusters are identified, with two meaningful sub-clusters
within the larger cluster. All three (sub-)clusters are again contigu-
ous intervals of dates, 03/06–03/18, 03/19–03/30, and 03/31–04/30.
This reveals there is a marked transition in cluster behavior on 03/19
for the death counts, with a smaller transition on 03/31. These are 17
and 16 days later than the corresponding breaks for the case counts.

III. SERIES OFFSET ANALYSIS

In this section, we describe further analysis on two related mul-

tivariate time series x(t)
i and y(t)

i valued in a common normed space
X. With the application to COVID-19 in mind, we develop a new
method that can determine if there is an appropriate time offset

between the two time series. We perform several analyses for this
purpose; in Sec. IV, we can subsequently study anomalous individ-
ual countries. We adopt our notation from Sec. II, using subscripts
X or Y to refer to mathematical objects pertaining to the cases or
deaths counts.

First, we have already observed a clear offset in the evolution

of k̂(t) for the time series of cases and deaths and wish to determine
it precisely. We define the series evolution offset with respect to the

changing number of clusters as follows: let f(t) = k̂(t)
X and g(t) = k̂(t)

Y

be the smoothed number of clusters for each time series. Given an
offset δ, let fδ be the translated function defined by fδ(t) = f(t + δ).
Let the series evolution offset be the integer δ that minimizes the L1

distance between functions,

‖fδ − g‖L1 =

∫

|fδ(t) − g(t)|dt.

For our application, this offset is δ = 32, confirming the one-month
offset observation in Fig. 1(a).

Next, we determine the offset that minimizes the discrepancy
between affinity matrices AffX and AffY of the two time series. Given
an offset τ , let the normalized total offset difference between affinity
matrices be defined as follows:

1

T − |τ |

∑

1≤s,t≤T,t−s=τ

‖Aff(s)X − Aff(t)Y ‖. (3)

We normalize by the number of terms in this sum, which varies with
τ , for an appropriate comparison. When τ > 0 we can rewrite this
as follows:

1

T − τ

T−τ
∑

t=1

‖Aff(t)X − Aff(t+τ)

Y ‖.

Let the cluster consistency offset be the integer τ that minimizes the
normalized total offset difference. We can also do the same for the
offset with respect to the Gaussian affinity or adjacency matrices G
and Adj, respectively. All these matrices are normalized, so a com-
parison of their values is appropriate. We choose the normalization
parameter of the Gaussian affinity matrix in Eq. (2) for this pur-
pose. We standardize notation such that δ always refers to the series
evolution offset, while τ refers to the cluster consistency offset.

Results are displayed in Table I, with the optimal affinity matrix
offset determined in Fig. 4. To illustrate the flexibility of the method,
we choose different start dates for our offset analysis. The first 30
days carry some triviality in the cluster structure, with few cases
observed outside China, so it may be desirable to exclude them from
the analysis. Fortunately, the optimal offset differs only slightly with
different start dates.

The optimal cluster consistency offset is overwhelmingly
around 16. This confirms known medical findings22 indicating time
from diagnosis to death has generally been around 17 days. More-
over, this is consistent with the results of Fig. 3, where two breaks
in the cluster behavior occurred 17 and 16 days later in the death
counts relative to the case counts. This is quite different from the
series evolution offset of 32 days. While the cluster consistency offset
seeks to align the similarity of case and death counts among individ-
ual countries, the series evolution offset seeks to quantify the overall
spread of the data as a function of time.
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FIG. 3. Cluster evolution dendrograms, defined in Section II B for (a) cases and (b) deaths. These apply hierarchical clustering to the distance d(s, t) between adjacency

matrices Adj(t) at varying times t, thereby grouping different dates according to the cluster structures at these times. The y-axis excludes the first 50 days for cases and
66 days for deaths, as the cluster structure of counts is trivial before these periods, respectively. Each cluster is an unbroken interval of dates. There is a clear break in the
cluster structure between 03/01 and 03/02 for cases, and 03/18 and 03/19 for deaths, with a 17-day difference.
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TABLE I. Cluster consistency offset for various adjacency and affinity matrices at dif-

ferent starting dates. These are determined by minimizing the normalized total offset

difference in Eq. (3), as well as its analog for Gaussian and adjacency matrices. The

parameter m is defined in Eq. (2).

