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Glucocorticoids (GCs) are metabolic hormones that promote catabolic
processes, which release stored energy and support high metabolic demands
such as during prolonged flights of migrating birds. Dietary antioxidants (e.g.
anthocyanins) support metabolism by quenching excess reactive oxygen
species produced during aerobic metabolism and also by activating specific
metabolic pathways. For example, similar to GCs’ function, anthocyanins pro-
mote the release of stored energy, although the extent of complementarity
between GCs and dietary antioxidants is not well known. If anthocyanins
complement GCs functions, birds consuming anthocyanin-rich food can be
expected to limit the secretion of GCs when coping with a metabolically chal-
lenging activity, avoiding the exposure to potential hormonal detrimental
effects. We tested this hypothesis in European starlings (Sturnus vulgaris)
flying in a wind tunnel. We compared levels of corticosterone, the main
avian GC, immediately after a sustained flight and at rest for birds that
were fed diets with or without an anthocyanin supplement. As predicted,
we found (i) higher corticosterone after flight than at rest in both diet
groups and (ii) anthocyanin-supplemented birds had less elevated corticos-
terone after flight than unsupplemented control birds. This provides novel
evidence that dietary antioxidants attenuate the activation of the HPA axis
(i.e. increased secretion of corticosterone) during long-duration flight.
1. Introduction
Long-duration flights performed by migratory birds during their seasonal
travels between reproductive and wintering grounds are a major energetic chal-
lenge supported by multiple physiological changes [1–3]. Glucocorticoids
(GCs)––metabolic hormones secreted by the hypothalamus–pituitary–adrenals
(HPA) axis to cope with several kinds of stressors [4,5]––are elevated during
bird migration [6–17], in both long- and short-distance migrants [7,18,19], as
well as when flight costs are experimentally increased [20,21]. However, the
increase of GCs secretion is not free of long-term costs. GCs can mediate ener-
getic trade-offs by favouring immediate survival over other processes imposing
phenotypic damage and behavioural disruption [4,22–24]. GCs promote catabo-
lism of proteins and lipids [5,25,26] that then facilitates the utilization of energy
to satisfy, for example, the substantial metabolic needs of birds during pro-
longed flight [9,17,27–29]. However, the uncontrolled breakdown of structural
proteins from key tissues like pectoral muscle can potentially affect flight per-
formance [5,30,31], suggesting that a fine-tuned secretion of these hormones
is needed.
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Endurance flapping flight of birds is an extraordinary
physical performance carried out at a high metabolic rate
that can expose birds to the negative effects of oxidative
stress [32–34]. In exercising individuals, oxidative stress can
be defined as a physiological condition in which high concen-
trations of reactive oxygen species (ROS) produced during
aerobic metabolism are not completely buffered by the
antioxidant defenses [35,36]. Such high levels of ROS can
damage DNA and other vital macromolecules, like fatty
acids and proteins, and impair cell and tissue functionality
[35]. Due to their signalling activity, ROS can also regulate
metabolism by, for example, uncoupling the use of respirat-
ory oxygen from the production of mitochondrial energy
(ATP) [37–40]. Consequently, if ROS can impair metabolic
performance, a functional antioxidant barrier is expected to
improve intense physical exercise [41,42].

Antioxidants can be endogenously produced as well as
acquired with the diet, and the collective antioxidant system
can directly enhance aerobic metabolism as well as control
oxidative stress [35,41,43]. Although dietary antioxidants can
reduce oxidative damage in diverse species and contexts,
and in relation to flight performance [44–46], their benefit in
mitigating oxidative stress is not fully accepted [47,48]. Antiox-
idants such as vitamin E are important modulators of lipid
and glucose homeostasis [49], and vitamin C increases gene
expression of enzymes involved in the synthesis of catechol-
amines [50], which are able to enhance gluconeogenesis and
aerobic glycolysis [51]. Among dietary antioxidants, anthocya-
nins––hydrophilic dark purple pigments that are common in
vegetables and fruits consumed by wild songbirds [32,46]––
have raised particular medical interest because of their roles
in controlling glucose and lipid metabolism [52]. Specifically,
anthocyanins promote the gene expression of PGC-1α (peroxi-
some γ-coactivator 1-α) [52], a master regulator of the
biogenesis and functioning of mitochondria [53]. Similar to
GCs, anthocyanins can also promote catabolic functions and
provide energetic substrates for respiration due to increased
phosphorylation of AMPK (adeno-mono-phosphate activated
kinase) [52,54–56]. The multitude of benefits of a robust anti-
oxidant system may complement that of GCs especially
during situations of high energy demand (e.g. long-duration
flapping flight of migratory birds). However, the effect of
anthocyanins on GC dynamics has not yet been investigated.

