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Abstract

Pest management in stored grain industry is a global issue due to the development of insecticide resistance in stored grain
insect pests. Excessive use of insecticides at higher doses poses a serious threat of food contamination and residual toxicity
for grain consumers. Since the development of new pesticide incurs heavy costs, identifying an effective synergist can
provide a ready and economical tool for controlling resistant pest populations. Therefore, the synergistic property of
quercetin with paraoxon and tetraethyl pyrophosphate has been evaluated against the larvae and adults of Tribolium
castaneum (Herbst). Comparative molecular docking analyses were carried out to further identify the possible mechanism of
synergism. It was observed that quercetin has no insecticidal when applied at the rate of 1.5 and 3.0 mg/g; however, a
considerable synergism was observed when applied in combination with paraoxon. The comparative molecular docking
analyses of CYP450 monooxygenase (CYP15A1, CYP6BR1, CYP6BK2, CYP6BK3) family were performed with quercetin,
paraoxon and tetraethyl pyrophosphate which revealed considerable molecular interactions, predicting the inhibition of
CYP450 isoenzyme by all three ligands. The study concludes that quercetin may be an effective synergist for
organophosphate pesticides depending upon the dose and type of the compound. In addition, in silico analyses of the
structurally diversified organophosphates can effectively differentiate the organophosphates which are synergistic with
quercetin.
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Introduction
During grain storage, up to a quarter of the world grain reserves
are lost due to insect infestation annually. Globally, several insec-
ticides alongside fumigants are being used, but incidences of
pesticide resistance development against those chemical pro-
tectants have been reported regularly [1, 2]. For the stored grain
pests, phosphine is used widely as a fumigant, although strong
resistance to phosphine has been reported in a number of stored
grain pests including Tribolium castaneum [3]. Other than fumi-
gation, organophosphate compounds (OPs) have been used as
structural pest management [4]. There are more than 100 differ-
ent kinds of organophosphates classified on the basis of their
structures and functions [5] and also exhibit toxicity contrarily.
Since most of the stored grain pests have developed resistance
against these pesticides, they are needed to applied at higher
concentration. This in turn exhibits occupational health haz-
ards and possible residual contamination in the food chain [6].
Generally, for every 3 years of an organophosphate pesticide
application, stored grain pests used to develop resistance against
those pesticides. The range of chemicals that can be used safely
having least environmental contamination as well as economi-
cally feasible to apply on grains is very limited.

One mechanistic approach is to add a synergist compound
with the insecticide that can reduce the metabolism of pesticide
in the body of the insects. With this objective, different plant
metabolites and extracts have been evaluated for their insecti-
cidal, repellent or synergistic properties [7]. Tribolium castaneum,
the red flour beetle, attacks a wide range of human stored
food and causes considerable damages [8]. The stored grain
products including flour, cereals, crackers, beans, spices, pasta,
cake mix, dried pet food, chocolate, nuts, seeds and even dried
museum specimens are being attacked by the red flour beetle [8].
Although several natural compounds having synergistic activ-
ity against insect’s CYP450 have been widely reported [9–11], a
limited information is available regarding the activity of QCT on
organophosphate detoxification mechanism in insect pests. The
present study was designed to investigate the insecticidal poten-
tial in quercetin (QCT) and compare with two structurally differ-
ent organophosphates, paraoxon (POX) and tetraethyl pyrophos-
phate (TEPP) against fifth instar larvae and adults of T. castaneum.

QCT is widely abundant in nature and is present in numerous
fruits, vegetables, leaves and grains. Its tremendous medicinal
value has been documented in literature [12–14]. In addition,
its protective effect against organophosphate-induced toxicity
in human has also been reported [15]. However, its insectici-
dal activity is less addressed, though it has been reported as
constituents of extracts investigated for insecticidal value [16]
against Sitophilus zeamais [17, 18] and Helicoverpa armigera [19] and
even against the organophosphate resistant mites [20].

QCT has been reported to modulate CYP450 enzymes [21]
and is an active inhibitor of several isoenzyme of CYP450 in
vertebrates [22–24]. CYP450 monooxygenases not only detoxifies
the organophosphate insecticides but also the QCT [25]; hence,
mechanistically there could be a competitive effect by the com-
bination of both QCT and organophosphate together resulting
into the increased toxicity of organophosphate compounds. The
study was designed with the assumption that QCT might act
as synergist to organophosphates due to its reported esterase-
inhibiting properties [26]. This will enable the reduction in dosage
of environmentally hazardous chemical against resistant insect
pests.

