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The transcriptomes of the venom glands of 13 closely related species of vermi-
vorous cones endemic to West Africa from genera Africonus and Varioconus
were sequenced and venom repertoires compared within a phylogenetic
framework using oneKalloconus species as outgroup. The total number of con-
otoxin precursors per species varied between 108 and 221. Individuals of
the same species shared about one-fourth of the total conotoxin precursors.
The number of common sequences was drastically reduced in the pairwise
comparisons between closely related species, and the phylogenetical signal
was totally eroded at the inter-generic level (no sequence was identified as
shared derived), due to the intrinsic high variability of these secreted peptides.
A common set of four conotoxin precursor superfamilies (T, O1, O2 and M)
was expanded in all studied cone species, and thus, they are considered the
basic venom toolkit for hunting and defense in the West African vermivorous
cone snails. Maximum-likelihood ancestral character reconstructions inferred
shared conotoxin precursors preferentially at internal nodes close to the tips
of the phylogeny (between individuals and between closely related species)
as well as in the common ancestor of Varioconus. Besides the common toolkit,
the two genera showed significantly distinct catalogues of conotoxin pre-
cursors in terms of type of superfamilies present and the abundance of
members per superfamily, but had similar relative expression levels indicating
functional convergence. Differential expression comparisons between vermi-
vorous and piscivorous cones highlighted the importance of the A and S
superfamilies for fish hunting and defense.
1. Introduction
Cones (Gastropoda: Conidae) are marine venomous predators that actively hunt
onworms, snails and fish [1]. Their venom is a cocktail constituted by hundreds of
peptides named conotoxins, as well as by hormones and by other proteins that
participate in the synthesis or enhance the activity of the venom [2,3]. Once
inside the prey, conotoxins interact with ion channels and neurotransmitter
receptors triggering different physiological responses, from sedation to tetanic
paralysis [4]. Conotoxin precursors typically present a three domain structure,
consisting of signal, pro-peptide andmature (i.e. the functional toxin after proces-
sing of the precursor) regions [5]. The signal region is conserved, and it is used to
classify the peptides into different ‘superfamilies’ [4]. The composition of the
venom is highly variable among species, specimens and even within the same
individual depending on its physiological status or ecological interactions [6–13].

Most cone snail venomic studies have been driven preferentially by the
pharmacological potential of conotoxins and were limited to the purification of
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mature peptides and the identification of their function. Thus,
they lack thewider evolutionary perspective alreadyapplied in
the study of other venomous animals [14–16]. Comparing
venom cocktails from different cone species within a phylo-
genetic framework should provide insights on how the rich
conotoxin diversity was generated [12,17], to what extent dis-
tinct venom repertoires are adapted to different diet
specializations [10,18,19], and which are the functional con-
straints and levels of convergence imposed by this
coevolutionary arms race system [8,20], among others.

As in other venomous animals [16,21], dietary breadth
has been proposed to be a main factor triggering venom
evolution in cones [18,19,22]. Since hunting performance
relies on venom specificity, shifts in diet could trigger changes
in venom composition [10,23,24] and in general, species with
more generalized diets would tend to have more complex
venoms [19,22]. Moreover, instances of functional conver-
gence have been shown in the venom cocktails of Atlantic
and Indo-Pacific piscivorous cones [8]. Another level of
evolutionary complexity comes from the capacity of cones
to modulate the composition of their venom depending on
its final use, whether to subdue preys or defend themselves
against predators [12,25].

The above-mentioned studies explored general venom
evolutionary trends at the family (Conidae) level by comparing
distantly related lineages. A few studies compared venom
cocktails from pairs of species within the same genus but
lacked an evolutionary perspective (e.g. [7]). Here, we analyse
venom evolution within two radiations of closely related cone
species inhabiting West Africa [26,27]: one comprising cones
endemic to the Cabo Verde archipelago, ascribed to genus
Africonus; the other including cones endemic to Senegal
(plus one closely related species inhabiting Canary Islands),
recently ascribed to genus Varioconus [28]. Importantly,
robust phylogenies based on mitogenomes are available for
both clades providing the necessary framework for evolution-
ary studies [26,27]. The clade of cones endemic to Cabo Verde
diversified about 9 Mya into four main lineages and at least 40
endemic species [26]. The clade of cones endemic to Senegal
and Canary Islands diversified about 6 Mya into three main
lineages and at least 13 endemic species [27]. All species in
both clades are vermivorous; Africonus species show little
apparent differences in radular tooth morphology whereas
the three clades ofVarioconus from Senegal and Canary Islands
have each distinct radular teeth, suggesting subtle diet special-
izations [27]. No study has analysed the venom transcriptomes
of these endemic cones.