Optimal cases vs deaths offset

Start date
Gaussian

m = 1
Gaussian

m = 2
Gaussian

m = 3 Adj Aff

12/31/2019 16 16 16 20 16
01/13/2020 12 13 14 20 15
01/21/2020 12 13 14 19 15
01/31/2020 12 13 14 19 15

IV. ANOMALY ANALYSIS

Having identified a suitable offset between two multivariate
time series, one can then investigate the existence of any anomalies.
In this case, we use τ = 16 as the cluster consistency offset rela-
tive to affinity matrices, as depicted in Table I and then perform a
closer analysis of the affinity matrices to identify anomalous coun-
tries. Let Inc(t) be the n × n inconsistency matrix defined entry-wise

by Inc(t)
ij = |Aff(t)X,ij − Aff(t+τ)

Y,ij |, where the absolute value of each entry

is taken. Smaller entries indicate greater consistency between cases
and deaths, while greater entries indicate anomalous (inconsistent)
countries. Let the anomaly score of any individual country be defined

as a(t)
j =

∑n
j=1 Inc(t)

ij . Larger values indicate more anomalous coun-

tries and the sequence of anomaly scores can reveal the emergence
and disappearance of anomalies over time. Let the lag-adjusted death
rate for each country be defined as follows:

LDR(t)
j =

y(t)
j

x(t−τ)

j

, j = 1, . . . , n; t = τ + 1, . . . , T.

These ratios may be orders of magnitude higher than standard
reported death rates and are no longer bound between 0 and 1. This

FIG. 4. The normalized total offset difference as a function of the offset τ , defined
in Eq. (3). The convex nature of this plot indicates that τ = 16 is a globally optimal
value.

measure provides insight into the rate of spread and a country’s suc-
cess in minimizing the number of deaths, conditional on a given
number of cases τ days prior.

In Table II, we depict the results of ordering the ten most
anomalous countries, by anomaly score, from 01/28/2020 to
04/27/2020. In Fig. 5, we display the affinity matrices for cases and
deaths and the inconsistency matrix for 04/27/2020, with an offset
of τ = 16 from Table I. We only include countries that had at least
5000 cases as of 04/30/2020. Anomalies may signify either dispro-
portionately high or low number of deaths relative to the number of
cases.

This analysis supports several aspects of the empirically
observed spread of COVID-19, identifying the most and least suc-
cessful countries in the progression of cases to deaths. Early in

TABLE II. The ten most anomalous countries in progression from cases to deaths as defined by their anomaly score from Sec. IV and a lag of τ = 16. AE: United Arab Emirates,

AT: Austria, AU: Australia, BD: Bangladesh, BE: Belgium, BY: Belarus, CA: Canada, CN: China, DE: Germany, DO: Dominican Republic, ES: Spain, FR: France, ID: Indonesia,

IE: Ireland, IL: Israel, IN: India, IR: Iran, IT: Italy, JP: Japan, KR: South Korea, ME: Mexico, MY: Malaysia, NL: Netherlands, NO: Norway, QA: Qatar, SG: Singapore, SW: Sweden,

TR: Turkey, UA: Ukraine, UK: United Kingdom, US: United States, ZA: South Africa.

Ten most anomalous countries: inconsistency matrix analysis

Date A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

01/28/2020 US UK IT IL IE IR ID IN DE FR
02/07/2020 US DO IT IL IE IR ID IN DE FR
02/17/2020 SG JP KR AU MY US DE FR AE CA
02/27/2020 IR SG MY IT AU US DE UK AE CA
03/08/2020 IT IR SG MY DE AE CA JP ES US
03/18/2020 ES SG IT IR AE UK NL FR US KR
03/28/2020 QA ES TR UK SG KR AE BY US IT
04/07/2020 QA SG KR UK CN UA NO ZA AU TR
04/17/2020 BD QA SG UK AU KR BE ZA AT FR
04/27/2020 QA SG BD ME AU UK SW BE DE IL
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FIG. 5. (a) depicts the affinity matrix for case counts at 04/27/2020, (b) depicts the deaths affinity matrix for 04/11/2020, and (c) depicts the inconsistency matrix with an offset
of τ = 16 from Table I. Only countries with greater than 5000 cases at 04/30 are included and ordered alphabetically along the axes. The more prominent the respective
row and column in the inconsistency matrix, the more anomalous the country. The three most prominent anomalies in (c) are Qatar, Singapore, and Bangladesh.

the global spread of COVID-19, Iran and Italy were internationally
known as countries that were struggling to contain the number of
deaths.23 Table II identifies both as anomalous on 02/27/2020 and
03/08/2020, reflecting their sharp rise in deaths even before other
severely impacted countries. On the other hand, Singapore is iden-
tified as anomalous during this period due to its relatively small
number of deaths. As at 03/07/2020, Singapore had 130 COVID-19
cases and 0 deaths.