Furthermore, for the hit identification and lead optimization,
comparative molecular docking analyses could give a broader

view of the mechanism of synergism between QCT and
organophosphate compounds. Bioinformatics helps to solve
numerous biological problems [27] and have effective method-
ologies to design computer-aided drugs against cancer [28–31]
and neurological disorders [32–35]. It has been reported that
QCT has esterase-inhibiting properties [36]. Extensive literature
review of QCT along with organophosphates compounds and
CYP450 was the initial efforts of the current in silico analyses.
The aims of the study were to evaluate the potential synergism
effects of QCT with organophosphate pesticides used against
Tribolium castaneum along with 3D structure prediction and
evaluations of CYP15A1, CYP6BK2, CYP6BK3 and CYP6BR1
comparative molecular docking analyses with synergic effect
to explore the molecular mechanism computationally. To attain
our aims, the insect’s culture, toxicity determination, synergic
effects, threading and comparative modeling followed by the
comparative molecular docking were applied. The following
molecular docking methodology [37] had the potential to
identify the molecular mechanism through computational
biology. Finally, the outcome of this study may introduce a
new insecticide complex with better efficacy than the existing
standard pesticide and larvicide against resistant T. castaneum.

Materials and Methods
Insect culture

Insect cultures were sourced from stored product research lab-
oratory in the University of Karachi and were reared in sterile
jars containing wholemeal wheat flour mixed with yeast (10:1,
w/w) at 32◦C and 60% relative humidity with 14:10 hour’s dark:
light regime. All the bioassays were conducted on the fifth instar
larvae and newly emerged adults of T. castaneum under the above
mentioned laboratory condition.

Chemicals

QCT, a naturally occurring flavonoid in powdered form (Cat. No.
1592409), POX (Cat. No. PESTNATAL 36186) and TEPP (Cat. No.
32434.) were sourced from Sigma-Aldrich, USA. The minimized
2D structures of the selected ligands are presented in Fig. 1.

Insect bioassays

Toxicity determination. Toxicity bioassays of organophosphates
and QCT against the fifth instar larvae and adult were carried
out as described by [38]. Doses were optimized in preliminary
pilot studies. The experiments were repeated thrice with three
concentrations each for POX (0.055, 0.275 and 27.52 mg/g of diet)
and TEPP (0.290, 1.451 and 29.019 mg/g of diet), and two doses of
QCT (1.5 and 3.0 mg/g of diet) were used along with three control
groups with diet treated with water, solvent or none (dry flour).
Since no mortality was observed in any of the control treatment,
the data is not mentioned.

Ten larvae or adults of uniform age were released in a Petri
dish (90 × 15 mm) containing the treated diet or the controlled
diet, accordingly. Daily data for insect mortality was recorded for
10 consecutive days. The data were analyzed statistically, and
the survival curves were generated using Kaplan–Meir survival
analysis on 10 days data using SPSS statistical software.

Evaluation of synergistic effect. The synergistic effect of QCT with
organophosphates was evaluated using the above mentioned
doses of POX and TEPP in combination with QCT at 3.0 mg/g of
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Figure 1: 2D structure of ligands under consideration. (A) Paraoxon (POX), (B) quercetin (QCT), (C) tetraethyl pyrophosphate (TEPP)

diet. The data were analyzed statistically as mentioned in earlier
section.

In silico analyses

Homology modeling, evaluation and refinement. For in silico analy-
ses, comparative modeling, threading approach and comparative
molecular docking studies were performed. The canonical
sequences of CYP450 enzymes, CYP15A1 (492 residues), CYP6BR1
(494 residues), CYP6BK2 (512 residues) and CYP6BK3 (506
residues) were retrieved in FASTA format from UniProt Knowl-
edgebase [39] having accession numbers A0A0F7R7X8, D7EJ99,
D7EJA7 and D7EJA6, respectively. The amino acid sequences of
the selected proteins were subjected to BLASTp search against
Protein Data Bank (PDB) [40] for suitable template structures. The
top-ranked structures (Supplementary Table 1) were selected
as suitable templates to predict the three-dimensional (3D)
structures of the selected proteins by using homology modeling
approach. MODELLER 9v13 [41], an automated protein modeling
program, was employed to predict the 3D structures of the
selected proteins by satisfying the spatial restraints. Numerous
online software including RaptorX [42], SWISS MODEL [43], M4T
[44], I-TASSER [45] and Phyre2 [46] were utilized for structure
prediction to predict the 3D models. The energy minimization
followed by geometry optimization was done by using UCSF
Chimera 1.8 [47] for 1000 steps (step size 0.02 Å), utilizing the
conjugate gradient method followed by the protonation of wild-
type histidines by employing the force field of AMBER ff98
method [48]. The evaluation tools including ERRAT [49], Procheck
[50] and verify3D [51] were applied to evaluate the quality of the
predicted CYP26A1 model. The predicted 3D models were further
assessed by MolProbity [52] server. Finally, the poor rotamers and
ramachandran outliers were corrected by using WinCoot [53]
tool.