Here,we sequenced thevenomglandtranscriptomes from13
species belonging to genera Africonus and Varioconus, as well as
one from Kalloconus trochulus, which was used as outgroup. We
aimed to (i) describe venom compositions in terms of the pres-
ence, member diversity and relative expression levels of the
conotoxin precursor superfamilies; (ii) assess the levels of diver-
gence invenomcompositionatdifferenthierarchical (taxonomic)
levels and discern between shared-derived peptides and poten-
tial cases of functional convergence; (iii) determine whether
there could be instances of differential expression between the
two genera as footprint of adaptation; and (iv) compare differen-
tial conotoxinexpressionbetween thesevermivorous species and
the piscivorous species Chelyconus ermineus [8] and Pionoconus
magus [29] fromtheAtlantic and the Indo-Pacific oceans, respect-
ively, to further understand the connections between venom
evolution to diet specialization and defense.
2. Material and methods
(a) Taxon sampling
Taxon selection was aimed at having at least one representative
per main lineage of the two genera plus a close outgroup [26,27].
The complete list of specimens, species, sampling localities
and museum vouchers is provided in table 1. Phylogenetic
relationships based on mitogenomes are depicted in electronic
supplementary material, figure S1. In order to assess intraspecific
variability, for the genus Varioconus, we studied two specimens
of Varioconus mercator (V_1258 and V_1302). These individuals
showed distinct shell phenotypes and in fact, V_1258 could be
assigned to the recently described species,Varioconus stimpsonorum
[30]. However, its mitogenome sequence divergence to V. mercator
is exactly at the threshold used to delimit species in West African
cones [27]. Moreover, the results here presented in terms of
venom composition (see below) strongly suggest that V. stimpso-
norum should be considered a synonym of V. mercator [28], and
hence, the specimen V_1258 was treated as V. mercator herein. In
the case of Africonus, we included two specimens of Africonus
maioensis (A_0055 and A_0039; representing two different shell
phenotypes formerly classified as distinct species but now synony-
mized; [27]). All the specimenswere adults andwere dissected in a
resting stage to remove the venom duct, which was preserved in
RNAlater (Invitrogen, Life technologies).
(b) RNA extraction and sequencing
RNA extraction and sequencing were performed as in [8]. Briefly,
each venom duct was incubated with 500 µl of TRIzol LS Reagent
(Invitrogen, Life Technologies) and grinded with ceramic beads in
a Praecellys Evolution homogenizer. Total RNA was purified
using the Direct-Zol RNA Miniprep kit (Zymo Research, Irvine)
following the manufacturer’s instructions. Dual-indexed cDNA
libraries were constructed for each sample using the TruSeq
RNA library Prep kit v2 (Illumina, San Diego) at Sistemas Genómi-
cos (Valencia, Spain) following the manufacturer’s instructions.
After the quality of the libraries was checked, they were pooled
and split into several runs of paired-end sequencing (2 × 100 bp)
in an Illumina HiSeq2500 (each sample divided into two flow
cells to avoid sequencing biases) following the standard
procedures at Sistemas Genómicos (Valencia, Spain).
(c) Transcriptome assembly and conotoxin identification
The raw reads corresponding to the different individuals were
sorted using the library indices, which were removed using Cuta-
dapt v.1.3 [31]. Raw read qualitywas checkedwith FastQCv.0.10.1
(www.bioinformatics.babraham.ac.uk/projects/fastqc/), and the
assembly was performed using Trinity v.2.6.6 [32] with default
settings (minimum contig length = 200 bp, sequence identity
threshold = 0.95) and the trimmomatic option active with default
parameters. The raw reads of all transcriptomes are available at
the SRA database (table 1).

Conotoxin precursors, hormones and associated venom pro-
teins available in GenBank release 222, Uniprot release 2017_09,
and ConoServer release 30/10/2017 were downloaded 30 October
2017 and concatenated into a single fasta file. Duplicated
sequences were removed, and the resulting file was formatted to
create the custom reference database using BLAST+ [33].

Proteins of interest in the assembled transcriptomes were
identified using BLASTX over the custom reference database
(e-value: 1 × 10−5). The amino acid sequences were manually
inspected and those considered as false positives or assembly arte-
facts (showing internal stop codons and chimeras), those that were
duplicated or highly truncated (missing greater than 55% of the
estimated length of the reference protein), and those showing
low coverage values were discarded. We implemented an extra

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/


Ta
bl
e
1.
Sp
ec
im
en
s
an
aly
se
d
in
th
is
stu
dy

an
d
m
ain

sta
tis
tic
s
of
Ill
um

in
a
se
qu
en
cin
g
an
d
as
se
m
bl
y.