A similar trend continued until late March, during which Spain
and Italy are identified as the most consistently anomalous countries
due to their high death rates. The lag-adjusted death rates for Spain
and Italy are 227% and 73.3%, respectively. Indeed, the number of
deaths in Spain on 03/28/2020 was more than two times greater than
the number of cases 16 days earlier. This confirms the severity of
the COVID-19 pandemic: Spain and Italy suffered a large number
of deaths within a short window. As of late March, Singapore was
still identified as anomalous due to the relatively small number of
deaths. Toward the end of our analysis window, Qatar and Australia
are also identified as anomalous with low death rates, while the UK
is identified as anomalous due to a high death rate. The lag-adjusted
death rates for Qatar and Australia as of 04/27/2020 are 0.398% and
1.33%, respectively. The lag-adjusted death rate for the UK is 34.2%.

V. CONCLUSION

In this paper, we introduce a new method of analyzing a multi-
variate time series via cluster analysis. Unlike typical applications of
time series analysis to epidemiology, it is nonparametric; and unlike
existing applications of cluster analysis to time series, we produce a
dynamically smoothed number of clusters that changes over time.
The analysis of case and death counts over time produces two mul-
tivariate time series, which we partition into clusters on each day.
While previous studies examine fewer countries over shorter time
windows,9,10 we study 208 countries over 4 months. Individual coun-
tries’ cluster membership tracks their severity of counts relative to
the rest of the world, while the number of clusters reflects the overall
spread of the data.

The high degree of similarity between the two time series facil-
itates the identification of anomalous countries in the progression
of cases to deaths. We introduce another method herein, using
inconsistency matrices and lag-adjusted death rates to highlight the
sequential emergence and disappearance of such anomalies over
time. These may be used to evaluate a country’s effectiveness at han-
dling the pandemic, taking into account an appropriate time offset
in mortality due to the disease. Our inconsistency matrices provide a
multivariate method with greater generality than the included appli-
cation. For this reason, they do not identify high or low mortality
rates, which are only applicable in a one-dimensional context. The
lag-adjusted death rate meets this purpose in our application and
any other one-dimensional setting. Last, this methodology is flexi-
ble: different metrics between data, clustering methods, and means
of learning offset could all be used to study related multivariate time
series and identify changing similarity and anomalies.

Our analysis also provides new insights into the spread of
COVID-19 across countries and over time. We show a strong sim-
ilarity between the evolution of case and death counts, identifying
a suitable time offset of 16 days for cluster membership between
the two time series. This confirms known medical findings,22 indi-
cating time from diagnosis to death as approximately 17 days. The
cluster evolution dendrograms provide further support of a distinct
lag between cases and deaths. These dendrograms are highly simi-
lar, also up to an offset of 16 days, and demonstrate sharp transition
points at 03/02/2020 and 03/19/2020 for cases and deaths, respec-
tively, again with a 17-day difference. These transitions reflect the
natural history of the spread of COVID-19 cases and deaths, respec-
tively. On 03/02/2020, numerous countries began to report their first
instances of COVID-19 cases, predominantly imported from Iran
and Italy. On 03/19/2020, Italy’s death toll surpassed that of China.24

Less pronounced transitions exist on 03/15/2020 and 03/31/2020 for
cases and deaths, respectively. Again, a 16-day offset is observed.

On the other hand, the time offset between the evolution of the
number of clusters is 32 days. One explanation for the series evolu-
tion offset being longer is that there is an additional delay between
cluster membership changes with respect to cases and deaths that
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can be attributed to stresses on a country’s healthcare resources.
First, the number of cases may increase significantly, placing a coun-
try into a different cluster relative to cases and overwhelming its
healthcare resources, thereby leading to a greater number of death
counts. That is, the progression from elevation in case clusters to
death clusters is not necessarily due to a natural progression from
infection to death, but involves mediating factors like stresses on
hospital capacity. Perhaps the initial wave of patients can be treated
with ventilators, but these may quickly run out, causing more deaths
from later instances of cases. Regardless, it is an interesting obser-
vation that the offset of 32 days in the number of clusters does not
minimize the offset in affinity or adjacency matrix norm differences.