PROCHECK evaluates the 3D positioning of each atom and
residues of the protein structure, while ERRAT analyzes the
statistics of nonbonded interactions between different atom
types. Verify3D determines the compatibility of an atomic model
(3D) with its own amino acid sequence (1D) [54, 55].

Molecular docking. Extensive literature review was performed to
analyze the amino acid position of heme, and it was observed
that CYPs bind with heme for efficient working. The Cys-436,
Cys-438, Cys-457 and Cys-457 residues of CYP15A1, CYP6BR1,
CYP6BK2 and CYP6BK3 were observed and selected for the heme
binding, respectively. The blind and targeted dockings were per-
formed by GOLD [56] and AutoDock Vina [57] docking software for
the binding of heme against the selected proteins at appropriate

positions. UCSF Chimera 1.13, Ligplot [58] and MoE [59] were used
to analyze the molecular docking and interactions of heme.

Comparative molecular docking studies were done by
AutoDock 4.2 tool, GOLD and AutoDock Vina [60]. The total 100
docking runs were set for each docking experiment, and polar
atoms of hydrogen were added to the receptor proteins. The grid
size for the docking studies was set at 65 × 65 × 65 Å in X, Y and Z
axes, respectively, with the grid spacing value of 0.710 Å to cover
the whole receptor proteins and 0.450 Å for targeted docking at
heme binding sites. The default parameters were used, while
the genetic algorithm was used as the main searching protocol.
The geometry optimization and energy minimization of the
ligand compounds were done by using ChemDraw Ultra [61]
and UCSF Chimera 1.6. The docked complexes were visualized
and analyzed by employing ligplot, MoE, UCSF Chimera 1.8 and
AutoDock 4.2 tools.

Results
Toxicity of paraoxon (POX)

The baseline toxicity of the POX was applied with or without
QCT against T. castaneum (Tables 1 and 2). The application of
POX demonstrated a dose-dependent mortality of larvae and the
adults. The first day of applying the dose did not kill the larvae,
while the highest dose of POX was applied (Table 1); however, on
the second day after application, 66.7% of the larvae were killed
in the same dose treatment (27.52 mg/g). Later, on the fifth day
after application, the mortality in this treatment topped to at
100% (Table 1). In contrast, the lowest dose of POX (0.055 mg/g)
did not produce any mortality. Similar results were observed for
the toxicity test of POX against adult beetles, except with the
treatment of POX at 27.52 mg/g—73.3% beetles got killed after
1 day (Table 1).

The only dose of QCT was applied at the rate of 3.0 mg/g
of diet, and no mortality fluctuation to both larvae and adults
(Table 2) was observed. However, the combination of POX and
QCT knocked down the effect of the treatment on the first
and second day after application (Table 2). The 20% of the
increased mortality was observed with the combination of POX
(0.275 mg/g) and QCT (3.0 mg/g) against larvae and adults, while
10% increased mortality at the highest dose of POX was observed
due to QCT synergism (Table 2), as compared to the POX only
treatments (Table 1).