ID
sp
ec
ie
s

co
un
tr
y

lo
ca
lit
y/
isl
an
d

vo
uc
he
r

M
NC
N

SR
A

ac
ce
sio
n

se
qu
en
cin
g
da
te

(D
D/
M
M
/Y
YY
Y)

nu
m
be
r

re
ad
s

%
cle
an

re
ad
s

nu
m
be
r

co
nt
ig
s

nu
m
be
r

BL
AS
T
hi
ts

nu
m
be
r

pr
ot
ei
ns

nu
m
be
r

co
no
to
xi
ns

A_
08
85

Af
ric
on
us
an
to
ni
om
on
te
iro
i

Ca
bo

Ve
rd
e

Pe
dr
a
Lu
m
e,
Sa
l

15
.0
5/
79
79
4

SR
R1
18
07
49
4

21
-1
2-
20
16

26
02
6
95
7

10
0

83
56
5

73
1

21
4

15
9

A_
05
20

Af
ric
on
us
bo
av
ist
en
sis

Ca
bo

Ve
rd
e

Er
va
ta
o,
Bo
a
Vi
sta

15
.0
5/
80
41
3

SR
R1
18
07
49
7

21
-1
2-
20
16

26
71
5
26
0

10
0

39
93
5

79
7

19
9

16
8

A_
08
55

Af
ric
on
us
cu
ne
olu
s

Ca
bo

Ve
rd
e

Fo
nt
on
a,
Sa
l

15
.0
5/
79
76
4

SR
R1
18
07
49
6

13
-0
5-
20
15

14
77
1
34
6

99
.4
8

46
98
3

80
0

19
5

15
4

A_
00
48

Af
ric
on
us
ga
lea
o

Ca
bo

Ve
rd
e

Na
vío

Qu
eb
ra
do
,M

aio
15
.0
5/
78
67
3

SR
R1
18
07
50
0

21
-1
2-
20
16

28
10
9
70
9

10
0

50
81
1

80
3

18
0

15
1

A_
13
87

Af
ric
on
us
gr
ah
am
i

Ca
bo

Ve
rd
e

Ca
lh
au
,S
ão

Vi
ce
nt
e

15
.0
5/
78
54
9

SR
R1
18
07
50
7

21
-1
2-
20
16

22
71
8
52
5

10
0

51
60
1

85
0

18
3

15
6

A_
00
25

Af
ric
on
us
in
fi
ni
tu
s

Ca
bo

Ve
rd
e

Po
nt
a
do

Pa
u
Se
co
,M

aio
15
.0
5/
78
65
0

SR
R1
18
07
49
3

13
-0
3-
20
14

35
85
4
39
7

98
.5
2

76
33
9

10
91

20
3

16
7

A_
00
39

Af
ric
on
us
m
aio
en
sis

Ca
bo

Ve
rd
e

Pr
aia

Sa
nt
an
a,
M
aio

15
.0
5/
78
66
4

SR
R1
18
07
50
1

28
-1
0-
20
13

52
52
3
50
1

10
0

78
88
6

78
3

23
7

18
8

A_
00
55

Af
ric
on
us
m
aio
en
sis

Ca
bo

Ve
rd
e

Na
vío

Qu
eb
ra
do
,M

aio
15
.0
5/
78
68
0

SR
R1
18
07
49
9

28
-1
0-
20
13

44
74
8
97
7

10
0

10
5
09
9

85
0

26
8

21
4

A_
08
75

Af
ric
on
us
m
iru
ch
ae

Ca
bo

Ve
rd
e

Te
rri
nh
a
Fin
a,
Sa
l

15
.0
5/
79
78
4

SR
R1
18
07
49
5

21
-1
2-
20
16

24
09
7
30
7

10
0

60
34
7

61
5

17
6

13
6

A_
00
31

Af
ric
on
us
ra
ul
sil
va
i

Ca
bo

Ve
rd
e

Pr
aia

da
So
ca
,M

aio
15
.0
5/
78
65
6

SR
R1
18
07
49
2

28
-1
0-
20
13

56
71
8
52
8

10
0

99
69
9

12
49

22
0

18
3

A_
02
39

Af
ric
on
us
ve
rd
en
sis

Ca
bo

Ve
rd
e

Ta
rra
fa
l,
Sa
nt
iag
o

15
.0
5/
78
86
4

SR
R1
18
07
49
8

28
-1
0-
20
13

40
23
7
42
4

10
0

77
90
6

12
66

23
9

19
7

V_
CG
13

Va
rio
co
nu
s
gu
an
ch
e

Sp
ain

Pl
ay
a
de
lC
ab
le,

La
nz
ar
ot
e

—
SR
R1
18
07
50
2

08
-0
3-
20
16

29
97
3
74
0

10
0

85
27
6

81
5

24
5

19
5

V_
12
58

Va
rio
co
nu
s
m
er
ca
to
r

Se
ne
ga
l

Al
m
ad
ies

15
.0
5/
78
41
9

SR
R1
18
07
50
5

08
-0
3-
20
16

28
88
3
17
5

10
0

66
68
4

63
1

20
5

16
7

V_
13
02

Va
rio
co
nu
s
m
er
ca
to
r

Se
ne
ga
l

Nd
ay
an
e

15
.0
5/
78
46
3

SR
R1
18
07
50
3

08
-0
3-
20
16

28
39
2
46
5

10
0

75
40
6

78
3

26
1

22
1

V_
12
78

Va
rio
co
nu
s
re
tic
ul
at
us

Se
ne
ga
l

Ng
or

15
.0
5/
78
43
9

SR
R1
18
07
50
4

21
-1
2-
20
16

24
26
3
35
8

10
0

50
35
8

47
9

14
2

10
8

K_
00
10

Ka
llo
co
nu
s
tro
ch
ul
us

Ca
bo

Ve
rd
e

Po
nt
a
do

Pa
u
Se
co
,M

aio
15
.0
5/
78
63
5

SR
R1
18
07
50
6