Multiple studies suggest a link between exposure to elev-
ated levels of oxidative stress and GCs, which are thought to
enhance the production of ROS and to downregulate the
availability of antioxidants [31,57], although evidence of a
pro-oxidant effect of naturally secreted GCs is weak for
birds. The main detrimental physiological effect of GCs is
the overconsumption of stored resources, often observed in
wild birds when body fat is depleted, a condition that trig-
gers the breakdown of structural elements, like muscular
proteins [5,30,58–60]. If anthocyanins can improve the avail-
ability of metabolic energy, either by neutralizing ROS or
directly controlling the efficiency of metabolism, individuals
consuming food rich in anthocyanins are expected to inhibit
the secretion of other signalling molecules with the same
function, but with less target specificity, like GCs. In this
study, we explored the effects of anthocyanins on the regu-
lation of the HPA axis during endurance flight by exposing
wild caught, hand-raised European starlings (Sturnus vul-
garis) to isocaloric diets either enriched with or devoid of
anthocyanins. We then assessed how dietary antioxidants
affected baseline (i.e. sampled within 3 min) plasma corti-
costerone levels––the main GCs in birds––measured
immediately after a long-duration flight and at rest, 48 h
after the endurance flight. We tested the hypothesis that the
complementary functions of corticosterone and anthocyanins
will cause the expected increase in corticosterone during
flight to be reduced by the consumption of anthocyanins.
2. Material and methods
(a) Starling colony
Female hatchlings of European starling (Sturnus vulgaris) were
collected from nest boxes in spring (late April to early May)
2015 and spring 2016 from a native colony in Upper Bavaria,
South Germany (47°580 N, 11°13’142 E) and brought into the
animal care facility of the Max Planck Institute for Ornithology
(MPIO), Seewiesen, Germany. Hatchlings were hand-raised like
in previous experiments [61]. At independency, young starlings
(ca 35 days old) were moved to outdoor aviaries and maintained
on a standard diet of insect powder, lettuce, fresh and dried fruits
and meal worms.

(b) Experimental diets
Starting in early September 2016, birds were randomly assigned
to be fed either an unsupplemented, control diet (without added
anthocyanins, n = 29) or a diet supplemented with anthocyanin
powder (n = 25) at a concentration of 119 mg per kg of wet
food, an ecologically relevant amount of anthocyanin [62] that
is equivalent to the amount a bird ingests when eating about
17 berries per day based on a daily food intake of 35 g per day.
Further details on dietary and housing conditions are available
in the electronic supplementary material.

(c) Experimental procedure and wind tunnel flight
training

During autumn (September–December) 2016 and spring (Febru-
ary–April) 2017, we flew 33 (16 anthocyanin and 17 control
birds) and 21 (nine anthocyanin and 12 control birds) starlings,
respectively, in a recirculatingwind tunnel at theMPIO under con-
trolled conditions (15°C, 70% humidity, 12 m s−1 wind speed).
Birds in each flight-training cohort were housed in aviaries (3 ×
4 × 2.5 m high) that were adjacent to thewind tunnel and enclosed
by nylon-mesh walls. This set-up allowed us to release birds from
their aviaries and guide them to fly directly into the air stream
without additional handling of birds. For each bird, we recorded
actual time spent flying.