This analysis may assist in identifying the characteristics of
the most and least successful government strategies for managing
COVID-19. In particular, Singapore, Qatar, Australia, and South
Korea are four countries whose policies have been most successful
in minimizing COVID-19 mortality. Each of these countries pro-
vided a substantial amount of easily accessible testing in the early
stages of COVID-19 development.25 Singapore and Australia also
closed their borders to travel before a critical mass in total case
counts was established and were early to implement strict lockdown
procedures.26

By contrast, Italy, Spain and the UK are three countries whose
policies managed the progression from COVID-19 cases to deaths
least effectively. Many argue that lockdown procedures in Italy and
Spain, although severe once in place, were implemented too late.27

Similarly, the UK initially elected not to shut down large gatherings
or introduce social distancing measures in an attempt to build herd
immunity among the community. Ultimately, however, the UK did
implement strict lockdown policies as mortality rates rose.28

These findings suggest that the timeliness of various lockdown
procedures is perhaps more important than their severity. Countries
with easy access to early testing also appear to manage the
progression from cases to deaths more effectively. Conversely, coun-
tries that struggled to minimize their COVID-19 mortality rate also
exhibit some general similarities. First, these countries were slow to
implement measures that would restrict people’s movements. Sec-
ond, many of these countries carried an early high case burden,
suggesting that mediating factors such as undue stress from finite
healthcare resources may contribute to the mortality rate.

Overall, this paper introduces a new method for analyzing
multivariate time series individually and in conjunction, thereby
providing new insights into the caseload and mortality rate affecting
different countries. As the pandemic evolves, it is the objective of
emerging research to facilitate timely and appropriate means of pro-
ducing effective government strategies for minimizing the extensive
human, social, and cultural costs of COVID-19.
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APPENDIX A: EXISTING CLUSTER THEORY

In this section, we provide an overview of the three clustering
algorithms used in the body of the paper: hierarchical clustering,

K-means, and its optimal one-dimensional variant Ckmeans.1d.dp.
In our most general setup, x1, . . . , xn are elements of a normed
space X.

Hierarchical clustering19,20 is an iterative clustering technique
that does not specify discrete groupings of elements. Rather, it seeks
to build a hierarchy of similarity between elements. Hierarchical
clustering is either agglomerative, where each element xi begins in
its own cluster and branches between them are successively built, or
divisive, where all elements begin in one cluster and are successively
split. The results of hierarchical clustering are commonly displayed
in dendrograms. Hierarchical clustering does not require the choice
of a number of clusters k. In this paper, hierarchical clustering is
exclusively used to produce the dendrograms of Fig. 3. There, we
implement agglomerative clustering.

K-means clustering seeks to minimize an appropriate sum of
square distances. With k chosen a priori, we investigate all possible
partitions (disjoint unions) C1 ∪ C2 ∪ · · · ∪ Ck of {x1, . . . , xn}. Let zj

be the centroid (average) of the subset Cj. One seeks to minimize the
sum of square distances within each cluster to its centroid,

k
∑

j=1

∑

x∈Cj

‖x − zj‖
2.

For a normed space with dimension at least 2, it is NP-hard to
find the global optimum of this problem. The K-means algorithm17

is an iterative algorithm that converges quickly and suitably to a
locally optimal solution. It is usually sufficient for applications. In
this paper, multivariate K-means is exclusively used in Fig. 6.

On the other hand, the K-means optimization problem is
efficiently solvable in the one-dimensional case—when xi are real
numbers, they are equipped with an ordering, which considerably
simplifies the problem. To cluster n elements of X = R into k clus-
ters requires one to order the elements and then determine k − 1
breaks in the ordering. This is far less computationally intensive
than the higher-dimensional analog. Ckmeans.1d.dp21 is a dynamic
programing algorithm that guarantees optimal clustering in one
dimension, choosing k a priori.

How to best choose the number of clusters k for the K-means
algorithm is a difficult problem. Different methods for estimat-
ing k may produce considerably differing results. In this paper,
we draw upon six methods to determine the appropriate num-
ber of clusters before implementing K-means, in both the one and
higher-dimensional cases. These methods are well-known: Ptbise-
rial index,30 silhouette score,31 KL index,32 C index,33 McClain–Rao
index,34 and Dunn index.35 We have chosen these methods based
upon consultation with the literature and our own experiments.
However, our methodology is flexible, and any combination of exist-
ing methods may be used. For one-dimensional data, it is often
regarded as unsuitable to use multivariate clustering methods, as
optimal alternatives exist. Since we study one-dimensional data in
this paper, it is necessary to use these methods to choose the number
k before implementation of Ckmeans.1d.dp.

