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Mathematical models of cardiac electrophysiology have long been used as research tools, 

and simulations with these models have allowed for the development of new hypotheses, the 

synthesis of experimental results, and insight into arrhythmia mechanisms [1–3]. This 

modeling, however, has largely been the domain of a relatively small group of experts with 

specialized knowledge, and the process of developing new models often involves as much 

art (i.e. expert judgment) as science. It has remained an open question whether these models 

could move from the category of specialized tools that are useful for particular questions 

into the category of trusted assays that are nearly always reliable.

1. The CiPA initiative: Using models for regulatory decision-making

Given this uncertainty, the modeling community was excited by the announcement of the 

Comprehensive in vitro Proarrhythmia Assay, or CiPA [4,5]. This initiative, a partnership 

between academic laboratories, regulatory bodies, and pharmaceutical companies, aims to 

replace current testing for drug-induced proarrhythmia (aka drug-induced Long QT 

Syndrome, which usually manifests pathologically as Torsades de Pointes) with a fully in 

vitro assay. As the CiPA has been envisioned, the assay will involve measurements of how 

drugs block important cardiac ion channels, recordings of how drugs influence action 

potentials in cultured heart cells, and numerical simulations of how drugs affect human 

ventricular myocytes. The announcement of the CiPA seemed to signify the graduation of 

mathematical modeling as a discipline. Perhaps modeling was no longer an art form that 

could only be practiced by a small community of experts but was instead a more mature 

discipline that could be trusted for decision-making.

Some aspects of CiPA’s proposed modeling component, however, gave specialists pause. 

These caveats came about because of limitations, familiar to the community but perhaps not 

well-known more broadly, of cardiac electrophysiology mathematical modeling. The first is 

that the exact range of a model’s utility is generally not clear. All models are developed 

carefully, in part by validating simulation output against experimental data. However, there 

is no “industry standard” for the data that should be considered, and most models are only 

validated under a limited range of conditions (e.g. selected pacing rates, drug treatments, 

etc.). The second is that there is no single model of the human ventricular myocyte, in the 

same way that there is no single antibody for any particular protein. Instead, in the spirit of 
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scientific competition, multiple models of each cell type have generally been developed by 

several groups working independently. This leads to innovation but can also create 

confusion.

Although these two issues are important, they are not indictments of modeling as an 

approach. With respect to the first issue, it’s generally recognized that achieving consistency 

with experimental results often occurs iteratively rather than in one step. In other words, 

models can be perturbed to generate predictions, the testing of these predictions can 

demonstrate both when the model succeeds and when it fails, and these results can then be 

used to improve the model [6,7]. Indeed, it’s been observed that models are more useful 

when they fail than when they succeed [8]. With regards to the second issue, competing 

models from different groups often represent opportunities for clarifying and narrowing 

hypotheses. A benefit of models in general is that they allow for hypotheses to be stated in 

precise terms (e.g. 50% inhibition of protein X leads to a 30% increase in output Y). When 

predictions differ significantly between two models [9–11], the experimental tests of these 

predictions can allow for rigorous discrimination of the competing underlying mechanistic 

explanations.

Thus, those who are closely involved in the research recognize that incomplete validation 

and competing models are simply part of the process. But for those who wish to use models 

to make decisions in real time, these issues create difficulties [12]. For instance: if three 

competing models of the same cell type exist, which one should be trusted?

2. Current work is successfully addressing limitations of modeling 

studies

Although the discussion of limitations may seem to paint a pessimistic picture, the good 

news is that novel tools developed in recent years help to address both concerns. With 

respect to the first limitation, validation against incomplete data sets, recent work has shown 

how more predictive models may be developed. Even though it’s intuitive that more 

thorough validation should lead to a more robust model, recent studies have shown 

rigorously that tuning models based on rich sets of experimental measurements may allow 

for cell-specific models that can capture experimental variability [13–15]. Advances have 

also been made to address the second limitation, the problem of competing models. For 

instance, while studies published several years ago documented differences between 

competing models of the same cell type [9,10,16], more recent studies have, by examining a 

wide variety of models, been able to derive more general rules about why some models 

behave one way and other models behave differently [17].

