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Abstract

In this paper, we present UNet++, a new, more powerful architecture for medical image 

segmentation. Our architecture is essentially a deeply-supervised encoder-decoder network where 

the encoder and decoder sub-networks are connected through a series of nested, dense skip 

pathways. The re-designed skip pathways aim at reducing the semantic gap between the feature 

maps of the encoder and decoder sub-networks. We argue that the optimizer would deal with an 

easier learning task when the feature maps from the decoder and encoder networks are 

semantically similar. We have evaluated UNet++ in comparison with U-Net and wide U-Net 

architectures across multiple medical image segmentation tasks: nodule segmentation in the low-

dose CT scans of chest, nuclei segmentation in the microscopy images, liver segmentation in 

abdominal CT scans, and polyp segmentation in colonoscopy videos. Our experiments 

demonstrate that UNet++ with deep supervision achieves an average IoU gain of 3.9 and 3.4 

points over U-Net and wide U-Net, respectively.

1 Introduction

The state-of-the-art models for image segmentation are variants of the encoder-decoder 

architecture like U-Net [9] and fully convolutional network (FCN) [8]. These encoder-

decoder networks used for segmentation share a key similarity: skip connections, which 

combine deep, semantic, coarse-grained feature maps from the decoder sub-network with 

shallow, low-level, fine-grained feature maps from the encoder sub-network. The skip 

connections have proved effective in recovering fine-grained details of the target objects; 

generating segmentation masks with fine details even on complex background. Skip 

connections is also fundamental to the success of instance-level segmentation models such 

as Mask-RCNN, which enables the segmentation of occluded objects. Arguably, image 

segmentation in natural images has reached a satisfactory level of performance, but do these 

models meet the strict segmentation requirements of medical images?

Segmenting lesions or abnormalities in medical images demands a higher level of accuracy 

than what is desired in natural images. While a precise segmentation mask may not be 

critical in natural images, even marginal segmentation errors in medical images can lead to 

poor user experience in clinical settings. For instance, the subtle spiculation patterns around 
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a nodule may indicate nodule malignancy; and therefore, their exclusion from the 

segmentation masks would lower the credibility of the model from the clinical perspective. 

Furthermore, inaccurate segmentation may also lead to a major change in the subsequent 

computer-generated diagnosis. For example, an erroneous measurement of nodule growth in 

longitudinal studies can result in the assignment of an incorrect Lung-RADS category to a 

screening patient. It is therefore desired to devise more effective image segmentation 

architectures that can effectively recover the fine details of the target objects in medical 

images.

To address the need for more accurate segmentation in medical images, we present UNet++, 

a new segmentation architecture based on nested and dense skip connections. The 

underlying hypothesis behind our architecture is that the model can more effectively capture 

fine-grained details of the foreground objects when high-resolution feature maps from the 

encoder network are gradually enriched prior to fusion with the corresponding semantically 

rich feature maps from the decoder network. We argue that the network would deal with an 

easier learning task when the feature maps from the decoder and encoder networks are 

semantically similar. This is in contrast to the plain skip connections commonly used in U-

Net, which directly fast-forward high-resolution feature maps from the encoder to the 

decoder network, resulting in the fusion of semantically dissimilar feature maps. According 

to our experiments, the suggested architecture is effective, yielding significant performance 

gain over U-Net and wide U-Net.

2 Related Work

Long et al. [8] first introduced fully convolutional networks (FCN), while U-Net was 

introduced by Ronneberger et al. [9]. They both share a key idea: skip connections. In FCN, 

up-sampled feature maps are summed with feature maps skipped from the encoder, while U-

Net concatenates them and add convolutions and non-linearities between each up-sampling 

step. The skip connections have shown to help recover the full spatial resolution at the 

network output, making fully convolutional methods suitable for semantic segmentation. 

Inspired by DenseNet architecture [5], Li et al. [7] proposed H-denseunet for liver and liver 

tumor segmentation. In the same spirit, Drozdzalet al. [2] systematically investigated the 

importance of skip connections, and introduced short skip connections within the encoder. 

Despite the minor differences between the above architectures, they all tend to fuse 

semantically dissimilar feature maps from the encoder and decoder sub-networks, which, 

according to our experiments, can degrade segmentation performance.

The other two recent related works are GridNet [3] and Mask-RCNN [4]. GridNet is an 

encoder-decoder architecture wherein the feature maps are wired in a grid fashion, 

generalizing several classical segmentation architectures. GridNet, however, lacks up-

sampling layers between skip connections; and thus, it does not represent UNet++. Mask-

RCNN is perhaps the most important meta framework for object detection, classification and 

segmentation. We would like to note that UNet++ can be readily deployed as the backbone 

architecture in Mask-RCNN by simply replacing the plain skip connections with the 

suggested nested dense skip pathways. Due to limited space, we were not able to include 
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results of Mask RCNN with UNet++ as the backbone architecture; however, the interested 

readers can refer to the supplementary material for further details.