13
-0
5-
20
15

75
34
7
02
5

96
.1
9

69
68
8

11
14

17
9

14
1

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

287:20200794

3



royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

287:20200794

4
curation step consisting on TBLASTX searches over the nr
database in GenBank to discard wrong open reading frame
(ORF) assignations.

The retained sequences constituted our working list of cono-
toxin precursors, hormones and associated venom proteins
(electronic supplementary material, file S1; table S1). The three
domain structure and cysteine frameworks of conotoxin precursor
alignments were inferred using Conoprec [5]. Proteins were
assigned to a given superfamily by comparisonwith best-hit results
using BLASTP searches against GenBank, and in the case of the
conotoxin precursors, taking into consideration the percentage of
identity in the signal region using a general threshold of 70% [4].
We further checked the correct identification of all conotoxin pre-
cursor superfamilies by aligning all the signal regions and
building a neighbour-joining dendrogram (electronic supplemen-
tary material, figure S2) based on uncorrected p distances using
ClustalW [34]. Within each superfamily, sequences were assigned
to different groups of paralogy based on the sequence divergence
at the pro-peptide region, the presence of different cysteine frame-
works in the mature peptide and the recovery of clades in the
reconstructed dendrogram. Those sequences that did not match
any previously reported conotoxin precursor superfamily were
classified into unassigned superfamilies and described here.

(d) Comparative analyses of venom composition
The conotoxin precursors of each species were pairwise compared.
All sequences that were common to two or more species were
mapped onto the reconstructed phylogeny (electronic supplemen-
tary material, figure S1) and analysed using maximum-likelihood
ancestral character reconstruction as implemented in BayesTraits
v. 2.0.2 (www.evolution.rdg.ac.uk; [35]). The MultiState model
was used, and 10 attempts per tree were conducted.

In order to infer venom composition similarities between
species and genera, we performed (i) a multiple correspondence
analysis (MCA) on the presence or absence of superfamilies
(binary data); (ii) a principal component analysis (PCA) on the
relative member abundance by estimating the percentage of
the different superfamily members; and (iii) a PCA on the relative
expression level of the different superfamilies by calculating tran-
scripts per million (TPMs; see expression analyses below). In
addition, we ran a PCA comparing relative superfamily member
abundances in vermivorous Africonus and Varioconus species
against those in piscivorous species C. ermineus and P. magus from
the Atlantic and Indo-Pacific oceans, respectively. Both MCA and
PCAwere performed using PAST 4.01 (https://folk.uio.no/oham-
mer/past/; [36]). Data were not standardized in the analyses
(i.e. the variance-covariance method was used).