In the body of the paper, we choose the smoothed number of

clusters k̂(t), depicted in Fig. 1, by applying exponential smoothing
to the average of the six choices of cluster number listed above. We

then apply Ckmeans.1d.dp to divide daily counts of data into k̂(t)
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clusters. This determines our results in Fig. 2. In Fig. 6, we display
analogous results for three-day rolling counts, clustering the corre-
sponding elements of R

3 using standard K-means. The results are
highly similar.

APPENDIX B: THREE-DAY ROLLING COUNTS

In this section, we briefly show the applicability of our method
to higher-dimensional data. We present two multivariate time series
of the cumulative three-day rolling counts of cases and deaths on
a country by country basis. We order the countries by alphabet-

ical order and denote these three-day rolling counts by x̃
(t)
i , ỹ(t)

i ∈

FIG. 6. Heatmaps track the changing cluster membership of the 15most severely
impacted countries with respect to their three-day rolling counts of (a) cases and
(b) deaths, respectively. Cluster membership, determined by K-means, depicts
COVID-19 severity relative to the rest of the world. There is a strong similarity
relative to Fig. 2.

R
3, i = 1, . . . , 208. We proceed exactly as in Sec. II, applying stan-

dard K-means instead of Ckmeans.1d.dp. In Fig. 6, we depict the
same countries’ changing cluster membership as were depicted in
Fig. 2. The similarity shows the robustness and generality of our
method.

APPENDIX C: ALGORITHMIC DESCRIPTION OF

METHODOLOGY

In this section, we provide an algorithmic presentation of the
computational steps taken for the analysis of an individual multi-
variate time series, described in Secs. II A and II B.

Algorithm Cluster-based evolution analysis

Given: a multivariate time series x(t)
i ∈ R≥0

Data preprocessing:

if x(t)
i = 0 or NaN then

x(t)
i = 1

Data transformation:
x(t)

i = log x(t)
i

for t = 1 to T do
Compute k(t)

1 , . . . , k(t)
6

kt
1 = Ptbiserial

(

(x(t)
i:1,N)1≤i≤N

)

k(t)
2 = Silhouette score

(

(x(t)
i:1,N)1≤i≤N

)

k(t)
3 = KL index

(

(x(t)
i:1,N)1≤i≤N

)

k(t)
4 = C index

(

(x(t)
i:1,N)1≤i≤N

)

k(t)
5 = McClain-Rao index

(

(x(t)
i:1,N)1≤i≤N

)

k(t)
6 = Dunn index

(

(x(t)
i:1,N)1≤i≤N

)

k(t)
av = 1

6

∑

k(t)
i

End for
k̂(t) = simple exponential smoothing(k(t)

av )

for t = 1 to T do
Ckmeans.1d.dp sort(x(t)

i ) into k̂(t) clusters
Record and sort cluster labels.
Let Adj(t)ij be adjacency matrix.

if x(t)
i and x(t)

j are in same cluster then

Adj(t)ij = 1
else

Adj(t)ij = 0

End for

Compute affinity matrix, Aff(t)ij = 1 −
D

(t)
ij

max D(t)

Compute Gaussian matrix G(t)
ij = exp

(

−m2
(

D
(t)
ij

)2

2(max D(t))2

)

Compute d(s, t) = ‖Adj(t) − Adj(s)‖.
do hierarchical clustering on d(s, t), 1 ≤ s, t ≤ T.

Chaos 30, 061108 (2020); doi: 10.1063/5.0013156 30, 061108-9

© Author(s) 2020

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

TABLE III. Mathematical objects and definitions.

Mathematical objects glossary

Object Description

D(t) Distance matrix between log counts
Aff(t) Standard affinity matrix
G(t) Gaussian affinity matrix
k(t)

av Unsmoothed number of clusters obtained as
average of six methods

k̂(t) Smoothed number of clusters
Adj(t) Adjacency matrix coding cluster outputs for

k̂(t) clusters
d(s, t) Frobenius distance between adjacency

matrix of various dates
δ Series evolution offset with respect to number

of clusters
τ Cluster consistency offset with respect

to cluster membership
Inc(t) Lag-adjusted inconsistency matrix

a(t)
j Anomaly score of country j

LDR(t)
j Lag-adjusted death rate of country j

‖fδ − g‖L1 L1 norm between functions

APPENDIX D: GLOSSARY OF MATHEMATICAL

OBJECTS

In this brief section, we include a glossary of mathematical
objects presented in the paper and their respective definitions in
Table III.

DATA AVAILABILITY

The data that support the findings of this study are openly
available at Our World in Data, Ref. 29.
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