In this spirit, a paper recently published in the JMCC takes an important step forward in 

addressing both of these concerns simultaneously [18]. A discussion of this paper may help 

us to understand the strengths of mathematical modeling of cardiac electrophysiology and 

arrhythmias, the current limitations in this field, and the innovative studies being performed 

to move the field forward and improve the chances that these models will be used for 

decision-making. The “take home” message from this paper [18] is that these issues can be 

overcome, if careful modeling studies satisfy two conditions: (1) simulation results from 
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multiple models are compared with a broad range of experimental data, obtained under 

multiple conditions; and (2) simulations are performed not only with models meant to 

represent typical samples or individuals, but instead performed with a range of models that 

recapitulate experimental variability.

3. Models may converge when validated against the same datasets

In their study, Mann et al. [18] combined clinical data from patients with simulation results 

to obtain important novel insights. Electrocardiographic QT intervals were obtained, before 

and after β-adrenergic stimulation, from healthy volunteers (with no known ion channel 

mutations) and from patients with the three most common forms of Long QT Syndrome 

(LQT1, 2, and 3). These three diseases cause, respectively, a decrease in slow delayed 

rectifier K+ urrent (IKs), a decrease in rapid delayed rectifier K+ current (IKr), and an 

increase in the late component of Na+ current (INaL). In principle, these alterations are 

straightforward to implement in mathematical models, so the authors simulated these 

mutations in the three leading models of the human ventricular myocyte [19–21]. When they 

did so, they uncovered results that were disconcerting, but perhaps not shocking to 

practitioners in the field. Namely, each model failed in a specific way. That is, a given model 

might do well at simulating a particular form of LQTS but perform poorly when attempting 

to simulate a different form of LQTS. From the standpoint of decision-making, it would be 

much easier if a single model failed under all conditions — in that case, simply discard that 

particular model. But if each model exhibits at least one strength in addition to one or more 

weaknesses, how should one then proceed?

At this stage, Mann et al. performed a clever analysis that led to the manuscript’s critical 

insights. Namely, they recalibrated densities of ionic currents in all three models [19–21] to 

improve each model’s consistency with the full range of clinical data they had acquired. In 

other words, the underlying differential equations were kept intact, but parameters 

describing ion channel densities were adjusted to minimize the differences between 

simulation results and experimental data. When they performed this procedure, in effect 

forcing all three models to reproduce the clinical results, a remarkable and profound result 

emerged — the models became more similar than they were originally. To state this more 

precisely, two delayed rectifier K+ currents, IKr and IKs, primarily control repolarization in 

ventricular myocytes, but the relative contributions of IKr and IKs are species-dependent, 

sometimes disputed, and often dramatically different between mathematical models. Mann 

et al. [18] found that after the three models [19–21] were simultaneously required to 

reproduce the available data, the contributions of these two currents were substantially more 

similar between models than they were originally.

The study [18] is relevant not only because of the specific insight the results provide, but 

also because the work illustrates general principles that will be important for future studies 

in a variety of fields. One is that, as previously noted, simulations should be performed not 

only with models of typical cells, but with heterogeneous populations that recapitulate 

biological variability. This methodological choice, which allowed for the study’s key 

insights, follows similar recent advances in this area [22–29]. The second is that competing 

mathematical models of the same biological process should be thought of as an opportunity 
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to more fully explore alternative hypotheses rather than simply an annoyance that must be 

dealt with.

4. Additional future work will likely lead to further insight

Although the study by Mann et al. [18] is novel and quite important, it’s useful to consider 

this study’s limitations, because these can illustrate some of the unresolved issues that 

researchers in this field are likely to tackle in the next few years.

One limitation is the fact that, when the authors forced the three models to reproduce all of 

the clinical results, the only parameters varied were those that determine maximal levels of 

the different ionic currents. Presumably, differences between competing models could result 

not only from ionic current densities, but also from the currents’ kinetic formulations. 