3 Proposed Network Architecture: UNet++

Fig. 1a shows a high-level overview of the suggested architecture. As seen, UNet++ starts 

with an encoder sub-network or backbone followed by a decoder sub-network. What 

distinguishes UNet++ from U-Net (the black components in Fig. 1a) is the re-designed skip 

pathways (shown in green and blue) that connect the two sub-networks and the use of deep 

supervision (shown red).

3.1 Re-designed skip pathways

Re-designed skip pathways transform the connectivity of the encoder and decoder sub-

networks. In U-Net, the feature maps of the encoder are directly received in the decoder; 

however, in UNet++, they undergo a dense convolution block whose number of convolution 

layers depends on the pyramid level. For example, the skip pathway between nodes X0,0 and 

X1,3 consists of a dense convolution block with three convolution layers where each 

convolution layer is preceded by a concatenation layer that fuses the output from the 

previous convolution layer of the same dense block with the corresponding up-sampled 

output of the lower dense block. Essentially, the dense convolution block brings the semantic 

level of the encoder feature maps closer to that of the feature maps awaiting in the decoder. 

The hypothesis is that the optimizer would face an easier optimization problem when the 

received encoder feature maps and the corresponding decoder feature maps are semantically 

similar.

Formally, we formulate the skip pathway as follows: let xi,j denote the output of node Xi,j 

where i indexes the down-sampling layer along the encoder and j indexes the convolution 

layer of the dense block along the skip pathway. The stack of feature maps represented by 

xi,j is computed as

xi, j =
ℋ xi − 1, j , j = 0

ℋ xi, k
k = 0
j − 1 , U xi + 1, j − 1 , j > 0

(1)

where function ℋ ⋅  is a convolution operation followed by an activation function, U ⋅
denotes an up-sampling layer, and [ ] denotes the concatenation layer. Basically, nodes at 

level j = 0 receive only one input from the previous layer of the encoder; nodes at level j = 1 

receive two inputs, both from the encoder sub-network but at two consecutive levels; and 

nodes at level j > 1 receive j + 1 inputs, of which j inputs are the outputs of the previous j 
nodes in the same skip pathway and the last input is the up-sampled output from the lower 

skip pathway. The reason that all prior feature maps accumulate and arrive at the current 

node is because we make use of a dense convolution block along each skip pathway. Fig. 1b 

further clarifies Eq. 1 by showing how the feature maps travel through the top skip pathway 

of UNet++.
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3.2 Deep supervision

We propose to use deep supervision [6] in UNet++, enabling the model to operate in two 

modes: 1) accurate mode wherein the outputs from all segmentation branches are averaged; 

2) fast mode wherein the final segmentation map is selected from only one of the 

segmentation branches, the choice of which determines the extent of model pruning and 

speed gain. Fig. 1c shows how the choice of segmentation branch in fast mode results in 

architectures of varying complexity.

Owing to the nested skip pathways, UNet++ generates full resolution feature maps at 

multiple semantic levels, {x0,j, j ∈ {1, 2, 3, 4}}, which are amenable to deep supervision. We 

have added a combination of binary cross-entropy and dice coefficient as the loss function to 

each of the above four semantic levels, which is described as:

ℒ Y , Y = − 1
N ∑

b = 1

N
1
2 ⋅ Y b ⋅ logY b + 2 ⋅ Y b ⋅ Y b

Y b + Y b
(2)

where Y b and Yb denote the flatten predicted probabilities and the flatten ground truths of 

bth image respectively, and N indicates the batch size.

In summary, as depicted in Fig. 1a, UNet++ differs from the original U-Net in three ways: 1) 

having convolution layers on skip pathways (shown in green), which bridges the semantic 

gap between encoder and decoder feature maps; 2) having dense skip connections on skip 

pathways (shown in blue), which improves gradient flow; and 3) having deep supervision 

(shown in red), which as will be shown in Section 4 enables model pruning and improves or 

in the worst case achieves comparable performance to using only one loss layer.

4 Experiments

Datasets:

As shown in Table 1, we use four medical imaging datasets for model evaluation, covering 

lesions/organs from different medical imaging modalities. For further details about datasets 

and the corresponding data pre-processing, we refer the readers to the supplementary 

material.

Baseline models:

For comparison, we used the original U-Net and a customized wide U-Net architecture. We 

chose U-Net because it is a common performance baseline for image segmentation. We also 

designed a wide U-Net with similar number of parameters as our suggested architecture. 

This was to ensure that the performance gain yielded by our architecture is not simply due to 

increased number of parameters. Table 2 details the U-Net and wide U-Net architecture.

Implementation details:

We monitored the Dice coefficient and Intersection over Union (IoU), and used early-stop 
mechanism on the validation set. We also used Adam optimizer with a learning rate of 3e-4. 
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Architecture details for U-Net and wide U-Net are shown in Table 2. UNet++ is constructed 

from the original U-Net architecture. All convolutional layers along a skip pathway (Xi,j) use 

k kernels of size 3×3 (or 3×3×3 for 3D lung nodule segmentation) where k = 32 × 2i. To 

enable deep supervision, a 1×1 convolutional layer followed by a sigmoid activation 

function was appended to each of the target nodes: {x0,j| j ∈ {1,2,3,4}}. As a result, UNet++ 

generates four segmentation maps given an input image, which will be further averaged to 

generate the final segmentation map. More details can be founded at github.com/Nested-

UNet.