(e) Expression analyses
Relative expression levels for each individual were calculated
by mapping the raw reads to the nucleotide sequence of each
conotoxin precursor using Bowtie 2 [37], and the values were
transformed to TPM estimates using RSEM [38] as implemented
in Trinity v.2.6.6 [32]. We run the EBSeq software [39] to estimate
for each superfamily the posterior probability of being differen-
tially expressed (PPDE) between Varioconus and Africonus,
using all the specimens of each genera as biological replicates.
We considered as differentially expressed all those conotoxin pre-
cursor superfamilies with a PPDE greater than 0.95 and with a
fold change above 32 (calculated as log2 RealFC≥ 5). The same
type of analysis was performed to identify those superfamilies
differentially expressed in the comparison between vermivory
(using the 15 specimens of West Africa as replicates) and pisciv-
ory (using the three individuals of C. ermineus [8] and the three
individuals of P. magus [29]). The Shapiro–Wilk test rejected
the normality of the data, so a Kruskal–Wallis test was run in
R [40] over those superfamilies identified as differentially
expressed to confirm these results taking variance among
replicates into consideration.
3. Results
(a) Venom cataloguing of West African cones
The transcriptomes of the venom glands of 16 individuals cor-
responding to 14 species of genera Africonus, Varioconus and
Kalloconus were assembled. The main statistics associated
with the sequencing and assembly procedures are summarized
in table 1. Overall, 2254 unique conotoxin precursor transcripts
were identified (electronic supplementary material, table S1).
The species with the highest and lowest number of conotoxin
precursors were V. mercator (V_1302, 221) and V. reticulatus
(V_1278, 108), respectively (table 1; figure 1). Conotoxin pre-
cursors were classified into 61 known superfamilies and 141
groups of paralogy taking into consideration sequence diver-
gences in the signal and pro-peptide regions and the clades
recovered in the reconstructed dendrogram (electronic sup-
plementary material, figure S2). A total of 86 precursors
could not be assigned to any known conotoxin superfamily
and were grouped into seven new unassigned superfamilies
(their signal sequences, cysteine frameworks and best
BLAST-P hits are reported in electronic supplementary
material, table S2). Several conotoxin precursor superfamilies
previously reported as valid such as R, W, Z [41] and
Cerm_17 [8], among others, were found to be fragments of
other proteins once the right ORFs were identified using
TBLASTX (electronic supplementary material, file S2).

The diversity of expanded conotoxin precursor superfami-
lies (i.e. those with five or more members) is represented in
figure 1. These expanded conotoxin precursor superfamilies
were A, Conantokin F, Con-ikot-ikot, Conkunitzin, H, I1, I4,
M, O1, O2, O3, Q, T, U, Cerm_03, Cerm_08, Cerm_11 and
Tand_01. The remaining 50 conotoxin precursor superfamilies
were considered of minor diversity. The species A. maioensis
(A_0055), A. verdensis (A_0239), V. guanche (V_CG13) and V.
mercator (V_1302) presented the highest diversity of expanded
superfamilies whereas A. galeao (A_0048) and V. reticulatus
(V_1278) the lowest (figure 1). TheO1, O2, T andM superfami-
lies had the highest number ofmembers andwere present in all
individuals (figure 1). The Conkunitzin and Cerm_03 superfa-
milies also showed high member diversity but were missing in
A. verdensis (A_0239) and inA. cuneolus (A_0855) plusV. reticu-
latus (V_1278), respectively (figure 1). Remarkably, different
individuals of the same species could have different expansion
patterns. For example, within V. mercator, V_1302 had
expanded the H, I4 and Con-ikot-ikot superfamilies, whereas
V_1258 showed expansion of the Q superfamily (figure 1).

The 16 studied individuals added up to 80 hormone
sequences, which were classified into 10 families: Conopressin
(with more than five members in V. guanche, V_CG13), Conor-
famide, Insulin-related peptides 1–5, Prohormone-4a and b,
Thyrostimulin hormone alpha, and Thyrostimulin hormone
beta 5 (electronic supplementary material, file S1; table S1).
Insulin-related peptide 5 was only present in K. trochulus
(K_0010); Prohormone-4b and Thyrostimulin hormone alpha
were only found in Africonus antoniomonteiroi (A_0885). In
addition, 326 transcripts were assigned to 15 protein families
of various functions, likely associated with venom production.
Among these, the Protein Disulfide Isomerase, Conodipine
and Ferritin were the most diverse. Interestingly, we identified
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in the venoms of West African cones several members of the
cysteine-rich secretory, antigen 5 and pathogenesis-related 1
(CAP) protein family. These proteins are often secreted and
have protease activity with extracellular endocrine or paracrine
function in a wide range of animals including venomous ones
such as ants, wasps and snakes [42]. These proteins were
previously found in the molluscivorous Cylinder textile and
Conus marmoreus, and may be important for venom function
([43,44]; electronic supplementary material, figure S3).

(b) Variations in venom composition according to
phylogenetic divergence

The venom compositions of the 15 specimens of Africonus and
Varioconus were pairwise compared at different taxonomic
levels (electronic supplementary material, figure S4). The two
specimens of A. maioensis (A_0039 and A_0055) and those of
V. mercator (V_1258 and V_1302) shared 51 and 53 conotoxin
precursors, respectively, which represented 24–32% of the
total sequences (electronic supplementary material, figure S4).
The shared sequences between pairs of species from the same
lineage within Africonus (see tree in electronic supplementary
material, figure S1) were 2–35, with a mean of 11.9 (7% of the
mean total sequences); between pairs of species from different
lineages within the same genus (either Africonus or Varioconus)
were 1–39 with a mean of 8.5 (5% of the mean total sequences);
and between genera were 11 (0.7–1.9% of the total sequences
(electronic supplementary material, figure S4).