On the day before the longest duration flight on day 15 and just
before lights out, we removed food from the flight cages. On day
15, and 105 min after lights on (06.30 until 30 Oct, 05.30 until 26
March, 06.30 thereafter; daily light schedule in the electronic sup-
plementary material), birds were released from their aviaries,
guided into the wind tunnel airstream and allowed to fly for as
long as they could up to a maximum of 6 h. Birds that refused to
fly or repeatedly perched on the ground or the net were dropped
from the experiment (n = 18). Immediately (less than 3 min) after
completing their longest flight, we collected two 160 µl blood
samples into heparinized capillary tubes from the brachial vein
after puncture with a 17 G needle and measured body mass, fat
score and flightmuscle score [63]––this time point we refer to here-
after as ‘after flight’. Since birds finished their endurance flight at
different times of the day and since corticosterone can show circa-
dian fluctuation, we checked and found no effect of time on
corticosterone values (F1,40 = 1.24, p = 0.47). Birds were then
allowed to rest in the wind tunnel aviaries until the next day at



Table 1. Models describing the effect of dietary antioxidants (diet[A] = anthocyanin) versus controls, reference group) on different response variables measured
immediately after flight (time[F]) and at rest (reference group) and during autumn (season[autumn]) and spring (reference group) (figures 1b, 2a–c). Asterisks
indicate the significance level of random factors as follows: *p < 0.05, **p < 0.01, ***p < 0.001.

variable (n/ R2Adj)

fixed effect random effects

estimate (s.e.) d.f. F p factor
% of total
variance var. comp.

cort (92/0.64)

time [F] 0.61 (0.08) 47.67 65.04 <0.0001 ID 11.98 0.08 [−0.10,0.26]
diet[A] −0.20 (0.09) 44.48 5.04 0.029 assay 15.86 0.11 [−0.09,0.31]
time[F]*diet[A] −0.20 (0.07) 48.01 6.77 0.012 residual 72.16 0.49 [0.33,0.79]

muscle mass −0.21 (0.08) 70.54 6.25 0.015

season[autumn] 0.04 (0.13) 26.22 0.097 0.76

body mass (107/0.96)

time [F] −0.13 (0.03) 51.12 24.56 <0.0001 ID 92.08 0.86 [0.51,1.21]***

diet[A] −0.005 (0.13) 51.04 0.001 0.97 residual 7.92 0.07 [0.05,0.11]

time[F]*Diet[A] −0.02 (0.03) 51.12 0.82 0.37

season[autumn] −0.23 (0.13) 51.00 3.07 0.09

fat score (108/0.53)

time [F] −0.30 (0.08) 52.00 14.06 <0.001 ID 33.87 0.36 [0.05,0.66]*

diet[A] −0.02 (0.11) 51.00 0.04 0.85 residual 66.13 0.70 [0.49,1.07]

time[F]*diet[A] −0.03 (0.08) 52.00 0.10 0.75

season[autumn] −0.05 (0.12) 51.00 0.16 0.69

muscle mass (107/0.74)

time [F] −0.08 (0.06) 51.71 1.66 0.20 ID 58.32 0.62 [0.29,0.96]**

diet[A] −0.05 (0.13) 51.28 0.14 0.71 residual 40.68 0.43 [0.30,0.66]

time[F]*diet[A] 0.006 (0.06) 51.71 0.009 0.93

season[autumn] 0.02 (0.13) 51.11 0.02 0.90
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approximately 19.00 h when birds were transferred to the labora-
tory for overnight fasting and measurements of resting metabolic
rate (data not covered in this paper). Food restriction both
during flight and rest allowed us to control for the effect of food
on theGC levels. On day 17 and 90 min after lights on, we immedi-
ately (less than 3 min) took a 1000 µl blood sample from the
brachial vein after puncture with a 17 G needle and measured
again body mass, fat score and flight muscle mass score––this
time point we refer to hereafter as ‘at rest’. Within 10 min of
sampling, all blood samples were centrifuged at 214g for 5 min
to separate plasma from the red blood cells. Plasma was stored
at −80°C until laboratory analyses. We assume that plasma corti-
costerone levels measured for each bird during this ‘at rest’ time
point on day 17 is representative of baseline levels for birds
during early morning on other days after flight training. This
sampling approach for ‘at rest’ birds allowed us to avoid undue
disturbance to the birds prior to embarking on their longest dur-
ation flight on day 15, and sample all birds soon after their 15
days of flight training yet after recovery from their longest flight.