POX applied at the rate of 27.52 mg/g caused 73% mortality,
even when it was applied individually (Table 1). In contrast, QCT
increased this effect of POX and reached 90% mortality (Table 2),
hence demonstrating significant synergism between POX and
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Table 1: Toxicity of paraoxon (POX) against the fifth instar larvae of Tribolium castaneum and adult over time

Doses (mg/g) Percent mortality

1st day 2nd day 5th day 6th day 10th day

Larval toxicity
0.055 0 0 0 0 0
0.275 0 46.7 ± 3.3 83.3 ± 16.7 100.0 ± 0.0 100.0 ± 0.0

(32.3–61.0) (11.6–155.0) — —
27.52 20.0 ± 05.8 66.7 ± 12.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

(0.0–44.8) (14.9–118.3) — — —
Adult toxicity
0.055 0 0 0 0 0
0.275 0 46.7 ± 3.3 83.3 ± 16.7 100.0 ± 0.0 100.0 ± 0.0

— (32.3–61.0) (11.6–155.0) — —
27.52 73.3 ± 12.0 76.7 ± 08.8 86.7 ± 13.3 100.0 ± 0.0 100.0 ± 0.0

(21.6–125.0) (38.7–114.6) (29.3–144.0) — —

The data is presented as percent mortality means ± SEM (first row). The second row shows the respective 95% confidence interval of the mean.

Table 2: Synergistic effects of quercetin (QCT) when used in combination with paraoxon (POX) against Tribolium castaneum

Doses (mg/g) Percent mortality

1st day 2nd day 5th day 6th day 10th day

Larval toxicity
QCT 3.0 0 0 0 0 0
POX 0.055 + QCT 3.0 0 3.3 ± 3.3 16.7 ± 12.0 30.0 ± 15.3 33.3 ± 14.5

(0.0–17.7) (0.0–68.7) (0.0–95.7) (0.0–95.8)
POX 0.275 + QCT 3.0 0 63.3 ± 6.7 80.0 ± 11.5 100.0 ± 0.0 100.0 ± 0.0

(34.6–92.0) (30.3–129.8) — —
POX 27.52 + QCT 3.0 0 73.3 ± 6.7 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

(44.6–102.0) — — —
Adult toxicity
QCT 3.0 0 0 0 0 0
POX 0.055 + QCT 3.0 0 0 0 0 0
POX 0.275 + QCT 3.0 0 63.3 ± 6.7 80.0 ± 11.5 100.0 ± 0.0 100.0 ± 0.0

(34.6–92.0) (30.3–129.8)
POX 27.52 + QCT 3.0 90.0 ± 05.8 90.0 ± 05.8 96.7 ± 03.3 100.0 ± 0.0 100.0 ± 0.0

(65.2–114.8) (65.2–114.8) (82.3–111.0)

The data is presented as percent mortality means ± SEM, while the values in parenthesis, below each mean, are the respective 95% confidence interval.

QCT. Similar pattern was observed by Kaplan–Meier survival
curve generated using 10 days of mortality data (Fig. 2). QCT
when used in mixture with POX increased POX toxicity, and this
is clearly mentioned by a 50% decline in the LD50 values for POX.

Toxicity of tetraethyl pyrophosphate (TEPP)

The similar toxicity pattern of TEPP against T. castaneum was
observed with or without QCT combination (Tables 3 and 4).
The mortality of both the larvae were found to ne dose and
time dependent; however, TEPP had relatively lesser toxicity
compared to POX (Table 3). In general, the 0.29 mg/g dose of TEPP
produced the highest mortality of T. castaneum larvae. All other
treatments against the larvae and adults produced mortality that
was less than 10% (Table 3). Furthermore, QCT did not have any
synergistic effect on TEPP toxicity, except when applied against
the larvae at the rate of 29.019 mg/g (Table 4).

In silico analyses

The initial efforts for in silico studies were based on the
relation of CYP450 enzymes (CYP15A1, CYP6BR1, CYP6BK2
and CYP6BK3) with QCT, POX, TEPP and its computational

analyses to identify the molecular mechanism along with
heme and Fe. The 3D structures of the selected proteins were
not reported by NMR and X-ray crystallography techniques
yet. The threading approaches and comparative modeling
techniques were employed to predict the 3D models of the
selected proteins. The amino acid sequences of the selected
receptor proteins were subjected to protein–protein BLAST
against the PDB database to search the suitable templates. The
suitable top-ranked optimally aligned templates belong from
CYP family with E-value and query coverage were selected to
perform the comparative modeling (Supplementary Table 1). The
alignment of the protein sequences showed that the conserved
sequence region will share similar structures and functions. The
selected templates were used to predict the 3D structures of
the selected proteins. The overall identity between the selected
templates and the selected proteins showed >38% from end-to-
end amino acid sequence that was not considered reliable for
the satisfactory structure prediction by using the comparative
modeling approach. Threading approach was employed for
better 3D structure and to overcome the errors.