An ancestral character state reconstruction analysis was
performed to infer most likely ( p > 0.95) conotoxin precursors
at the different common ancestors (internal nodes) in the
phylogeny using K. trochulus (K_0010) as outgroup (electronic
supplementary material, table S3) and to detect potential
instances of convergence (see full list of conotoxins found in
more than one sample in electronic supplementary material,
table S4). Inferred shared conotoxin precursors were preferen-
tially concentrated in the nodes at the tips of the phylogenetic
tree (figure 2).Many corresponded to the common ancestors of
the pairs of individuals of A. maioensis (A_0039 and A_0055)
andV. mercator (V_1258 and V_1302), respectively. In addition,
an important number of shared-derived conotoxin precursors
was inferred at the ancestors of (i) the closely related species
A. verdensis (A_0239) from Santiago and A. raulsilvai
(A_0031) from Maio; (ii) A. galeao (A_0048) and A. boavistensis
(A_0520) from Boa Vista and (iii) the three species from Sal
(A. antoniomonteiroi (A_0885), A. cuneolus (A_0855) and
A. miruchae (A_0875); figure 2). Two precursors (Cerm_03
and Cerm_10) were inferred to be present at the ancestor of
clade IV of Africonus. One (Pmag_02) and 26 (most promi-
nently M, O1, O2 and T) conotoxin precursors were inferred
to be present at the common ancestors of Africonus and Vario-
conus, respectively (figure 2). According to the inferred
phylogeny, there could be several potential cases of conver-
gence, such as transcript 646 (O2), present in A. maioensis
(A_0055) and in V. mercator (V_1302); transcript 368 (O1),
found in A. maioensis (A_0039) and in V. guanche (V_CG13);
or transcript 2124 (O1), shared by A. boavistensis (A_0520)
and K. trochulus (K_0010; electronic supplementary material,
table S3). Likewise, within Africonus, the common presence of
transcript 221 (T) in the common ancestor of A. raulsilvai
(A_0031) plus A. verdensis (A_0239) and the distantly related
species A. maioensis (A_0039 and A_0055) could be due
to convergence.

According to the MCA, species from each genus clustered
together in the two-dimensional scatter plot for the presence/
absence of conotoxin superfamilies (figure 3). The species
V. reticulatus (V_1278) appeared on the extreme lower end
of axis 1, but it was not statistically considered an outlier. Var-
ioconus species had negative Axis 1 scores, whereas Africonus
species had positive or very slightly negative scores. The PCA
of the relative abundance (percentage of the number of mem-
bers) of each superfamily revealed no overlapping between
genera (figure 3). According to the loadings of PC1 and
PC2, Varioconus species had more abundant M, T and O1
superfamilies, whereas in Africonus the pattern was more dis-
perse, with O2, P, Cerm_03 and A superfamilies as major
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contributors (electronic supplementary material, figure S5). A
discriminant function analysis (DFA) using PC1 to PC3 as
variables and genus as factor, classified correctly 100% of
the cases (also in the jackknifed classification test). Finally,
relative expression levels showed no significant differences
between both genera, although V. reticulatus (V_1278) and
V. mercator (V_1258) were considered outliers, with over-
expression of the T superfamily, as indicated by the strong
positive loadings along PC1 (figure 3).
(c) Differential conotoxin expression patterns
A total of 11 superfamilies were detected as differentially
expressed between Africonus and Varioconus: A2, B1,
Cerm_02, Cerm_11, N, Rmil_02, S and V superfamilies were
overexpressed in Africonus, whereas Cerm_01, K, and T were
in Varioconus. After a Kruskal–Wallis test, only the overexpres-
sion of B1, Cerm_01, Cerm_11 and V superfamilies inAfriconus
remained significant ( p < 0.05; electronic supplementary
material, table S5).

The same tests found 29 superfamilies differentially
expressed between vermivorous (Africonus and Varioconus)
and piscivorous (Chelyconus and Pionoconus) genera (figure 4a).
All but four were confirmed by the Kruskal–Wallis test
(figure 4a; electronic supplementary material, table S5).
Among those confirmed, the A ( p = 0.02) and S ( p = 0) superfa-
milies were overexpressed in both Chelyconus and Pionoconus,
and the A2 ( p = 0.04) in Pionoconus. The I5 superfamily was
overexpressed in P. magus ( p = 0.005), but this superfamily
has only been reported in this species (figure 4a).