(d) Circulating levels of corticosterone
Plasma corticosterone concentrations after flight and at rest were
determined using an enzyme immunoassay kit (cat. no. K014-
H1; Corticosterone ELISA Kit, Arbor Assays) following a double
diethyl ether extraction of a 10 µl plasma sample. The inter-plate
coefficient of variation (CV) was calculated as the average concen-
trations of the four controls (for both high and low concentrations)
of the six plates and was 8.73 ± 0.41%. The intra-plate CV was
calculated as the average CV of the concentrations of all the
unknown samples run on six plates and was 4.36 ± 0.24% (further
details in electronic supplementary material).

(e) Statistical analysis
We obtained data for 54 experimental birds, sampled twice (after
flight and at rest). Since body mass and flight muscle mass score
had one missing value each and corticosterone had 16 missing
values (no blood available), the sample size has been specified
for each model. We assessed the effect of flight time and dietary
treatment on circulating corticosterone, body mass, fat score and
flight muscle mass score by running a linear mixed model for
each response variable with diet (anthocyanin or control), time
point (after flight or rest) and their interaction as fixed factors.
To account for any effect of body condition on flight performance
and on corticosterone, we also included flight muscle mass score
as a covariate. We used flight muscle mass score among the other
variables describing body condition because it is functionally
related to flight performance and because adding other variables
would have created a collinearity problem (correlations between
flight muscle mass score and body condition variables during
flight: body mass, r = 0.67, p < 0.0001, fat score, r = 0.47, p =
0.0003; during rest: body mass, r = 0.68, p < 0.0001, fat score, r =
0.55, p < 0.0001). Since the experiment was run both in autumn
and spring, the effect of ‘season’ was also included as a fixed
effect. Each model had ‘individual’ as a random factor to account
for the repeatedmeasure structure of the study. Themodel forcorti-
costerone had a second random factor represented by the plate



Table 2. Models describing the effect of dietary antioxidants (diet[A] = anthocyanin versus controls, reference group) on circulating levels of corticosterone in relation
to the time spent flying and flight muscle mass score and during autumn (season[autumn]) and spring (reference group) (only time point ‘after flight’ was considered).

variable (n/ R2Adj)

fixed effect random effects

estimate (s.e.) d.f. F p factor % of total variance var. comp.

cort (45/0.37)

flight duration 0.05 (0.17) 36.30 0.08 0.77 assay 26.88 0.33 [−0.25,0.91]
diet[A] −0.39 (0.15) 37.04 6.85 0.013 residual 73.12 0.90 [0.59,1.53]

flight duration*diet[A] −0.36 (0.18) 37.96 4.19 0.045

season[autumn] 0.02 (0.23) 23.99 0.0004 0.95

cort (45/0.23)

muscle mass 0.36 (0.15) 40 5.89 0.02

diet[A] −0.38 (0.16) 40 5.83 0.02

muscle mass*diet[A] −0.06 (0.15) 40 0.15 0.70

season[autumn] −0.05 (0.17) 40 0.10 0.70
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Figure 1. Circulating levels of baseline corticosterone (taken within 3 min
from capture in spring and autumn) after flight (‘flight’ in x-axis) and
48 h after flight (‘rest’ in x-axis). Dots (red for anthocyanin treatment) rep-
resent least squares means; bars are 95% confidence intervals. Asterisks
represent within-time/between-treatment post-hoc results (**=p < 0.01);
coloured lines and related p-values represent between-time/within treatment
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number of the assay (table 1). Because birds differed in the duration
of flight performance, the effect of flight duration on circulating
levels of corticosterone was assessed also at the individual level
by consideringonly the timepoint ‘flight’ in amodelwithdiet, dur-
ation of flight, interaction of diet and duration of flight, and season
as fixed effects. The same analysis has been run with flight muscle
mass score. Assay number was included as a random factor
(table 2). In addition, between-group differences in flight duration
were tested in a regression model with diet as a fixed factor.