In silico approaches (comparative modeling and threading)
were employed by satisfying the spatial constraints to predict 19
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Figure 2: Kaplan–Meier survival curves generated for 10 days mortality data of POX (a and b) and TEPP (c and d) against Tribolium castaneum larvae (a and c) and adults

(b and d). Synergistic effect of quercetin with POX is evident, as fewer insects survived when OP is co-applied with quercetin 3.0 mg/g (bottom line in graphs)

Table 3: Toxicity of tetraethyl pyrophosphate (TEPP) against the fifth instar larvae of Tribolium castaneum and adult over time

Doses (mg/g) Percent mortality

1st day 2nd day 5th day 6th day 10th day

Larval toxicity
0.290 3.3 ± 3.3 3.3 ± 3.3 23.3 ± 23.3 30.0 ± 30.0 ± 30.0

(0.0–17.7) (0.0–17.7) (0.0–123.7) (0.0–159.0) (0.0–159.0)
1.451 6.7 ± 6.7 6.67 ± 6.7 6.67 ± 6.7 6.7 ± 6.7) 6.7 ± 6.7

(0.0–35.4) (0.0–35.3) (0–35.3) (0.0–35.3) (0.0–35.3)
29.019 0 0 0 0 3.3 ± 3.3

(0.0–17.7)
Adult toxicity
0.290 3.3 ± 3.3 3.3 ± 3.3 3.3 ± 3.3 3.3 ± 3.3 3.3 ± 3.3

(0.0–17.7) (0.0–17.7) (0.0–17.7) (0.0–17.7) (0.0–17.7)
1.451 16.7 ± 8.8 3.3 ± 3.3 3.3 ± 3.3 3.3 ± 3.3 3.3 ± 3.3

(0.0–54.6) (0.0–17.7) (0.0–17.7) (0.0–17.7) (0.0–17.7)
29.019 0 0 0 0 3.3 ± 3.3

(0.0–17.7)

The data is presented as percent mortality means ± SEM (first row). The second row shows the respective 95% confidence interval of the mean.

structures for each protein by using various tools (MODELLER
9.14, Phrex2, SWISS MODEL, RaptorX, M4t and I-TASSER).
All the predicted structures were evaluated on the basis of
passing score, overall quality factor, favored region, outliers
(Supplementary File 1) and heme binding region. Graphs were
plotted (Supplementary Figs 1–16) by utilizing the evaluated
values of all the generated models, and the most reliable
structure was selected that favors the model generated from
threading approach.

The ERRAT evaluation tool calculated the overall quality fac-
tor of 82.64, 89.09, 94.44 and 92.77% for the predicted structures

of the CYP15A1, CYP6BR1, CYP6BK2 and CYP6BK3, respectively,
depicting the high-quality structures. After critical examining,
the predicted structures (Fig. 3) have the potential to be utilized
for further analyses.

The reported protein structures of CYP family were retrieved
from the PDB and also observed the heme binding site from
literature [62–65]. It was observed that the heme and Fe bound
at similar position in all the CYP family. The heme was docked
against the selected proteins at the observed binding domain by
using GOLD docking software. Interestingly, it was observed that
the heme bound at the exact similar position counseling with the

https://academic.oup.com/toxres/article-lookup/doi/10.1093/toxres/tfaa023#supplementary-data
https://academic.oup.com/toxres/article-lookup/doi/10.1093/toxres/tfaa023#supplementary-data
https://academic.oup.com/toxres/article-lookup/doi/10.1093/toxres/tfaa023#supplementary-data
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Table 4: Synergistic effects of quercetin (QCT) when used in combination with tetraethyl pyrophosphate (TEPP) against Tribolium castaneum

Doses (mg/g) Percent mortality

1st day 2nd day 5th day 6th day 10th day

Larval toxicity
QCT 3.0 0 0 0 0 0
TEPP 0.290 + QCT 3.0 0 0 0 0 0
TEPP 1.451 + QCT 3.0 0 3.3 ± 3.3 3.3 ± 3.3 3.3 ± 3.3 3.3 ± 3.3

(0.0–17.7) (0.0–17.7) (0.0–17.7) (0.0–17.7)
TEPP 29.019 + QCT
3.0

56.7 ± 3.3 56.7 ± 3.3 76.7 ± 12.0 80.0 ± 11.5 86.7 ± 13.3

(42.3–71.0) (42.3–71.0) (24.9–128.7) (30.3–129.8) (29.3–144.0)
Adult toxicity
QCT 3.0 0 0 0 0 0
TEPP 0.290 + QCT 3.0 0 0 0 0 0
TEPP 1.451 + QCT 3.0 0 0 0 0 0
TEPP 29.019 + QCT
3.0

3.3 ± 3.3 3.3 ± 3.3 3.3 ± 3.3 3.3 ± 3.3 3.3 ± 3.3

(11.0–17.7) (11.0–17.7) (11.0–17.7) (11.0–17.7) (11.0–17.7)

The data is presented as percent mortality means ± SEM, while the values in parenthesis, below each mean, are the respective 95% confidence interval.