Although advances have recently been made in methods to constrain ion channel kinetic 

parameters [30], these have largely been applied to voltage clamp recordings. At the current 

time, a systematic examination of kinetic parameters based solely on cellular physiological 

data (e.g. action potentials and/or intracellular calcium) remains an issue to be addressed in 

future studies.

Second, although simulations were performed under both baseline conditions and after β-

adrenergic stimulation, the downstream effects of β-adrenergic stimulation were simulated 

in a phenomenological way, by assuming that β-adrenergic stimulation simply caused 

increases in specific ionic currents. A few models [31,32] have been developed that couple 

the signaling initiated by β-receptor activation with the downstream electrophysiological and 

calcium handling mechanisms. Although these models have provided important novel 

insight, their parameters have generally not been perturbed and examined systematically as 

in the current paper and other important recent studies [22–29]. It’s anticipated that 

comprehensive analyses on combined electrophysiological and signaling models are likely 

to generate novel insight into issues such as which specific proteins represent the best targets 

for therapeutic interventions.

Third, it is worth noting that simulations of heterogeneous populations, such as those 

performed by Mann et al. [18] and in closely-related studies [22–29], can generate large 

amounts of “pseudo-data” (e.g. simulated physiology from hundreds or thousands of 

individuals). Drawing conclusions from these large datasets requires that the techniques of 

mechanistic mathematical modeling be combined with approaches from bioinformatics and 

statistical analysis. For instance, mechanistic insights have previously been gained using 

methods such as multivariable linear regression [10], logistic regression [33], partial 

correlation coefficients [25], and, more recently, machine learning techniques such as 

Support Vector Machine [34]. Despite these advances, the perception nonetheless persists 

that quantitative physiologists have only begun to scratch the surface of the sophisticated 

statistical approaches that are more commonly employed in fields such as genomics. If some 

of these techniques (e.g. LASSO regression [35], elastic net regression [35], and “deep 

learning” with neural networks [36]) are appropriately employed in mechanistic studies, it 

seems likely that further quantitative advances will be made.
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5. Implications for the CiPA and the use of models in decision making

The interpretation of this study’s [18] implications depends, to some extent, on whether one 

chooses to take a “glass half full” or a “glass half empty” perspective. To emphasize the 

negatives, the study illustrates that if a particular mathematical model is asked to simulate 

multiple disease states, the model is likely to fail in some circumstances. This general 

phenomenon has been known for a long time; after all, George Box’s famous quip that “All 

models are wrong, but some are useful” [37] dates from 1987. The truth of this comment, 

however, provides scant consolation to someone who is forced to decide whether or not to 

approve an individual drug, or to continue supporting a particular drug development 

program. In such cases, including the CiPA [4,5], definitive answers seem much more useful 

than pithy nuance.

We prefer, however, to take a more optimistic viewpoint. Although the results show how 

individual mathematical models can sometimes fail to properly recapitulate pathological 

conditions, the paper also demonstrates a useful strategy for overcoming these limitations 

and generating simulation results that will be more reliable and robust. Approaches such as 

these are likely to be of tremendous use, not only in the CiPA, but also in future efforts to 

use mathematical models for drug evaluation and quantitative predictions.

The title of this editorial comes from the popular 1980s television series “The A Team,” a 

show in which a misfit group of soldiers of fortune concocted elaborate, sometimes 

ridiculous, schemes to help those who had nowhere else to turn. In nearly every episode, the 

group’s leader, Colonel Hannibal Smith, would utter his famous catchphrase, “I love it when 

a plan comes together,” often stated when their plot appeared at its most preposterous. 

Science can sometimes follow a similar path, with important new insights arising out of 

results that might initially seem problematic. The study by Mann et al. [18] offers an 

excellent example of how this can happen; i.e. seemingly inconsistent results can eventually 

produce convergence, or a plan that comes together beautifully.
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