All analyses were performed using JMP 15 (SAS Institute
Inc., Cary, NC, USA), which calculates the significance level
(p-values) for each fixed effect using F-statistics. In line with this
approach, we analysed post-hoc between-group differences in least
squared means with the Student’s t-test. We did not adjust the
results of ourmodels byapplying aBonferroni correction, in accord-
ance with Moran et al. [64] and Nakagawa [65]. For all models we
used z-score normalized variables (original mean values reported
in electronic supplementary material, table S1). We checked
whether variablesmet the assumptions of homogeneity of variance
and normal distribution by visually analysing the graphical distri-
butions of fitted values versus their residuals. The presence of
outliers was excluded using the quantile range method. All data
are given as least squares means ±95% confidence intervals.
comparisons. Sample size refers to total observations per each group and
time point. All variables were z-scored but units of measures were reported
for clarity. See electronic supplementary material, table S1 for means of
raw data.
3. Results
Corticosterone levelswerehigherafter flight compared to at rest
(table 1 and figure 1), althoughbirds fedwith anthocyanins had
lower levels of corticosterone than control birds after flight (sig-
nificant effect of diet × time, table 1 and figure 1). No difference
inhormone levelswasobservedat rest (figure 1), indicating that
the positive effect of antioxidants on corticosterone only
occurred when birds were metabolically challenged. In
addition, corticosterone was positively associated with flight
duration in control birds andnegatively associated in anthocya-
nin-fed birds (significant effect of diet × flight duration, table 2
and figure 2a), even though the duration of flight did not differ
between the two dietary treatments (F1,52.00 = 0.13, p = 0.72, n =
54). In addition, birds that hadsmaller pectoralmuscles showed
higher levels of corticosterone irrespectively of the diet (table 1
and figure 2b). Corticosterone levels did not change between
autumn and spring seasons (table 1; original values reported
in electronic supplementary material, table S1).
Diet did not affect bodymass, fat score or flightmusclemass
score (no significant effect of diet × time, table 1 and figure 3a–c),
suggesting that the effect of anthocyanins in influencing corti-
costerone levels was not mediated by a change in body
condition. Body mass and fat score, but not flight muscle
mass score, were higher at rest than after flight, irrespective of
diet (significant effect of time, table 1 and figure 3a–c). None
of these variables changed with season (table 1).
4. Discussion
Corticosterone was higher after flight than at rest in both
treatment groups and, in accordance to our prediction, this
increase in corticosterone after flight was reduced in antho-
cyanin-supplemented birds compared to unsupplemented
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controls. The different degree of HPA axis activation was not
related to differences in flight performance in that birds of the
two dietary groups flew for the same amount of time. This
provides the first evidence to date that dietary antioxidants
affect the degree of activation of the HPA axis (i.e. secretion
of corticosterone) during long-duration flight and suggests
that satisfying the energy needs for long-duration flights
involves the functional coordination of key hormones and
the antioxidant system.

During sustained flights in the wind tunnel, as well as
during migratory flights in nature, birds cannot rest, eat or
drink. To meet the energy and nutrient demands imposed by
flapping flight, birds must rely entirely on stored energy and
metabolic water, a shift to catabolic metabolism that occurs
quickly within the first hour of flight [66,67]. Corticosterone
can orchestrate the required metabolic shift and promote the
release of energetic substrates needed for the production of
ATP [9]. Dietary supplementation with anthocyanins affected
the extent to which this hormone was upregulated after flight
but not when at rest (figure 1), suggesting that the action of
these natural antioxidants was most effective when birds
were metabolically challenged. We propose that this effect of
dietary anthocyanins on the regulation of corticosterone
was due to the metabolic function of anthocyanins in
supporting metabolism in a general way, i.e. by controlling
ROS [37,68,69] see introduction), or more specifically, by upre-
gulating catabolicmetabolism needed to sustain flapping flight.

Anthocyanins can directly modulate specific metabolic
pathways including the activation of AMPK, an enzyme that
is phosphorylated when levels of ATP are low and need to be
replenished during catabolism [55]. AMPK is directly activated
by low levels of ATP, but also by other signals, including
exogenous ones [55]. Activation of AMPK by anthocyanins
promotes the catabolism of fat and inhibits lipogenesis (target-
ing liposomal enzymes FAS, acetyl-coenzyme A carboxylase
and SCD-1; [52] and by promoting the uptake of fatty
acids into mitochondria and the β-oxidation pathway [55]).
Anthocyanin-activated AMPK can also trigger mitochondrial
biogenesis (through PCG1-α; [70]), increase the oxidation of
both glucose and fatty acids, and so boost endurance exercise
[55,71]. Among the catabolic events mediated by AMPK is
the enhanced glucose uptake observed during muscle contrac-
tion, a function similar to insulin. However, insulin promotes
glucose uptake even at rest, whereas we found that antho-
cyanins differentially affected corticosterone levels only after
flight, when they couldmake a difference in supportingmetab-
olism, whereas we did not find such an effect when birds
were at rest.
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Contrary to anthocyanins, corticosterone is less specific in
targeting substrates, causing the breakdown of structural pro-
teins, a catabolic pathway often observed in migrating wild
birds [7,9,10,13,27,59,63,72]. It seems that birds are able to
control to some extent the activation of the HPA axis to
avoid excessive protein catabolism. For example, at time of
spring migration, wild caught red knots (Calidris canutus)
increased corticosterone only in association with body mass
gain, an adjustment that allowed them to activate catabolism
only when proteins were protected by the availability of fat
stores [9]. This stepwise action of corticosterone in selecting
substrates has been well observed in birds [59].