Figure 3: Pictorial representation of the binding residues identified via structure-based multiple sequence alignment (a) presents superimposition of the target and the

template proteins (yellow color represents the target (CYP450) proteins, whereas brown color represents the template), (b) presents zoomed in view of the binding pocket

with conserved residues labeled and (c) is the sequential representation of the structure-based alignment. The conserved residues in both target and the template are

highlighted in green

other CYP protein family having the distance of <2.00 Å (Fig. 1).
The selected inhibitors (Fig. 1) in the present analyses showed
significance binding analyses of heme with CYP family.

However, the comparative molecular docking analyses of the
selected inhibitors showed fluctuation in the observed binding
energies, and the suitable docked complex having least binding

energy was selected among all the generated docking complexes
for each inhibitor. It was observed that the selected inhibitors
showed effective binding against the selected proteins and heme.
The molecular docking analyses were performed against the
selected inhibitors by employing GOLD and also cross validate
the molecular docking analyses by using AutoDock Vina and
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Figure 4: 3D representation of interactions among CYP450 proteins and respective ligands. The dark brown color represents the ligands, and light brown color represents

the receptor. The hydrogen bond along with the distances is shown in green

AutoDock. All the docked complexes were ranked through high-
est binding affinity with heme and least binding energy. The top
5 docked complexes for each complex were analyzed critically.
The blind and targeted docking analyses were performed for all
the selected proteins to cross validate the results. Interestingly, it
was observed that the compounds showed similar binding sites
through both blind and targeted docking analyses. Extensive
comparative molecular docking analyses revealed that QCT and
POX showed least binding energy values and highest binding
affinity with heme against CYP6BK3. The binding residues Leu-
126, Phe-145, Ile-458, Arg-461, Gly-459, His-125, Phe-127, Cys-457,
Ala-460, Phe-462, leu-464, Gly-463, Val-313, Ala-317, Ile-363, Gly-
318, Thr-321, Pro-382, Ser-322, Thr-467 and Glu-320 of CYP6BK3
exhibited highest binding affinity against heme and selected
molecules (Fig. 4).

Discussion
Our investigation revealed that the QCT alone is not an effective
protecting agent against the adult and fifth instar larvae of
flour beetle, but it possesses profound synergistic effect when
mixed with POX. Although our findings warrant further investi-
gation of the toxicity of QCT against insect pests, the inactivity
of QCT is supported by earlier studies conducted against two
other species of insects, i.e., larvae of Helicoverpa armigera and
Spodoptera litura [66]. However [22] reported the deleterious effect
of QCT to the third instar larvae of cotton boll worm, Helicoverpa
armigera at higher doses only. Similarly, no previous studies could
be traced on the understudied CYP450 isoenzymes. Moreover, it
is evident from the literature that flavonoids inhibit esterases
and monooxygenases, in general [67], and similarly QCT showed
tissue- and dose-specific influence on the expression of CYP450
in H. armigera [22, 68] which found that Mythimna separata larvae
had different metabolic strategies for QCT at different stages of
the development. Flavonoids like QCT have medicinal value, and
it has been reported as protecting agent to many pathological
conditions [69, 70]. It can interfere with reproduction, molting

and feeding behavior of insects and their larvae [71]. The syn-
ergistic effect of QCT to profenofos, an organophosphate, against
cotton leafworm has already been reported. [72–74] reported that
the QCT has the potential to increase the mortality of first instar
Colorado potato beetle larvae after 48 hours with the combi-
nation of Guthion, an organophosphate. Hence the frequently
reported esterase-inhibiting nature of QCT might be considered
as the mechanism of synergism reported in our studies.