PCA on the relative abundance of conotoxin superfamily
members in the venom clearly separated piscivorous and
vermivorous genera (figure 4b). The former showed negative
loadings along PC1, with most important contributions from
M and Conkunitzin superfamilies, followed by S, A and B1.
For the vermivorous genera, Cerm_03 and O2 superfamilies
were the most important contributors to the positive loadings
(electronic supplementary material, figure S6). DFA using
PC1 to PC3 and diet as factor classified correctly 100% of the
cases (also in the jackknifed classification test). Additionally,
within the piscivorous cones, the PCA separated Pionoconus
(Indo-Pacific Ocean) from Chelyconus (Atlantic Ocean). The
former hadMandConkunitzin superfamilies asmain contribu-
tors to the negative loadings whereas O2 and T superfamilies
contributed to the separation of Chelyconus (not shown).
4. Discussion
(a) Conotoxin precursor assembly and annotation
The use of Illumina short reads to sequence cone venom gland
transcriptomes has boosted the identification of conotoxin pre-
cursors [13]. However, de novo assembly is not straightforward
and the use of various approachesmay render strikingly differ-
ent results. This should be taken into account when reporting
the full venom catalogue of a species. In this regard, long
read sequencing (paradoxically the now discontinued 454
but not PacBio or ONT technologies, which had not been
yet applied to venom gland transcriptomes), which capture
full-length peptides, and proteomic approaches have con-
firmed the exceptional variability of conotoxin precursors
and complexity of venom cocktails. Another delicate step is
annotation, which entirely relies on the quality of the reference
database [45]. On one hand, the actual number of conotoxin
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precursors could be underestimated. Low-expressed conotoxin
precursor transcripts may not be recognized in the absence of
counterparts in the reference database, if these were not
detected in proteomic analyses, which are less sensitive [13].
On the other hand, we focused here on the possibility that
assembly artefacts could overestimate conotoxin diversity
[8,19,29]. This is particularly worrisome as, if not detected,
these annotation errors could dangerously propagate once
incorporated into updated reference databases [7,8,45]. We
carefully inspected all the ORFs rendered by the BLASTX
searches. At the assembly level, we often found regions of
the assembled transcript (particularly at the 50- and 30-ends)
mapped only by few reads that could lead to frame shifts
and generate spurious variability [19]. At the annotation
level, we implemented a TBLASTX step, which found two
main sources of conotoxin misidentification (electronic sup-
plementary material, file S2): (i) translations into the wrong
frame, as exemplified by the R superfamily, originally
described in Conus marmoreus [41], which once translated into
the correct frame corresponds to the proteasome subunit
alpha; and (ii) chimeric transcripts generatedduring the assem-
bly. This is the case of several conotoxin precursors identified in
Darioconus episcopatus [13]. For example, one precursor
(BAS24857; named Cerm_18 in [8]) had the typical mature
domain associated with T superfamily whereas the putative
signal and pro-peptide domains, once translated into the
correct frame corresponded to a sodium- and chloride-
dependent glycine/GABA transporter. The here identified
annotation errors (electronic supplementary material, file S2)
should be eliminated from future reference databases.

(b) Venom composition and evolution
The analysed venoms contained 108-221 conotoxin precursors,
which is in good agreement with numbers reported for other
species of cones [6–8,25,29]. Comparison of venom repertoires
revealed a larger set of expanded superfamilies in Africonus
than in Varioconus. Although, it has been proposed that
larger sets of conotoxins are associated with broader diets
[19,22], we could not test this hypothesis, as the breadth of
the worm diet of the different Africonus and Varioconus species
is largely unstudied. Ecological studies onMiliariconus miliaris
showed that the individuals of this species inhabiting the
remote Eastern Island presented a considerably broader diet
of worms, which could have evolved through ecological
release in the absence of congeners [46]. This hypothesis
could apply to A. verdensis (A_0239), which had a large cono-
toxin catalogue with many expanded superfamilies, and lives
alone in Santiago Island.

Conotoxins are well known for their accelerated rates of
evolution, which in turn generate high-sequence divergences
even between individuals of the same species [6,8,25]. This is
the basis of the reported general lack of common peptides
between cone species, and the extended notion that virtually
each species produces a unique venom cocktail [7]. The present
study brings, for the first time, the opportunity to test the taxo-
nomic limits of this hypothesis by comparing closely related
species sharing relatively recent common ancestors. Individ-
uals of the same species showed around one-fourth common
conotoxin precursor sequences. This proportion is similar to
those reported for intraspecific comparisons in Dendroconus
betulinus [6], Rhombiconus imperialis [25] and C. ermineus [8].
The proportion of shared sequences decreased substantially
for the pairwise comparisons between closely related species,
within the range of 2–9%, in agreement with that reported for
sister species of the genus Turriconus [7]. At the genus level,
only 0.7–1.9% of the total sequenceswere common. Altogether,
our results support that aphylogenetic signal remains invenom
composition above the species level, but it is quickly eroded as
lineages diverge and no identical conotoxin precursors are gen-
erally shared between closely related genera [19]. However, it is
striking that several identical conotoxin precursor sequences
were found between species from distantly related genera
within Conidae (electronic supplementary material, file S1),
indicating that those sequences are either subjected to strong
balancing selection or reflect cases of convergent evolution.
The rather erratic distribution of some of these sequences in
the phylogeny of Conidae favours the latter hypothesis.