Dietary supplementation with antioxidants did not affect
total flight duration; however, the association between corti-
costerone and duration of flight measured for each bird was
positive in unsupplemented controls and negative in antho-
cyanin-supplemented birds (figure 2a). This suggests that the
action of corticosterone and anthocyanins was complementary
in the sense that dietary anthocyanins were already promoting
catabolic metabolism and this reduced the need to upregulate
hormones that promote further catabolismwhile also reducing
any potential detrimental effects of high circulating corticoster-
one [5,30,58]. Anthocyanins could also have complemented the
action of GCs by quenching the increase in ROS produced by
the increase in GCs and metabolic rate during flight; increased
ROS can lower the efficiency of mitochondria in producing
ATP, which is needed to support the work of flight muscles.
The design of our study allowed us to specifically narrow the
perspective on the effect of flight on circulating corticosterone
while controlling for the major confounding factors that can
stimulate the activation of the HPA axis, like temperature, rain-
fall or food availability [4,5]. There is only one other published
study that measured baseline corticosterone in wild caught
birds immediately after endurance flight in a wind tunnel
[67] although the effect of dietary antioxidants was not con-
sidered. Similar to our findings, red knots Calidris canatus
showed higher levels of baseline corticosterone after 2 h of
flight although this increase was not statistically significant
[67] perhaps because of lack of statistical power to reject the
null hypothesis. The same effect of dietary antioxidants on
the secretion of corticosterone was observed in both autumn
and spring seasons suggesting that the higher levels of corticos-
terone shown in other migratory species during spring [5] are
most likely to be due to environmental conditions and seasonal
migratory patterns [13,73]. Our birds were treated with
anthocyanins in both seasons, an element that could have con-
tributed to the lack of seasonal effect of diet on the HPA
functioning. Availability of natural food rich in anthocyanins
can be an important resource for migrating birds [74,75], but
these could be more limited during specific migration stages
or routes. The levels of corticosterone observed in this study
after the endurance flight were relatively high (62.18 ng ml−1,
electronic supplementary material, table S1), but lower than
the stress-induced levels observed in wild females of the
same species (e.g. 80.05 ngml−1; [76]). Further studies are
needed to determine how the corticosterone levels reported
here for starlings performing endurance flights in a wind
tunnel are comparable to those of free-ranging birds.
5. Conclusion
Migratory birds are athletes performing challenging physical
activity in environmental conditions that are often unpredict-
able and that can push them very close to their physiological
limits [77]. The upregulation of GCs is generally beneficial
and promotes survival when coping with challenging con-
ditions, by activating a range of physiological adjustments
that support the energetic needs of migration. However, pro-
longed exposures to high levels of these hormones, especially
when close to physiological limits, can be detrimental
[24,72,78]. We showed that anthocyanins––water soluble anti-
oxidants that are actively selected by foraging birds
[46,62,74], especially during migration [74]––are able to inter-
act with the HPA axis, controlling the excessive secretion of
GCs. We propose that the interaction between GCs and antho-
cyanins occurred at the metabolic level, because it was
observed only when the birds had been flying and not when
at rest, and because corticosteronewas not positively correlated
with flight duration in birds receiving anthocyanins (but it was
in controls). The evidence that anthocyanins can support the
metabolic function of GCs, and potentially attenuate the endo-
crine stress response, is novel and opens the road to future
studies able to uncover how specific dietary components
facilitate successful bird migration in a fast-changing planet.
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