Several in vivo and in vitro studies in human and mouse
models have indicated that flavonoids may enhance or actively
inhibit certain CYP450 isoenzyme. According to [75], CYP450
is distinctive to every species, and no organism shares identi-
cal CYP450. The CYP450 enzymes may be inhibited or induced,
resulting in the modulation of physiological processes and toxi-
cokinetics of xenobiotics. One of the reasons for insecticide resis-
tance in insects has been attributed to the increased activities
of CYP450 monooxygenases [76, 77], and mostly isozymes from
family 6 has been implicated in conferring resistance in insect
pests. For instance, susceptible strain of a mosquito Aedes albopic-
tus exhibited 5-fold inhibition of CYP6P15 by an organophos-
phate temephos [77]. CYP6BK2 was reported to be increased in
deltamethrin, a pyrethroid insecticide-resistant T. castaneum [78].
Vice versa, theoretically and mechanistically, decrease in CYP450
monooxygenases will increase the sensitivity of the insecticide.

Heme is considered as a vital cofactor, and the control of
degradation and synthesis of heme are finely tuned by cellular
contents. The excess of heme becomes toxic for the cells, while
the deficiency leads to harm the cells [79]. Including CYP450, usu-
ally the cellular heme behaves as a functionally diverse hemo-
protein prosthetic moiety [79]. The heme is the mandatory cofac-
tor for the activity of the CYP450.

The observed results showed that the QCT was used in com-
bination with POX; it resulted into knockdown effect as soon as
1 day after application, and 10–20% increase in larval and adult
mortalities was observed due to QCT. The addition of QCT also
had 1-fold increase in toxicity of POX, and LD50 was reduced
to half the concentration required when POX was used alone.
These synergistic results of QCT can be attributed to the ability
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of QCT to inhibit the function of CYP450 protein in insects.
Since CYP450 monooxygenases are among the main enzymes
involved in insecticides resistance, the use of QCT can provide an
efficient and effective resistance management strategy against
T. castaneum. The present work, hence, focuses on four selected
CYPs, all of which are present in Tribolium spp., where three
of them, i.e., CYP6BR1, CYP6BK2 and CYP6BK3, are monooxyge-
nases having established role in CYP-mediated insecticide resis-
tance mechanisms [78], while the fourth (CYP15A1) is involved in
embryogenesis [80].

In silico approaches including comparative modeling and
comparative molecular docking were performed to further
evaluate the role of QCT in modulating CYP450 proteins. The
3D structures of the selected CYP proteins were not reported
by experimental techniques in PDB. The 3D structures of the
selected proteins were predicted by utilizing the comparative
modeling and threading approaches. The predicted models
showed a good degree of accuracy, keeping in view the heme
binding site of the selected proteins. Comparative molecular
docking was performed by AutoDock Tools and GOLD, which
leads to the synergic effects of QCT and POX against the mortality
of larvae. Extensive comparative molecular docking analyses
of the interactions among the combination of QCT and POX
along with heme reconciled with the in vitro analyses. The
observed results suggested that the highest binding affinity and
least binding energy (Supplementary File 2) satisfy the accuracy
of comparative molecular docking analyses [33, 35]. With the
parameter satisfaction of least binding energy and coinciding
with the statement of highest binding affinity against utilized
ligands and heme, it is suggested that the synergic combination
of QCT and POX against CYP6BK3 has a potential to affect the
mortality of larvae. Our docking results revealed the involvement
of Leu-126, Phe-145, Ile-458, Arg-461, gly-459, His-125, Phe-127,
Cys-457, Ala-460, Phe-462, leu-464, Gly-463, Val-313, Ala-317,
Ile-363, Gly-318, Thr-321, Pro-382, Ser-322, Thr-467 and Glu-320
residues for the interaction of heme, QCT and POX. CYP6BK3
protein from the current work had the lowest binding energy and
highest binding affinity with heme, QCT and POX for synergic
effect. It stands to the reason that the selected proteins and
scrutinized protein (CYP6BK3) after extensive in silico molecular
docking analyses has the potential to be an effective candidate
for affect the mortality of the larvae.

Conclusion
It is concluded that QCT may be a good synergist to organophos-
phates. However, synergistic effect of QCT depends upon optimal
doses and type of OPs. Based on molecular docking, it may be
speculated that QCT and organophosphates decreased the activ-
ity of CYP450 enzymes, which in turn showed the enhanced lar-
vicidal and adult toxicity. Furthermore, in silico molecular docking
may be effectively applied to separate out the synergizeable
organophosphates.

Supplementary data
Supplementary data is available at TOXRES Journal online.
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