Results:

Table 3 compares U-Net, wide U-Net, and UNet++ in terms of the number parameters and 

segmentation accuracy for the tasks of lung nodule segmentation, colon polyp segmentation, 

liver segmentation, and cell nuclei segmentation. As seen, wide U-Net consistently 

outperforms U-Net except for liver segmentation where the two architectures perform 

comparably. This improvement is attributed to the larger number of parameters in wide U-

Net. UNet++ without deep supervision achieves a significant performance gain over both U-

Net and wide U-Net, yielding average improvement of 2.8 and 3.3 points in IoU. UNet++ 

with deep supervision exhibits average improvement of 0.6 points over UNet++ without 

deep supervision. Specifically, the use of deep supervision leads to marked improvement for 

liver and lung nodule segmentation, but such improvement vanishes for cell nuclei and colon 

polyp segmentation. This is because polyps and liver appear at varying scales in video 

frames and CT slices; and thus, a multi-scale approach using all segmentation branches 

(deep supervision) is essential for accurate segmentation. Fig. 2 shows a qualitative 

comparison between the results of U-Net, wide U-Net, and UNet++.

Model pruning:

Fig. 3 shows segmentation performance of UNet++ after applying different levels of 

pruning. We use UNet++ Li to denote UNet++ pruned at level i (see Fig. 1c for further 

details). As seen, UNet++ L3 achieves on average 32.2% reduction in inference time while 

degrading IoU by only 0.6 points. More aggressive pruning further reduces the inference 

time but at the cost of significant accuracy degradation.

5 Conclusion

To address the need for more accurate medical image segmentation, we proposed UNet++. 

The suggested architecture takes advantage of re-designed skip pathways and deep 

supervision. The re-designed skip pathways aim at reducing the semantic gap between the 

feature maps of the encoder and decoder sub-networks, resulting in a possibly simpler 

optimization problem for the optimizer to solve. Deep supervision also enables more 

accurate segmentation particularly for lesions that appear at multiple scales such as polyps in 

colonoscopy videos. We evaluated UNet++ using four medical imaging datasets covering 

lung nodule segmentation, colon polyp segmentation, cell nuclei segmentation, and liver 

segmentation. Our experiments demonstrated that UNet++ with deep supervision achieved 

an average IoU gain of 3.9 and 3.4 points over U-Net and wide U-Net, respectively.
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Fig. 1: 
(a) UNet++ consists of an encoder and decoder that are connected through a series of nested 

dense convolutional blocks. The main idea behind UNet++ is to bridge the semantic gap 

between the feature maps of the encoder and decoder prior to fusion. For example, the 

semantic gap between (X0,0,X1,3) is bridged using a dense convolution block with three 

convolution layers. In the graphical abstract, black indicates the original U-Net, green and 

blue show dense convolution blocks on the skip pathways, and red indicates deep 

supervision. Red, green, and blue components distinguish UNet++ from U-Net. (b) Detailed 

analysis of the first skip pathway of UNet++. (c) UNet++ can be pruned at inference time, if 

trained with deep supervision.
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Fig. 2: 
Qualitative comparison between U-Net, wide U-Net, and UNet++, showing segmentation 

results for polyp, liver, and cell nuclei datasets (2D-only for a distinct visualization).
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Fig. 3: 
Complexity, speed, and accuracy of UNet++ after pruning on (a) cell nuclei, (b) colon polyp, 

(c) liver, and (d) lung nodule segmentation tasks respectively. The inference time is the time 

taken to process 10k test images using one NVIDIA TITAN X (Pascal) with 12 GB memory.
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Table 1:

The image segmentation datasets used in our experiments.

Dataset Images Input Size Modality Provider

cell nuclei 670 96×96 microscopy Data Science Bowl 2018

colon polyp 7,379 224×224 RGB video ASU-Mayo [10,11]

liver 331 512×512 CT MICCAI 2018 LiTS Challenge

lung nodule 1,012 64×64×64 CT LIDC-IDRI [1]
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Table 2:

Number of convolutional kernels in U-Net and wide U-Net.

encoder / decoder X0,0/X0,4 X1,0/X1,3 X2,0/X2,2 X3,0/X3,1 X4,0/X4,0

U-Net 32 64 128 256 512

wide U-Net 35 70 140 280 560
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Table 3:

Segmentation results (IoU: %) for U-Net, wide U-Net and our suggested architecture UNet++ with and 

without deep supervision (DS).

Architecture Params
Dataset

cell nuclei colon polyp liver lung nodule

U-Net [9] 7.76M 90.77 30.08 76.62 71.47

Wide U-Net 9.13M 90.92 30.14 76.58 73.38

UNet++ w/o DS 9.04M 92.63 33.45 79.70 76.44

UNet++ w/ DS 9.04M 92.52 32.12 82.90 77.21
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