The two genera showed very contrasting results in the
ancestral reconstruction analyses: only Pmag_02 could be
traced back to the ancestor of Africonus whereas members of
14 conotoxin precursor superfamilies were inferred for the
common ancestor of Varioconus. This discrepancy could be
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due to the larger number of taxa analysed and the greater
diversity of members within the expanded superfamilies in
Africonus. In any case, M, O1, O2 and T superfamilies were
characterized by having five or more members in all studied
species. The wider presence of these superfamilies in any
cone and always showing similar levels in diversity of mem-
bers [6–8,19,41] may suggest that the ancestor of living cones
already had this core set, and that having members of these
superfamilies (not necessarily the same) is essential either for
defense (if, as proposed, this was the ancestral role of cone
venom; [12]) or for triggering the minimum physiological
responses necessary for the capture of a prey, regardless of
whether it is a worm, a snail or a fish.

PCA and MCA have been used in several other animal
groups to summarize the information related to venom compo-
sition [14,15] but not in cones to the best of our knowledge.
MCA of presence/absence of superfamilies and PCA of the
relative abundance of superfamily members recovered non-
overlapping patterns for Africonus and Varioconus, indicating
that species that are more closely related tend to have the
same conotoxin precursor superfamilies and in similar pro-
portions. By contrast, the PCA for expression levels did not
find differences between the two genera, which may indicate
functional convergence at this level, in agreement with the
common expression patterns of conotoxins found in closely
related Indo-Pacific vermivorous cone species that could not
be explained by phylogeny but by functional convergence [47].

(c) Differential expression levels of conotoxins between
genera and diets

Although the exact worm species eaten by the different species
of Varioconus and Africonus are unknown, at least the three
clades described within genus Varioconus correlate with differ-
ent morphologies of the radular teeth suggesting subtle diet
specializations [27]. We tested whether the two genera
showed differential expression of their venom components,
which could be correlated with diet adaptations. The B1,
Cerm_01, Cerm_11 andV superfamilies presented significantly
different expression between Africonus and Varioconus after
the Kruskal–Wallis test was applied. The B1 superfamily
(Conantokin) was originally described in the piscivorous
G. geographus and reported to provoke a ‘sleeping’ phenotype
in vertebrates, but its function in vermivorous species has not
been characterized [4]. The V superfamily was first identified
in the venom of the vermivorous Virgiconus virgo, but there is
no information regarding its function [4]. The Cerm superfami-
lieswere recently described inC. ermineus [8] and their function
remains unknown.

Similarly, we tested for differential expression between pis-
civorous and vermivorous cones. We found four superfamilies
differentially overexpressed in the two piscivorous species
(A, A2, I5 and S) after the Kruskal–Wallis test. Thus, these
superfamilies may be essential for piscivory in cones. The
importance of having different members of the A superfamily
for hunting fish has been highlighted previously for several
cone species, as well as instances of functional convergence
between Indo-Pacific and Atlantic piscivorous cones [8]. The
S superfamily was first identified in G. geographus and found
to inhibit neurotransmitter receptors [4]. Later, it was reported
as minor component of different cone species, not all necess-
arily hunting on fish. The A2 superfamily has been described
very recently [7], and its pharmacological function remains
unknown. Despite sharing the same cysteine pattern to the I4
superfamily of C. ermineus, the I5 superfamily was defined as
new in P. magus because it had a distinct signal region [29].
The functions of both superfamilies are unknown.

The possibility of comparing venom catalogues of closely
related species of cones within a phylogenetic framework
paves the way to understand how the venom repertoires
were assembled and evolve, as well as to discern the relative
role of diet and defense as selective forces. Here, we focused
on two well-known species radiations of West African cones.
For the first time, not only did we established levels of diver-
gence of venom compositions at different taxonomic levels
(between individuals, species, main lineages, genera) but also
detected shared conotoxin precursors and inferred their poten-
tial presence at most recent common ancestors. This allowed (i)
disentangling orthologous from paralogous conotoxin precur-
sors; (ii) identifying functionally convergent conotoxin
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precursors; and (iii) distinguishing shared derived from plesio-
morphic conotoxin precursors. Our results demonstrate that
different genera (Africonus,Varioconus, Chelyconus and Pionoco-
nus) show distinct venom toolkits in terms of type andmember
abundance of conotoxin precursor superfamilies but that
these differences are less evident when expression levels are
analysed. Diet might be the strongest selective factor determin-
ing the relative expression of each venom component, as
suggested by the differential expression analyses, although
the contribution of differential conotoxin expression to defense
needs to be further understood.
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